1
|
Liang W, Zhu Z, Zheng C. Application of Proteomics Technology Based on LC-MS Combined with Western Blotting and Co-IP in Antiviral Innate Immunity. Methods Mol Biol 2025; 2854:93-106. [PMID: 39192122 DOI: 10.1007/978-1-0716-4108-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
As an interferon-stimulating factor protein, STING plays a role in the response and downstream liaison in antiviral natural immunity. Upon viral invasion, the immediate response of STING protein leads to a series of changes in downstream proteins, which ultimately leads to an antiviral immune response in the form of proinflammatory cytokines and type I interferons, thus triggering an innate immune response, an adaptive immune response in vivo, and long-term protection of the host. In the field of antiviral natural immunity, it is particularly important to rigorously and sequentially probe the dynamic changes in the antiviral natural immunity connector protein STING caused by the entire anti-inflammatory and anti-pathway mechanism and the differences in upstream and downstream proteins. Traditionally, proteomics technology has been validated by detecting proteins in a 2D platform, for which it is difficult to sensitively identify changes in the nature and abundance of target proteins. With the development of mass spectrometry (MS) technology, MS-based proteomics has made important contributions to characterizing the dynamic changes in the natural immune proteome induced by viral infections. MS analytical techniques have several advantages, such as high throughput, rapidity, sensitivity, accuracy, and automation. The most common techniques for detecting complex proteomes are liquid chromatography (LC) and mass spectrometry (MS). LC-MS (Liquid Chromatography-Mass Spectrometry), which combines the physical separation capability of LC and the mass analysis capability of MS, is a powerful technique mainly used for analyzing the proteome of cells, tissues, and body fluids. To explore the combination of traditional proteomics techniques such as Western blotting, Co-IP (co-Immunoprecipitation), and the latest LC-MS methods to probe the anti-inflammatory pathway and the differential changes in upstream and downstream proteins induced by the antiviral natural immune junction protein STING.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Zhenpeng Zhu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Duan Z, Zhang Q, Liu M, Hu Z. Multifunctionality of matrix protein in the replication and pathogenesis of Newcastle disease virus: A review. Int J Biol Macromol 2023; 249:126089. [PMID: 37532184 DOI: 10.1016/j.ijbiomac.2023.126089] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
As an important structural protein in virion morphogenesis, the matrix (M) protein of Newcastle disease virus (NDV) is demonstrated to be a nuclear-cytoplasmic trafficking protein and plays essential roles in viral assembly and budding. In recent years, increasing lines of evidence have indicated that the M protein has obvious influence on the pathotypes of NDV, and the interaction of M protein with cellular proteins is also closely associated with the replication and pathogenicity of NDV. Although substantial progress has been made in the past 40 years towards understanding the structure and function of NDV M protein, the available information is scattered. Therefore, this review article summarizes and updates the research progress on the structural feature, virulence and pathotype correlation, and nucleocytoplasmic transport mechanism of NDV M protein, as well as the functions of M protein and cellular protein interactions in M's intracellular localization, viral RNA synthesis and transcription, viral protein synthesis, viral immune evasion, and viral budding and release, which will provide an in-depth understanding of the biological functions of M protein in the replication and pathogenesis of NDV, and also contribute to the development of effective antiviral strategies aiming at blocking the early or late steps of NDV lifecycles.
Collapse
Affiliation(s)
- Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China.
| | - Qianyong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Menglan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Yin L, Liu S, Shi H, Feng Y, Zhang Y, Wu D, Song Z, Zhang L. Subcellular Proteomic Analysis Reveals Dysregulation in Organization of Human A549 Cells Infected with Influenza Virus H7N9. CURR PROTEOMICS 2021. [DOI: 10.2174/1570164619666211222145450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
H7N9 influenza virus poses a high risk to human beings and proteomic evaluations of these infections may help to better understand its pathogenic mechanisms in human systems. Objective: To find membrane proteins related to H7N9 infection.
Methods:
Here, we infected primary human alveolar adenocarcinoma epithelial cells (A549) cells with H7N9 (including wild and mutant strains) and then produced enriched cellular membrane isolations which were evaluated by western blot. The proteins in these cell membrane fractions were analyzed using the isobaric Tags for Relative and Absolute Quantitation (iTRAQ) proteome technologies.
