1
|
McDonald D, Wu Y, Dailamy A, Tat J, Parekh U, Zhao D, Hu M, Tipps A, Zhang K, Mali P. Defining the Teratoma as a Model for Multi-lineage Human Development. Cell 2020; 183:1402-1419.e18. [PMID: 33152263 PMCID: PMC7704916 DOI: 10.1016/j.cell.2020.10.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 06/06/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022]
Abstract
We propose that the teratoma, a recognized standard for validating pluripotency in stem cells, could be a promising platform for studying human developmental processes. Performing single-cell RNA sequencing (RNA-seq) of 179,632 cells across 23 teratomas from 4 cell lines, we found that teratomas reproducibly contain approximately 20 cell types across all 3 germ layers, that inter-teratoma cell type heterogeneity is comparable with organoid systems, and teratoma gut and brain cell types correspond well to similar fetal cell types. Furthermore, cellular barcoding confirmed that injected stem cells robustly engraft and contribute to all lineages. Using pooled CRISPR-Cas9 knockout screens, we showed that teratomas can enable simultaneous assaying of the effects of genetic perturbations across all germ layers. Additionally, we demonstrated that teratomas can be sculpted molecularly via microRNA (miRNA)-regulated suicide gene expression to enrich for specific tissues. Taken together, teratomas are a promising platform for modeling multi-lineage development, pan-tissue functional genetic screening, and tissue engineering.
Collapse
Affiliation(s)
- Daniella McDonald
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA 92093, USA
| | - Yan Wu
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Amir Dailamy
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Justin Tat
- Department of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Udit Parekh
- Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Dongxin Zhao
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Michael Hu
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Ann Tipps
- School of Medicine, University of California, San Diego, San Diego, CA 92103, USA
| | - Kun Zhang
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA 92093, USA.
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
2
|
Characterization of gonad differentially expressed SoxB2 genes in mud crab Scylla paramamosain. Gene 2020; 740:144507. [DOI: 10.1016/j.gene.2020.144507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/26/2020] [Accepted: 02/21/2020] [Indexed: 12/25/2022]
|
3
|
Lin J, Yuan Y, Shi X, Fang S, Zhang Y, Guan M, Xie Z, Ma H, Lin F. Molecular cloning, characterization and expression profiles of a SoxB2 gene related to gonadal development in mud crab (Scylla paramamosain). INVERTEBR REPROD DEV 2020. [DOI: 10.1080/07924259.2020.1726515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiali Lin
- Institute of Marine Sciences, Shantou University, Shantou, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Yuying Yuan
- Institute of Marine Sciences, Shantou University, Shantou, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Xi Shi
- Institute of Marine Sciences, Shantou University, Shantou, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Shaobin Fang
- Institute of Marine Sciences, Shantou University, Shantou, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Yin Zhang
- Institute of Marine Sciences, Shantou University, Shantou, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Mengyun Guan
- Institute of Marine Sciences, Shantou University, Shantou, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Zhuofang Xie
- Institute of Marine Sciences, Shantou University, Shantou, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Hongyu Ma
- Institute of Marine Sciences, Shantou University, Shantou, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Fan Lin
- Institute of Marine Sciences, Shantou University, Shantou, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| |
Collapse
|
4
|
Xia X, Wan R, Huo W, Zhang L, Xia X, Chang Z. Molecular cloning and mRNA expression pattern of
$$\varvec{Sox}$$
Sox
4 in Misgurnus anguillicaudatus. J Genet 2018. [DOI: 10.1007/s12041-018-0972-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Anishchenko E, Arnone MI, D'Aniello S. SoxB2 in sea urchin development: implications in neurogenesis, ciliogenesis and skeletal patterning. EvoDevo 2018; 9:5. [PMID: 29479411 PMCID: PMC5817722 DOI: 10.1186/s13227-018-0094-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/01/2018] [Indexed: 11/21/2022] Open
Abstract
Background Current studies in evolutionary developmental biology are focused on the reconstruction of gene regulatory networks in target animal species. From decades, the scientific interest on genetic mechanisms orchestrating embryos development has been increasing in consequence to the fact that common features shared by evolutionarily distant phyla are being clarified. In 2011, a study across eumetazoan species showed for the first time the existence of a highly conserved non-coding element controlling the SoxB2 gene, which is involved in the early specification of the nervous system. This discovery raised several questions about SoxB2 function and regulation in deuterostomes from an evolutionary point of view. Results Due to the relevant phylogenetic position within deuterostomes, the sea urchin Strongylocentrotus purpuratus represents an advantageous animal model in the field of evolutionary developmental biology. Herein, we show a comprehensive study of SoxB2 functions in sea urchins, in particular its expression pattern in a wide range of developmental stages, and its