1
|
Tu JW, Li T, Gao ZH, Xiong J, Miao W. Construction of CdS-Tetrahymena thermophila hybrid system by efficient cadmium adsorption for dye removal under light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129683. [PMID: 36104909 DOI: 10.1016/j.jhazmat.2022.129683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The water pollution caused by heavy metals and dyes emitted by industries has become a worldwide problem. These pollutants are difficult to be biodegraded. Even at low concentrations, they are toxic and at last threaten human health. Herein, while using Tetrahymena thermophila, a single-celled ciliate protozoa, to enrich and remove the heavy metal Cd2+ from water, CdS nanoparticle-Tetrahymena thermophila hybrid system (CdS-T. thermophila) for dye pollution remediation under light irradiation was developed. The conditions of Cd2+ enrichment and removal by T. thermophila, construction of efficient CdS-T. thermophila, and decolorization of Congo red using CdS-T. thermophila were investigated. In the presence of cysteine ethyl ester, the removal rate of Cd2+ by T. thermophila was 94% at low Cd2+ concentration of 1 mg L-1. The adsorption capacity of T. thermophila to Cd2+ reached 43 mg g-1 at Cd2+ concentration of 80 mg L-1. Using 0.1 g L-1 constructed CdS-T. thermophila, the decolorization rate of 50 mg L-1 Congo red solution reached 95% in 60 min under light irradiation. This study provides a new insight to effective removing Cd2+ from water by T. thermophila to construct the CdS-T. thermophila and using it to remediate dye pollution in the environment.
Collapse
Affiliation(s)
- Jia-Wei Tu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tian Li
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Han Gao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
2
|
Ye Q, Zhang C, Wang Z, Feng Y, Zhou A, Xie S, Xiang Q, Song E, Zou J. Induction of oxidative stress, apoptosis and DNA damage by koumine in Tetrahymena thermophila. PLoS One 2019; 14:e0212231. [PMID: 30753239 PMCID: PMC6372211 DOI: 10.1371/journal.pone.0212231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/29/2019] [Indexed: 01/13/2023] Open
Abstract
Koumine is a component of the Chinese medicinal herb Gelsemium elegans and is toxic to vertebrates. We used the ciliate Tetrahymena thermophila as a model to evaluate the toxic effects of this indole alkaloid in eukaryotic microorganisms. Koumine inhibited T. thermophila growth and viability in a dose-dependent manner. Moreover, this drug produced oxidative stress in T. thermophila cells and expressions of antioxidant enzymes were significantly elevated at high koumine levels (p < 0.05). Koumine also caused significant levels of apoptosis (p < 0.05) and induced DNA damage in a dose-dependent manner. Mitophagic vacuoles were present in cells indicating induction of autophagy by this drug. Expression of ATG7, MTT2/4, CYP1 and HSP70 as well as the MAP kinase pathway gene MPK1 and MPK3 were significantly altered after exposed to koumine. This study represents a preliminary toxicological evaluation of koumine in the single celled eukaryote T. thermophila.
Collapse
Affiliation(s)
- Qiao Ye
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chaonan Zhang
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhenlu Wang
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yongyong Feng
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Aiguo Zhou
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shaolin Xie
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qiong Xiang
- Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Enfeng Song
- Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jixing Zou
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
3
|
Ye Q, Feng Y, Wang Z, Jiang W, Qu Y, Zhang C, Zhou A, Xie S, Zou J. Effects of gelsemine on oxidative stress and DNA damage responses of Tetrahymena thermophila. PeerJ 2018; 6:e6093. [PMID: 30581679 PMCID: PMC6292385 DOI: 10.7717/peerj.6093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/10/2018] [Indexed: 01/01/2023] Open
Abstract
Gelsemine is an important toxic substance extracted from Gelsemium elegans, which has a lot of biological functions in cells and organisms, but its toxicity has been rarely reported in Tetrahymena thermophila. In this study, we used the protozoan T. thermophila as an experimental model to investigate the potential toxicity-induced mechanism of gelsemine in the unicellular eukaryote. Our results clearly showed gelsemine inhibited T. thermophila growth in a dose-dependent manner. This exposure also resulted in oxidative stress on T. thermophila cells and antioxidant enzyme levels were significantly altered at high gelsemine levels (p < 0.05). Gelsemine produced a slight apoptotic effect at the highest (0.8 mg/mL) gelsemine level used here (p < 0.05). Furthermore, the toxin-induced DNA damage in a dose-dependent manner. The ultrastructural analysis also revealed mitophagic vacuoles at 0.4 and 0.8 mg/mL levels of gelsemine exposure. Moreover, expressions of oxidative stress-related and MAP kinase genes were significantly changed after exposure to 0.8 mg/mL level of gelsemine (p < 0.05). Altogether, our results clearly show that gelsemine from G. elegans can inhibit the growth via inducing oxidative stress and DNA damage in T. thermophila cells.
