1
|
Yang J, Ma YX, Zong Y, Sun M, Wang Y, Zhang RL, Feng J, Wang CZ, Zhuo SP, Zhou J, Shi YL, Chen SH, Wang XD, Lin HT. Precise Synthesis of Organic Cocrystal Alloys with Full-Spectrum Emission Characteristics for the Stepless Color Changing Display. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307129. [PMID: 38126615 DOI: 10.1002/smll.202307129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Organic luminescent materials are indispensable in optoelectronic displays and solid-state luminescence applications. Compared with single-component, multi-component crystalline materials can improve optoelectronic characteristics. This work forms a series of full-spectrum tunable luminescent charge-transfer (CT) cocrystals ranging from 400 to 800 nm through intermolecular collaborative self-assembly. What is even more interesting is that o-TCP-Cor(x)-Pe(1-x), p-TCP-Cor(x)-Pe(1-x), and o-TCP-AN(x)-TP(1-x) alloys are prepared based on cocrystals by doping strategies, which correspondingly achieve the stepless color change from blue (CIE [0.22, 0.44]) to green (CIE [0.16, 0.14]), from green (CIE [0.27, 0.56]) to orange (CIE [0.58, 0.42]), from yellow (CIE [0.40, 0.57]) to red (CIE [0.65, 0.35]). The work provides an efficient method for precisely synthesizing new luminescent organic semiconductor materials and lays a solid foundation for developing advanced organic solid-state displays.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Ying-Xin Ma
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Yi Zong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Mao Sun
- School of resources and environmental engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Ren-Long Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Jin Feng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Chuan-Zeng Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Shu-Ping Zhuo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Ying-Li Shi
- Department of Electrical and Electronic Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shu-Hai Chen
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Xue-Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Hong-Tao Lin
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| |
Collapse
|
2
|
Wang J, Yang Y, Sun X, Li X, Zhang L, Li Z. Management of triplet excitons transition: fine regulation of Förster and dexter energy transfer simultaneously. LIGHT, SCIENCE & APPLICATIONS 2024; 13:35. [PMID: 38291023 PMCID: PMC10828450 DOI: 10.1038/s41377-023-01366-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024]
Abstract
Understanding and management of triplet excitons transition in the same molecule remain a great challenge. Hence, for the first time, by host engineering, manageable transitions of triplet excitons in a naphthalimide derivative NDOH were achieved, and monitored through the intensity ratio (ITADF/IRTP) between thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP). Energy differences between lowest triplet excited states of host and guest were changed from 0.03 to 0.17 eV, and ITADF/IRTP of NDOH decreased by 200 times, thus red shifting the afterglow color. It was proposed that shorter conjugation length led to larger band gaps of host materials, thus contributing to efficient Dexter and inefficient Förster energy transfer. Interestingly, no transition to singlet state and only strongest RTP with quantum yield of 13.9% could be observed, when PBNC with loosest stacking and largest band gap acted as host. This work provides novel insight for the management and prediction of triplet exciton transitions and the development of smart afterglow materials.
Collapse
Affiliation(s)
- Jiaqiang Wang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yujie Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Xinnan Sun
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Xiaoning Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Liyao Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China.
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430072, China.
- Joint School of National University of Singapore, Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
| |
Collapse
|
3
|
Qiu LQ, Lv Q, Wang XD. Advances in white light-emitting organic crystals. LUMINESCENCE 2024; 39:e4585. [PMID: 37635303 DOI: 10.1002/bio.4585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
In past decades, organic crystals have presented considerable potential in the field of optoelectronics due to their rich tunable physical and chemical properties and excellent optoelectronic characteristics. White-light emission, as a special application, has received widespread attention and has been applied in various fields, generating significant interest in the scientific community. By preparing white light-emitting organic crystals, a series of applications for future white-light sources can be realized. This article reviews the research progress on the molecular design and synthesis, preparation, and application of white light-emitting organic crystals in recent years. We hope that this review will help to understand and facilitate the development of white light-emitting organic crystals.
Collapse
Affiliation(s)
- Lin-Qing Qiu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, China
| | - Qiang Lv
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, China
| | - Xue-Dong Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Xu CF, Liu YP, Yu Y, Meng XY, Zong H, Lv Q, Xia XY, Wang XD, Liao LS. Two-Dimensional Optical Waveguides at Telecom Wavelengths Based on Organic Single-Crystal Microsheets of a Charge Transfer Complex. J Phys Chem Lett 2023; 14:3047-3056. [PMID: 36946651 DOI: 10.1021/acs.jpclett.3c00417] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Organic charge transfer (CT) cocrystals open a new door for the exploitation of low-dimensional near-infrared (NIR) emitters by a convenient self-assembly approach. However, research about the fabrication of sheet-like NIR-emitting microstructures that are significant for structural construction and integrated application is limited by the unidirectional molecular packing mode. Herein, via regulation of the biaxial intermolecular CT interaction, single-crystalline microsheets with remarkable NIR emission from 720 to 960 nm were synthesized via the solution self-assembly process of dithieno[3,2-b:2',3'-d]thiophene and 7,7,8,8-tetracyanoquinodimethane. The expected sheet-like structure is conducive to achieving a two-dimensional (2D) optical waveguide with an ultralow optical loss rate of 0.250 dB/μm at 860 nm. More significantly, these as-prepared organic microsheets with tunable thicknesses (h) from 100 to 1100 nm exhibit thickness-dependent NIR optical transportation performance. These findings could pave the way to a new class of low-dimensional NIR emitters for 2D photonics at telecom wavelengths.