co-localization with other neurogenic markers, as SoxB1, SoxC and Elav. Moreover, this work provides a detailed description of the phenotype of sea urchin SoxB2 knocked-down embryos, confirming its key function in neurogenesis and revealing, for the first time, its additional roles in oral and aboral ectoderm cilia and skeletal rod morphology. Conclusions We concluded that SoxB2 in sea urchins has a neurogenic function; however, this gene could have multiple roles in sea urchin embryogenesis, expanding its expression in non-neurogenic cells. We showed that SoxB2 is functionally conserved among deuterostomes and suggested that in S. purpuratus this gene acquired additional functions, being involved in ciliogenesis and skeletal patterning. Electronic supplementary material The online version of this article (10.1186/s13227-018-0094-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evgeniya Anishchenko
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Naples, Italy
| | - Maria Ina Arnone
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Naples, Italy
| | - Salvatore D'Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
6
|
Xia X, Wan R, Huo W, Zhang L, Xia X, Chang Z. Molecular cloning and mRNA expression pattern of Sox4 in Paramisgurnus dabryanus. Gene Expr Patterns 2017. [PMID: 28629960 DOI: 10.1016/j.gep.2017.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sox4 belonged to the SoxC subfamily of the Sox family, which play important roles in the development of the vertebrate gonad and nervous system. A Sox4 homologue was cloned from brain of Paramisgurnus dabryanus by using homologous cloning and rapid amplification of cDNA ends (RACE), designated as PdSox4. The full-length cDNA was 2163bp, containing the 759bp 5'-untranslated region, 267bp 3'-untranslated region and encoding a putative protein of 378 amino acids with a characteristic high mobility group box (HMG-box) DNA-binding domain of 79 amino acids with the specific motif (RPMNAFMVW). Alignment and phylogenetic analyses indicated that PdSox4 shares highly identical sequence with Sox4 homologues from different species. The signal peptide analysis predicted that PdSox4 is a non-secretory protein. The hydropathy profile of PdSox4 protein revealed that this protein is hydrophilic in nature. The expression profiles of PdSox4 in different developmental stages and various adult tissues of sexs were analyzed by quantitative real-time RT-PCR (qRT-PCR) and In situ hybridization (ISH). The results showed that PdSox4 was ubiquitously expressed during embryogenesis and various adult tissues, especially in central nervous system. Tissue distribution analyses revealed that PdSox4 was expression in developing germ cells. Taken together, these preliminary findings suggested that PdSox4 is highly conserved during vertebrate evolution and involved in a wide range of developmental processes including embryogenesis, neurogenesis and gonad development.
Collapse
Affiliation(s)
- Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Ruyan Wan
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Weiran Huo
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Linxia Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Xiaopei Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| |
Collapse
|
7
|
Focareta L, Cole AG. Analyses of Sox-B and Sox-E Family Genes in the Cephalopod Sepia officinalis: Revealing the Conserved and the Unusual. PLoS One 2016; 11:e0157821. [PMID: 27331398 PMCID: PMC4917168 DOI: 10.1371/journal.pone.0157821] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/05/2016] [Indexed: 11/18/2022] Open
Abstract
Cephalopods provide an unprecedented opportunity for comparative studies of the developmental genetics of organ systems that are convergent with analogous vertebrate structures. The Sox-family of transcription factors is an important class of DNA-binding proteins that are known to be involved in many aspects of differentiation, but have been largely unstudied in lophotrochozoan systems. Using a degenerate primer strategy we have isolated coding sequence for three members of the Sox family of transcription factors from a cephalopod mollusk, the European cuttlefish Sepia officinalis: Sof-SoxE, Sof-SoxB1, and Sof-SoxB2. Analyses of their expression patterns during organogenesis reveals distinct spatial and temporal expression domains. Sof-SoxB1 shows early ectodermal expression throughout the developing epithelium, which is gradually restricted to presumptive sensory epithelia. Expression within the nervous system appears by mid-embryogenesis. Sof-SoxB2 expression is similar to Sof-SoxB1 within the developing epithelia in early embryogenesis, however appears in largely non-overlapping expression domains within the central nervous system and is not expressed in the maturing sensory epithelium. In contrast, Sof-SoxE is expressed throughout the presumptive mesodermal territories at the onset of organogenesis. As development proceeds, Sof-SoxE expression is elevated throughout the developing peripheral circulatory system. This expression disappears as the circulatory system matures, but expression is maintained within undifferentiated connective tissues throughout the animal, and appears within the nervous system near the end of embryogenesis. SoxB proteins are widely known for their role in neural specification in numerous phylogenetic lineages. Our data suggests that Sof-SoxB genes play similar roles in cephalopods. In contrast, Sof-SoxE appears to be involved in the early stages of vasculogenesis of the cephalopod closed circulatory system, a novel role for a member of this gene family.