Results:
Differentially expressed proteins (n = 32) were identified following liquid chromatography-tandem mass spectrometry, including 20 down-regulated proteins such as CD44 antigen, and CD151 antigen, and 12 up-regulated proteins such as tight junction protein ZO-1, and prostaglandin reductase 1. Gene Ontology database searching revealed that 20 out of the 32 differentially expressed proteins were localized to the plasma membrane. These proteins were primarily associated with cellular component organization (n = 20), and enriched in the Reactome pathway of extracellular matrix organization (n = 4).
Conclusion:
These findings indicate that H7N9 may dysregulate cellular organization via specific alterations to the protein profile of the plasma membrane.
Collapse
Affiliation(s)
- Lin Yin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Siyuan Liu
- The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 201400, China
| | - Huichun Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yanling Feng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yujiao Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Dage Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhigang Song
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
4
|
James SA, Ong HS, Hari R, Khan AM. A systematic bioinformatics approach for large-scale identification and characterization of host-pathogen shared sequences. BMC Genomics 2021; 22:700. [PMID: 34583643 PMCID: PMC8477458 DOI: 10.1186/s12864-021-07657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background Biology has entered the era of big data with the advent of high-throughput omics technologies. Biological databases provide public access to petabytes of data and information facilitating knowledge discovery. Over the years, sequence data of pathogens has seen a large increase in the number of records, given the relatively small genome size and their important role as infectious and symbiotic agents. Humans are host to numerous pathogenic diseases, such as that by viruses, many of which are responsible for high mortality and morbidity. The interaction between pathogens and humans over the evolutionary history has resulted in sharing of sequences, with important biological and evolutionary implications. Results This study describes a large-scale, systematic bioinformatics approach for identification and characterization of shared sequences between the host and pathogen. An application of the approach is demonstrated through identification and characterization of the Flaviviridae-human share-ome. A total of 2430 nonamers represented the Flaviviridae-human share-ome with 100% identity. Although the share-ome represented a small fraction of the repertoire of Flaviviridae (~ 0.12%) and human (~ 0.013%) non-redundant nonamers, the 2430 shared nonamers mapped to 16,946 Flaviviridae and 7506 human non-redundant protein sequences. The shared nonamer sequences mapped to 125 species of Flaviviridae, including several with unclassified genus. The majority (~ 68%) of the shared sequences mapped to Hepacivirus C species; West Nile, dengue and Zika viruses of the Flavivirus genus accounted for ~ 11%, ~ 7%, and ~ 3%, respectively, of the Flaviviridae protein sequences (16,946) mapped by the share-ome. Further characterization of the share-ome provided important structural-functional insights to Flaviviridae-human interactions. Conclusion Mapping of the host-pathogen share-ome has important implications for the design of vaccines and drugs, diagnostics, disease surveillance and the discovery of unknown, potential host-pathogen interactions. The generic workflow presented herein is potentially applicable to a variety of pathogens, such as of viral, bacterial or parasitic origin. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07657-4.
Collapse
Affiliation(s)
- Stephen Among James
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Damansara Heights, Kuala Lumpur, 50490, Malaysia.,Department of Biochemistry, Faculty of Science, Kaduna State University, Kaduna, 800211, Nigeria
| | - Hui San Ong
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Damansara Heights, Kuala Lumpur, 50490, Malaysia
| | - Ranjeev Hari
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Damansara Heights, Kuala Lumpur, 50490, Malaysia
| | - Asif M Khan
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Damansara Heights, Kuala Lumpur, 50490, Malaysia. .,Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Beykoz, Istanbul, 34820, Turkey.