Collapse
Affiliation(s)
- Qiao Ye
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China.,Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yongyong Feng
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China.,Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhenlu Wang
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China.,Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wenzhao Jiang
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China.,Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuexin Qu
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China.,Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chaonan Zhang
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China.,Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Aiguo Zhou
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China.,Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shaolin Xie
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China.,Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jixing Zou
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China.,Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Perez-Gonzalez E, Osuna-Martinez UG, Herrera-Moreno MN, Rodriguez-Meza GD, Gonzalez-Ocampo HA, Bucio-Pacheco M. Organochlorine Pesticides in Gonad, Brain, and Blood of Mice in Two Agricultural Areas of Sinaloa. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 98:454-459. [PMID: 28110349 DOI: 10.1007/s00128-016-2028-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 12/30/2016] [Indexed: 05/19/2023]
Abstract
The adverse effect of pesticides on non-target wildlife and human health is a primary concern in the world, but in Mexico, we do not know which wildlife species are at the greatest risk. The aim of this study was to determine organochlorine pesticides in mice of two agricultural fields in Sinaloa, Culiacan and Guasave. Procedures of extraction, analysis, and quantification were followed according to the modified EPA 8081b method. In three mouse tissues (gonad, brain, and blood), γBHC and decachlorobiphenyl with a frequency higher than 50% and endosulfan sulfate with 43% were observed. The wildlife fauna living in agricultural areas are at great risk due to: (1) diversity of the chemicals used for pest control, like mice, and (2) variety of organochlorine pesticides in direct or indirect contact with non-target organisms, affecting the health of animals and humans (toxic effects and accumulation).
Collapse
Affiliation(s)
- Ernestina Perez-Gonzalez
- Centro de Estudios Justo Sierra, Higher Education level, Surutato, Badiraguato, Sinaloa, Mexico.
- Departamento de Medio Ambiente, Instituto Politecnico Nacional-CIIDIR-Sinaloa, Bulevar Juan De Dios Batiz Paredes #250, Colonia San Joachin, C.P. 81101, Guasave, Sinaloa, Mexico.
| | | | - Maria-Nancy Herrera-Moreno
- Departamento de Medio Ambiente, Instituto Politecnico Nacional-CIIDIR-Sinaloa, Bulevar Juan De Dios Batiz Paredes #250, Colonia San Joachin, C.P. 81101, Guasave, Sinaloa, Mexico
| | - Guadalupe-Durga Rodriguez-Meza
- Departamento de Medio Ambiente, Instituto Politecnico Nacional-CIIDIR-Sinaloa, Bulevar Juan De Dios Batiz Paredes #250, Colonia San Joachin, C.P. 81101, Guasave, Sinaloa, Mexico
| | - Hector-A Gonzalez-Ocampo
- Departamento de Medio Ambiente, Instituto Politecnico Nacional-CIIDIR-Sinaloa, Bulevar Juan De Dios Batiz Paredes #250, Colonia San Joachin, C.P. 81101, Guasave, Sinaloa, Mexico
| | - Marcos Bucio-Pacheco
- Centro de Estudios Justo Sierra, Higher Education level, Surutato, Badiraguato, Sinaloa, Mexico
- Departamento de Información y Bibliografia Especializada, Escuela de Biologia, Universidad Autonoma de Sinaloa, Culiacan, Sinaloa, Mexico
| |
Collapse
|
5
|
Li J, Giesy JP, Yu L, Li G, Liu C. Effects of Tris(1,3-dichloro-2-propyl) Phosphate (TDCPP) in Tetrahymena Thermophila: Targeting the Ribosome. Sci Rep 2015; 5:10562. [PMID: 25994279 PMCID: PMC4440212 DOI: 10.1038/srep10562] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/20/2015] [Indexed: 11/09/2022] Open
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) has been frequently detected in the environment, and exposure to TDCPP appears widespread. It has been implicated to cause toxicity in vertebrates, but its potential to affect lower-trophic-level species remains unknown. In the present study, the ciliated protozoan, Tetrahymena thermophila, was used as a model to evaluate toxic effects of TDCPP and explore molecular mechanisms by integrating phenotypic observation, RNA-Seq and transmission electron microscopy (TEM) Imaging technologies. Exposure to 0.01, 0.1 or 1 μM TDCPP for 5 days significantly decreased the relative biomass by reducing number of cells, size of cells and quantity of cilia in a dose-dependent manner. RNA-Seq analysis demonstrated that expression of twenty-one ribosome protein genes was down-regulated and these genes were enriched in “ribosome” term in KEGG pathway analysis. Furthermore, down-regulation of genes expressing ribosome proteins was accompanied by decreased ribosome quantity in rough endoplasmic reticulum and cytoplasm and enlarged ribosome size. Therefore, taken together, the data from the present study suggest that exposure to TDCPP affects growth and reproduction of Tetrahymena thermophila by targeting the ribosome. This information might provide insights into critical mechanisms of toxic action in other species and lead to useful bioindicators of exposure to TDCPP.