Collapse
|
8
|
Uy BR, Simoes-Costa M, Koo DES, Sauka-Spengler T, Bronner ME. Evolutionarily conserved role for SoxC genes in neural crest specification and neuronal differentiation. Dev Biol 2014; 397:282-92. [PMID: 25286121 DOI: 10.1016/j.ydbio.2014.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 08/06/2014] [Accepted: 09/19/2014] [Indexed: 11/17/2022]
Abstract
Members of the Sox family of transcription factors play a variety of critical developmental roles in both vertebrates and invertebrates. Whereas SoxBs and SoxEs are involved in neural and neural crest development, respectively, far less is known about members of the SoxC subfamily. To address this from an evolutionary perspective, we compare expression and function of SoxC genes in neural crest cells and their derivatives in lamprey (Petromyzon marinus), a basal vertebrate, to frog (Xenopus laevis). Analysis of transcript distribution reveals conservation of lamprey and X. laevis SoxC expression in premigratory neural crest, branchial arches, and cranial ganglia. Moreover, morpholino-mediated loss-of-function of selected SoxC family members demonstrates essential roles in aspects of neural crest development in both organisms. The results suggest important and conserved functions of SoxC genes during vertebrate evolution and a particularly critical, previously unrecognized role in early neural crest specification.
Collapse
Affiliation(s)
- Benjamin R Uy
- California Institute of Technology Pasadena, Division of Biology and Biological Engineering, 139-74, CA 91125, United States
| | - Marcos Simoes-Costa
- California Institute of Technology Pasadena, Division of Biology and Biological Engineering, 139-74, CA 91125, United States
| | - Daniel E S Koo
- California Institute of Technology Pasadena, Division of Biology and Biological Engineering, 139-74, CA 91125, United States
| | - Tatjana Sauka-Spengler
- California Institute of Technology Pasadena, Division of Biology and Biological Engineering, 139-74, CA 91125, United States
| | - Marianne E Bronner
- California Institute of Technology Pasadena, Division of Biology and Biological Engineering, 139-74, CA 91125, United States
| |
Collapse
|
9
|
Range R. Specification and positioning of the anterior neuroectoderm in deuterostome embryos. Genesis 2014; 52:222-34. [PMID: 24549984 DOI: 10.1002/dvg.22759] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 02/01/2023]
Abstract
The molecular mechanisms used by deuterostome embryos (vertebrates, urochordates, cephalochordates, hemichordates, and echinoderms) to specify and then position the anterior neuroectoderm (ANE) along the anterior-posterior axis are incompletely understood. Studies in several deuterostome embryos suggest that the ANE is initially specified by an early, broad regulatory state. Then, a posterior-to-anterior wave of respecification restricts this broad ANE potential to the anterior pole. In vertebrates, sea urchins and hemichordates a posterior-anterior gradient of Wnt/β-catenin signaling plays an essential and conserved role in this process. Recent data collected from the basal deuterostome sea urchin embryo suggests that positioning the ANE to the anterior pole involves more than the Wnt/β-catenin pathway, instead relying on the integration of information from the Wnt/β-catenin, Wnt/JNK, and Wnt/PKC pathways. Moreover, comparison of functional and expression data from the ambulacrarians, invertebrate chordates, and vertebrates strongly suggests that this Wnt network might be an ANE positioning mechanism shared by all deuterostomes.
Collapse
Affiliation(s)
- Ryan Range
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi
| |
Collapse
|
10
|
Paps J, Holland PWH, Shimeld SM. A genome-wide view of transcription factor gene diversity in chordate evolution: less gene loss in amphioxus? Brief Funct Genomics 2012; 11:177-86. [PMID: 22441554 DOI: 10.1093/bfgp/els012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previous studies of gene diversity in the homeobox superclass have shown that the Florida amphioxus Branchiostoma floridae has undergone remarkably little gene family loss. Here we use a combined BLAST and HMM search strategy to assess the family level diversity of four other transcription factor superclasses: the Paired/Pax genes, Tbx genes, Fox genes and Sox genes. We apply this across genomes from five chordate taxa, including B. floridae and Ciona intestinalis, plus two outgroup taxa. Our results show scattered gene family loss. However, as also found for homeobox genes, B. floridae has retained all ancient Pax, Tbx, Fox and Sox gene families that were present in the common ancestor of living chordates. We conclude that, at least in terms of transcription factor gene complexity, the genome of amphioxus has experienced remarkable stasis compared to the genomes of other chordates.
Collapse
Affiliation(s)
- Jordi Paps
- Department of Zoology, University of Oxford, UK
| | | | | |
Collapse
|
11
|
Wu J, Xiao J, Yu J. Latest notable achievements in genomics. SCIENCE CHINA. LIFE SCIENCES 2012; 55:645-648. [PMID: 22864839 DOI: 10.1007/s11427-012-4331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 05/22/2012] [Indexed: 06/01/2023]
Affiliation(s)
- Jiayan Wu
- Key Laboratory of Genomics Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China
| | | | | |
Collapse
|
12
|
Characterization of the immune defense related tissues, cells, and genes in amphioxus. SCIENCE CHINA-LIFE SCIENCES 2011; 54:999-1004. [DOI: 10.1007/s11427-011-4237-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 11/10/2011] [Indexed: 10/14/2022]
|