| |
Collapse
|
5
|
Mahmud I, Garrett TJ. Mass Spectrometry Techniques in Emerging Pathogens Studies: COVID-19 Perspectives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2013-2024. [PMID: 32880453 PMCID: PMC7496948 DOI: 10.1021/jasms.0c00238] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 05/04/2023]
Abstract
As corona virus disease 2019 (COVID-19) is a rapidly growing public health crisis across the world, our knowledge of meaningful diagnostic tests and treatment for severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) is still evolving. This novel coronavirus disease COVID-19 can be diagnosed using RT-PCR, but inadequate access to reagents, equipment, and a nonspecific target has slowed disease detection and management. Precision medicine, individualized patient care, requires suitable diagnostics approaches to tackle the challenging aspects of viral outbreaks where many tests are needed in a rapid and deployable approach. Mass spectrometry (MS)-based technologies such as proteomics, glycomics, lipidomics, and metabolomics have been applied in disease outbreaks for identification of infectious disease agents such as virus and bacteria and the molecular phenomena associated with pathogenesis. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/MS) is widely used in clinical diagnostics in the United States and Europe for bacterial pathogen identification. Paper spray ionization mass spectrometry (PSI-MS), a rapid ambient MS technique, has recently open a new opportunity for future clinical investigation to diagnose pathogens. Ultra-high-pressure liquid chromatography coupled high-resolution mass spectrometry (UHPLC-HRMS)-based metabolomics and lipidomics have been employed in large-scale biomedical research to discriminate infectious pathogens and uncover biomarkers associated with pathogenesis. PCR-MS has emerged as a new technology with the capability to directly identify known pathogens from the clinical specimens and the potential to identify genetic evidence of undiscovered pathogens. Moreover, miniaturized MS offers possible applications with relatively fast, highly sensitive, and potentially portable ways to analyze for viral compounds. However, beneficial aspects of these rapidly growing MS technologies in pandemics like COVID-19 outbreaks has been limited. Hence, this perspective gives a brief of the existing knowledge, current challenges, and opportunities for MS-based techniques as a promising avenue in studying emerging pathogen outbreaks such as COVID-19.
Collapse
Affiliation(s)
- Iqbal Mahmud
- Department of Pathology, Immunology,
and Laboratory Medicine, University of
Florida, College of Medicine, Gainesville, Florida
32610, United States
- Southeast Center for Integrated
Metabolomics (SECIM), Clinical and Translational Science Institute,
University of Florida, Gainesville,
Florida 32610, United States
- University of Florida Health,
University of Florida, Gainesville,
Florida 32610, United States
| | - Timothy J. Garrett
- Department of Pathology, Immunology,
and Laboratory Medicine, University of
Florida, College of Medicine, Gainesville, Florida
32610, United States
- Southeast Center for Integrated
Metabolomics (SECIM), Clinical and Translational Science Institute,
University of Florida, Gainesville,
Florida 32610, United States
- University of Florida Health,
University of Florida, Gainesville,
Florida 32610, United States
| |
Collapse
|
6
|
Couté Y, Kraut A, Zimmermann C, Büscher N, Hesse AM, Bruley C, De Andrea M, Wangen C, Hahn F, Marschall M, Plachter B. Mass Spectrometry-Based Characterization of the Virion Proteome, Phosphoproteome, and Associated Kinase Activity of Human Cytomegalovirus. Microorganisms 2020; 8:microorganisms8060820. [PMID: 32486127 PMCID: PMC7357008 DOI: 10.3390/microorganisms8060820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
The assembly of human cytomegalovirus (HCMV) virions is an orchestrated process that requires, as an essential prerequisite, the complex crosstalk between viral structural proteins. Currently, however, the mechanisms governing the successive steps in the constitution of virion protein complexes remain elusive. Protein phosphorylation is a key regulator determining the sequential changes in the conformation, binding, dynamics, and stability of proteins in the course of multiprotein assembly. In this review, we present a comprehensive map of the HCMV virion proteome, including a refined view on the virion phosphoproteome, based on previous publications supplemented by new results. Thus, a novel dataset of viral and cellular proteins contained in HCMV virions is generated, providing a basis for future analyses of individual phosphorylation steps and sites involved in the orchestrated assembly of HCMV virion-specific multiprotein complexes. Finally, we present the current knowledge on the activity of pUL97, the HCMV-encoded and virion-associated kinase, in phosphorylating viral and host proteins.
Collapse
Affiliation(s)
- Yohann Couté
- University Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France; (A.K.); (A.-M.H.); (C.B.)
- Correspondence: (Y.C.); (B.P.); Tel.: +33-4-38789461 (Y.C.); +49-6131-179232 (B.P.)
| | - Alexandra Kraut
- University Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France; (A.K.); (A.-M.H.); (C.B.)
| | - Christine Zimmermann
- Institute for Virology and Forschungszentrum für Immuntherapie, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany; (C.Z.); (N.B.)
| | - Nicole Büscher
- Institute for Virology and Forschungszentrum für Immuntherapie, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany; (C.Z.); (N.B.)
| | - Anne-Marie Hesse
- University Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France; (A.K.); (A.-M.H.); (C.B.)
| | - Christophe Bruley
- University Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France; (A.K.); (A.-M.H.); (C.B.)
| | - Marco De Andrea
- Department of Public Health and Pediatric Sciences, Turin Medical School, University of Turin, 10126 Turin, and CAAD – Center for Translational Research on Autoimmune and Allergic Disease, Novara Medical School, 28100 Novara, Italy;
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.W.); (F.H.); (M.M.)