Collapse
Affiliation(s)
- Chao-Fei Xu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yan-Ping Liu
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Yue Yu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xin-Yue Meng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Hao Zong
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Qiang Lv
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xing-Yu Xia
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xue-Dong Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Liang-Sheng Liao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
| |
Collapse
|
5
|
Lv Q, Zheng M, Wang XD, Liao LS. Low-Dimensional Organic Crystals: From Precise Synthesis to Advanced Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203961. [PMID: 36057992 DOI: 10.1002/smll.202203961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Low-dimensional organic crystals (LOCs) have attracted increasing attention recently for their potential applications in miniaturized optoelectronics and integrated photonics. Such applications are possible owing to their tunable physicochemical properties and excellent charge/photon transport features. As a result, the precise synthesis of LOCs has been examined in terms of morphology modulation, large-area pattern arrays, and complex architectures, and this has led to a series of appealing structure-dependent properties for future optoelectronic applications. This review summarizes the recent advances in the precise synthesis of LOCs in addition to discussing their structure-property relationships in the context of optoelectronic applications. It also presents the current challenges related to organic crystals with specific structures and desired performances, and the outlook regarding their use in next-generation integrated optoelectronic applications.
Collapse
Affiliation(s)
- Qiang Lv
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Min Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xue-Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, P. R. China
| |
Collapse
|
6
|
Zhao JY, Xu FF, Li ZQ, Gong ZL, Zhong YW, Yao J. Molecular Cocrystals with Hydrogen-Bonded Polymeric Structures and Polarized Luminescence. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7247. [PMID: 36295313 PMCID: PMC9609709 DOI: 10.3390/ma15207247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Crystalline materials with appealing luminescent properties are attractive materials for various optoelectronic applications. The in situ bicomponent reaction of 1,2-ethylenedisulfonic acid with 1,4-di(pyrid-2-yl)benzene, 1,4-di(pyrid-3-yl)benzene, or 1,4-di(pyrid-4-yl)benzene affords luminescent crystals with hydrogen-bonded polymeric structures. Variations in the positions of the pyridine nitrogen atoms lead to alternating polymeric structures with either a ladder- or zigzag-type of molecular arrangement. By using a nanoprecipitation method, microcrystals of these polymeric structures are prepared, showing polarized luminescence with a moderate degree of polarization.
Collapse
Affiliation(s)
- Jing-Yi Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fa-Feng Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhong-Qiu Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhong-Liang Gong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Li Y, Pan Y, Zhang C, Shi Z, Ma C, Ling S, Teng M, Zhang Q, Jiang Y, Zhao R, Zhang Q. Molecular-Shape-Controlled Binary to Ternary Resistive Random-Access Memory Switching of N-Containing Heteroaromatic Semiconductors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44676-44684. [PMID: 36128726 DOI: 10.1021/acsami.2c11960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In organic resistive random-access memory (ReRAM) devices, deeply understanding how to control the performance of π-conjugated semiconductors through molecular-shape-engineering is important and highly desirable. Herein, we design a family of N-containing heteroaromatic semiconductors with molecular shapes moving from mono-branched 1Q to di-branched 2Q and tri-branched 3Q. We find that this molecular-shape engineering can induce reliable binary to ternary ReRAM switching, affording a highly enhanced device yield that satisfies the practical requirement. The density functional theory calculation and experimental evidence suggest that the increased multiple paired electroactive nitrogen sites from mono-branched 1Q to tri-branched 3Q are responsible for the multilevel resistance switching, offering stable bidentate coordination with the active metal atoms. This study sheds light on the prospect of N-containing heteroaromatic semiconductors for promising ultrahigh-density data-storage ReRAM application.
Collapse
Affiliation(s)
- Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yelong Pan
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Zhiming Shi
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Chunlan Ma
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Songtao Ling
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Min Teng
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Qijian Zhang
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Yucheng Jiang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Run Zhao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
8
|
Che Z, Yan C, Wang X, Liao L. Organic
Near‐Infrared
Luminescent Materials Based on Excited State Intramolecular Proton Transfer Process. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zong‐Lu Che
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Chang‐Cun Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Xue‐Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Liang‐Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078 Macau SAR China
| |
Collapse
|