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.W.); (F.H.); (M.M.)
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.W.); (F.H.); (M.M.)
| | - Bodo Plachter
- Institute for Virology and Forschungszentrum für Immuntherapie, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany; (C.Z.); (N.B.)
- Correspondence: (Y.C.); (B.P.); Tel.: +33-4-38789461 (Y.C.); +49-6131-179232 (B.P.)
| |
Collapse
|
7
|
Abstract
The analysis of HSV-1 mature extracellular virions by proteomics requires highly enriched samples to limit false-positives and favor the detection of true components. The protocol described below involves the removal of highly contaminating serum proteins and purification of the virions by a series of differential and density centrifugation steps. In addition, L-particles, which are viral particles devoid of a genome and capsid but present in the extracellular milieu, are depleted on Ficoll 400 gradients. As previously reported, the resulting viral particles are free of most contaminants and suitable for mass spectrometry.
Collapse
|
8
|
Butorov EV. Plasma L-Carnitine and L-Lysine Concentrations in HIV-Infected Patients. Open Biochem J 2017; 11:119-131. [PMID: 29387270 PMCID: PMC5750727 DOI: 10.2174/1874091x01711010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 01/23/2023] Open
Abstract
Background: Virus infections are associated with significant alterations in host cells amino acids profiles that support biosynthetic demands necessary for production of viral progeny. Amino acids play an important role in the pathogenesis of all virus-related infections both as basic substrates for protein synthesis and as regulators in many metabolic pathways. Objective: Our aim was to determine the changes in plasma L-carnitine levels and its amino acid precursor (L-lysine) in HIV-infected patients. Methods: We performed a case-control study of 430 HIV-1 infected males (non-vegetarians) without any restriction in the
nourishment, before highly active antiretroviral therapy (HAART) and 125 HIV-1 subjects after the introduction of
HAART who were periodically monitored in the Municipal Center of HIV/AIDS prophylaxis, Surgut, Russian
Federation Results: The plasma total (TC) and free (FC) L-carnitine concentrations markedly decreased with the clinical stages of HIV infection. The mean plasma TC, FC and L-lysine levels were significantly lower in asymptomatic stage (A) and advanced CDC stages (B, C) HIV-infected patients compared with our reference values. The total and free L-carnitine and its amino acid precursor concentrations mild increased in HIV-infected subjects after the introduction of HAART. Our data revealed that L-lysine amino acid and its derivative (TC) levels were negatively correlated with viral load and inversely with CD4 count lymphocytes in the total cohort. Conclusion: The study results show that there was evidence for an association between plasma L-carnitine, L-lysine and HIV-1 RNA levels, immunological markers and clinical stages of HIV infection. The obtained data indicate that level changes of these host essential nutritional elements can play an important role in the HIV life cycle. These findings are important for understanding the pathophysiology of HIV infection and must be considered in further research for the development of new approaches in the treatment of the disease.
Collapse
Affiliation(s)
- Evgeny V Butorov
- The Municipal Center of HIV/AIDS prophylaxis, Surgut, Russian Federation
| |
Collapse
|
9
|
Berard AR, Coombs KM, Severini A. Quantification of the host response proteome after herpes simplex virus type 1 infection. J Proteome Res 2015; 14:2121-42. [PMID: 25815715 DOI: 10.1021/pr5012284] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Viruses employ numerous host cell metabolic functions to propagate and manage to evade the host immune system. For herpes simplex virus type 1 (HSV1), a virus that has evolved to efficiently infect humans without seriously harming the host in most cases, the virus-host interaction is specifically interesting. This interaction can be best characterized by studying the proteomic changes that occur in the host during infection. Previous studies have been successful at identifying numerous host proteins that play important roles in HSV infection; however, there is still much that we do not know. This study identifies host metabolic functions and proteins that play roles in HSV infection, using global quantitative stable isotope labeling by amino acids in cell culture (SILAC) proteomic profiling of the host cell combined with LC-MS/MS. We showed differential proteins during early, mid and late infection, using both cytosolic and nuclear fractions. We identified hundreds of differentially regulated proteins involved in fundamental cellular functions, including gene expression, DNA replication, inflammatory response, cell movement, cell death, and RNA post-transcriptional modification. Novel differentially regulated proteins in HSV infections include some previously identified in other virus systems, as well as fusion protein, involved in malignant liposarcoma (FUS) and hypoxia up-regulated 1 protein precursor (HYOU1), which have not been identified previously in any virus infection.
Collapse
Affiliation(s)
- Alicia R Berard
- †Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9.,‡Manitoba Center for Proteomics and Systems Biology, University of Manitoba, Room 799 John Buhler Research Centre, Winnipeg, Manitoba, Canada R3E 3P4
| | - Kevin M Coombs
- †Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9.,‡Manitoba Center for Proteomics and Systems Biology, University of Manitoba, Room 799 John Buhler Research Centre, Winnipeg, Manitoba, Canada R3E 3P4.,§Manitoba Institute of Child Health, University of Manitoba, Room 641 John Buhler Research Centre, Winnipeg, Manitoba, Canada R3E 3P4
| | - Alberto Severini
- †Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9.,∥National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, Canada R3E 3P6
| |
Collapse
|
10
|
Role of Analytics in Viral Safety. VACCINE ANALYSIS: STRATEGIES, PRINCIPLES, AND CONTROL 2015. [PMCID: PMC7122056 DOI: 10.1007/978-3-662-45024-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In summary, this chapter reviews the principles of how the current and routine tests detect adventitious agents, and reviews how novel and emerging methods differ in their detection principles. These facets may permit novel methods to emerge to supplement, refine, or replace the routine methods. We have suggested a framework for risk assessment to assure biosafety in vaccines and suggested quantitative modeling to help crystallize thinking about the place of testing, either routine or novel, in this assurance. We assert that testing for adventitious agents should not be the sole basis on which product biosafety is assured. Appropriate sourcing and quality control of raw and starting materials, adherence to principles of Good Manufacturing Practices, including environmental and personnel monitoring and process validation, and finally, testing as verification are the package needed for maximal assurance of biosafety. Thus, a pathway forward to a new paradigm for adventitious agent testing exists in which detection of a broader array of potential adventitious agents might be included in the testing, with adequate sensitivity to provide the needed assurance of verification that there has been no catastrophic breach, in the context of the overall process, design, and adherence to cGMP. Furthermore, it is our hope that we may be able to implement the 3 Rs policy to reduce, replace, and/or refine the use of animals in product safety testing, at the same time that we provide greater assurance of the biosafety of vaccines.
Collapse
|
11
|
Liu X, Zhao L, Yang Y, Bode L, Huang H, Liu C, Huang R, Zhang L, Wang X, Zhang L, Liu S, Zhou J, Li X, He T, Cheng Z, Xie P. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells. Virology 2014; 464-465:196-205. [PMID: 25086498 PMCID: PMC7112117 DOI: 10.1016/j.virol.2014.06.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/23/2014] [Accepted: 06/30/2014] [Indexed: 12/18/2022]
Abstract
Background Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. BDV infection affected the expression of many transcription factors and several HATs and HDACs.
Collapse
Affiliation(s)
- Xia Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The Fifth People's Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, 200240, China
| | - Libo Zhao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The Third People's Hospital of Chongqing, 400014, China
| | - Yongtao Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Liv Bode
- Bornavirus Research Group affiliated to the Free University of Berlin, Berlin, Germany
| | - Hua Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Chengyu Liu
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Rongzhong Huang
- Department of Rehabilitative Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Liang Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Xiao Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Lujun Zhang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Siwen Liu
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Jingjing Zhou
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Xin Li
- Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou, 310018, China
| | - Tieming He
- Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou, 310018, China
| | - Zhongyi Cheng
- Advanced Institute of Translational Medicine, Tongji University, Shanghai, 200092, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
12
|
Liu X, Yang Y, Zhao M, Bode L, Zhang L, Pan J, Lv L, Zhan Y, Liu S, Zhang L, Wang X, Huang R, Zhou J, Xie P. Proteomics reveal energy metabolism and mitogen-activated protein kinase signal transduction perturbation in human Borna disease virus Hu-H1-infected oligodendroglial cells. Neuroscience 2014; 268:284-96. [PMID: 24637096 PMCID: PMC7116963 DOI: 10.1016/j.neuroscience.2014.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/01/2014] [Accepted: 03/06/2014] [Indexed: 12/19/2022]
Abstract
A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). Energy metabolism was the most significantly altered pathway in BDV Hu-H1-infected OL cells. The Raf/MEK/ERK signaling cascade was significantly perturbed in BDV Hu-H1-infected OL cells. BDV Hu-H1caused constitutive activation of the ERK1/2 pathway, but cell proliferation was down-regulated at the same time. BDV Hu-H1 manages to down-regulate cell proliferation, in the presence of activated but not translocated ERK–RSK complex.
Borna disease virus (BDV) is a neurotropic, non-cytolytic RNA virus which replicates in the cell nucleus targeting mainly hippocampal neurons, but also astroglial and oligodendroglial cells in the brain. BDV is associated with a large spectrum of neuropsychiatric pathologies in animals. Its relationship to human neuropsychiatric illness still remains controversial. We could recently demonstrate that human BDV strain Hu-H1 promoted apoptosis and inhibited cell proliferation in a human oligodendroglial cell line (OL cells) whereas laboratory BDV strain V acted contrariwise. Here, differential protein expression between BDV Hu-H1-infected OL cells and non-infected OL cells was assessed through a proteomics approach, using two-dimensional electrophoresis followed by matrix-assisted laser desorption ionization-time of flight tandem mass spectrometry. A total of 63 differential host proteins were identified in BDV Hu-H1-infected OL cells compared to non-infected OL cells. We found that most changes referred to alterations related to the pentose phosphate pathway, glyoxylate and dicarboxylate metabolism, the tricarboxylic acid (TCA) cycle, and glycolysis /gluconeogenesis. By manual querying, two differential proteins were found to be associated with mitogen-activated protein kinase (MAPK) signal transduction. Five key signaling proteins of this pathway (i.e., p-Raf, p-MEK, p-ERK1/2, p-RSK, and p-MSK) were selected for Western blotting validation. p-ERK1/2 and p-RSK were found to be significantly up-regulated, and p-MSK was found to be significantly down-regulated in BDV Hu-H1-infected OL cells compared to non-infected OL cell. Although BDV Hu-H1 constitutively activated the ERK–RSK pathway, host cell proliferation and nuclear translocation of activated pERK in BDV Hu-H1-infected OL cells were impaired. These findings indicate that BDV Hu-H1 infection of human oligodendroglial cells significantly perturbs host energy metabolism, activates the downstream ERK–RSK complex of the Raf/MEK/ERK signaling cascade, and disturbs host cell proliferation possibly through impaired nuclear translocation of pERK, a finding which warrants further research.
Collapse
Affiliation(s)
- X Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Y Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - M Zhao
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - L Bode
- Bornavirus Research Group affiliated to the Free University of Berlin, Berlin, Germany
| | - L Zhang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - J Pan
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - L Lv
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Y Zhan
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - S Liu
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - L Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - X Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - R Huang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China; Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - J Zhou
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - P Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
13
|
Amaya M, Baer A, Voss K, Campbell C, Mueller C, Bailey C, Kehn-Hall K, Petricoin E, Narayanan A. Proteomic strategies for the discovery of novel diagnostic and therapeutic targets for infectious diseases. Pathog Dis 2014; 71:177-89. [PMID: 24488789 PMCID: PMC7108530 DOI: 10.1111/2049-632x.12150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/18/2014] [Accepted: 01/23/2014] [Indexed: 12/14/2022] Open
Abstract
Viruses have developed numerous and elegant strategies to manipulate the host cell machinery to establish a productive infectious cycle. The interaction of viral proteins with host proteins plays an important role in infection and pathogenesis, often bypassing traditional host defenses such as the interferon response and apoptosis. Host–viral protein interactions can be studied using a variety of proteomic approaches ranging from genetic and biochemical to large‐scale high‐throughput technologies. Protein interactions between host and viral proteins are greatly influenced by host signal transduction pathways. In this review, we will focus on comparing proteomic information obtained through differing technologies and how their integration can be used to determine the functional aspect of the host response to infection. We will briefly review and evaluate techniques employed to elucidate viral–host interactions with a primary focus on Protein Microarrays (PMA) and Mass Spectrometry (MS) as potential tools in the discovery of novel therapeutic targets. As many potential molecular markers and targets are proteins, proteomic profiling is expected to yield both clearer and more direct answers to functional and pharmacologic questions.
Collapse
Affiliation(s)
- Moushimi Amaya
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Modulation of neuronal proteome profile in response to Japanese encephalitis virus infection. PLoS One 2014; 9:e90211. [PMID: 24599148 PMCID: PMC3943924 DOI: 10.1371/journal.pone.0090211] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/29/2014] [Indexed: 11/19/2022] Open
Abstract
In this study we have reported the in vivo proteomic changes during Japanese Encephalitis Virus (JEV) infection in combination with in vitro studies which will help in the comprehensive characterization of the modifications in the host metabolism in response to JEV infection. We performed a 2-DE based quantitative proteomic study of JEV-infected mouse brain as well as mouse neuroblastoma (Neuro2a) cells to analyze the host response to this lethal virus. 56 host proteins were found to be differentially expressed post JEV infection (defined as exhibiting ≥1.5-fold change in protein abundance upon JEV infection). Bioinformatics analyses were used to generate JEV-regulated host response networks which reported that the identified proteins were found to be associated with various cellular processes ranging from intracellular protein transport, cellular metabolism and ER stress associated unfolded protein response. JEV was found to invade the host protein folding machinery to sustain its survival and replication inside the host thereby generating a vigorous unfolded protein response, subsequently triggering a number of pathways responsible for the JEV associated pathologies. The results were also validated using a human cell line to correlate them to the human response to JEV. The present investigation is the first report on JEV-host interactome in in vivo model and will be of potential interest for future antiviral research in this field.
Collapse
|
15
|
Abstract
The analysis of herpes simplex virus type 1 mature extracellular virions by proteomics requires highly enriched samples to limit false positives and favor the detection of true components. The protocol described below involves the removal of highly contaminating serum proteins and purification of the virions by a series of differential and density centrifugation steps. In addition, L-particles, which are viral particles devoid of genome and capsid but present in the extracellular milieu, are depleted on Ficoll 400 gradients. As previously reported, the resulting viral particles are free of most contaminants and suitable for mass spectrometry.
Collapse
Affiliation(s)
- Roger Lippé
- Department of Pathology and Cell Biology, University of Montreal, V-541 Pavillon Roger Gaudry, 2900 boul. Édouard-Montpetit, Montreal, QC, Canada, H3C 3J7,
| |
Collapse
|
16
|
CHANG ZY. Science China Life Sciences in 2011: a Retrospect. PROG BIOCHEM BIOPHYS 2013. [DOI: 10.3724/sp.j.1206.2012.00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Zhang Y, Jiang C. PROG BIOCHEM BIOPHYS 2012; 39:1066-1072. [DOI: 10.3724/sp.j.1206.2012.00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
Meissner EG, Suffredini AF, Kottilil S. Opportunities in proteomics to understand hepatitis C and HIV coinfection. Future Virol 2012; 7:759-765. [PMID: 23105947 PMCID: PMC3480018 DOI: 10.2217/fvl.12.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antiretroviral therapy has significantly reduced morbidity and mortality associated with HIV infection. However, coinfection with HCV results in a more complicated disease course for both infections. HIV infection dramatically impacts the natural history of chronic liver disease due to HCV. Coinfected patients not on antiretroviral therapy for HIV develop liver fibrosis and cirrhosis at a faster rate, clear acute infection less commonly and respond to IFN-α-based therapy for chronic infection less often than HCV-monoinfected patients. The interaction between these two viruses, the immune system and the fibrotic machinery of the liver remains incompletely understood. In this review, we discuss recent advances in proteomics as applied to HCV and HIV and highlight issues in coinfection that are amenable to further discovery through proteomic approaches. We focus on clinical predictors of liver fibrosis and treatment outcome as these have the greatest potential clinical applicability.
Collapse
Affiliation(s)
- Eric G Meissner
- Laboratory of Immunoregulation, National Institute of Allergy & Infectious Diseases, Bethesda, MD 20892, USA
| | - Anthony F Suffredini
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shyamasundaran Kottilil
- Laboratory of Immunoregulation, National Institute of Allergy & Infectious Diseases, Bethesda, MD 20892, USA
| |
Collapse
|