Collapse
Affiliation(s)
- Jing Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - John P Giesy
- 1] Department of Veterinary Biomedical Sciences, and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5B3 [2] Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China [3] School of Biological Sciences, University of Hong Kong, Hong Kong, SAR, China [4] State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
ATP-binding cassette transporter enhances tolerance to DDT in Tetrahymena. SCIENCE CHINA-LIFE SCIENCES 2014; 58:297-304. [DOI: 10.1007/s11427-014-4743-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/04/2014] [Indexed: 02/03/2023]
|
7
|
Feng L, Fu C, Yuan D, Miao W. A P450 gene associated with robust resistance to DDT in ciliated protozoan, Tetrahymena thermophila by efficient degradation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 149:126-132. [PMID: 24607688 DOI: 10.1016/j.aquatox.2014.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
Analysis of metabolic mechanisms of dichlorodiphenyltrichloroethane (DDT) accumulation and degradation in microorganisms, which could be used to reduce its hazard to higher organisms at the higher in the food chain, have not been investigated. Robust resistance to DDT (grows well in 256 mg/L DDT) and a surprising ability to degrade DDT (more than 70% DDT within 4h) were found in the ciliated protozoan Tetrahymena thermophila. A P450 gene (CYP5013C2) was found to respond specifically to DDT treatment. In the presence of 256 mg/L DDT, cells with overexpressing CYP5013C2 (p450-OE) grew faster and degraded DDT more efficiently than wild-type (WT) cells, while cells with CYP5013C2 partially knocked down (p450-KD) grew slower and exhibited reduced ability to degrade DDT compared to WT cells. Both dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD) were detected in cells after exposure to DDT, and the concentration of DDD in the p450-OE strain gradually decreased from 0.5 to 4h. Thus, we argue that this P450 gene (CYP5013C2), by efficiently degrading DDT to DDD, is associated with robust resistance to DDT in Tetrahymena, and that a strain overexpressing this gene has the potential to serve as bioreactor that degrades environmental DDT.
Collapse
Affiliation(s)
- Lifang Feng
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Chengjie Fu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dongxia Yuan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
8
|
Ye J, Chang Y, Yan Y, Xiong J, Xue XM, Yuan D, Sun GX, Zhu YG, Miao W. Identification and characterization of the arsenite methyltransferase from a protozoan, Tetrahymena pyriformis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 149:50-7. [PMID: 24561426 DOI: 10.1016/j.aquatox.2014.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/29/2014] [Accepted: 01/31/2014] [Indexed: 05/21/2023]
Abstract
Arsenic (As) methylation in aquatic microbes plays a major role in the biogeochemistry of As. Protozoa, especially the free-living freshwater species, are important players in aquatic ecological health. In this study, an arsenite (As(III)) methyltransferase, TpyArsM, was identified and characterized in a free-living protozoan, Tetrahymena pyriformis. In order to confirm its function, TpyarsM gene was knocked-out in Tetrahymena and was also heterologously expressed in hypersensitive E. coli; these events resulted in expected decreases in As tolerance and methylation ability, respectively. In-vitro tests revealed that purified TpyArsM protein methylated inorganic As to mono- and di- methylarsenate, and also had the novel property of producing trimethylarsenite (TMA(III)) and dimethylarsine (Me2AsH) gases. This new methyltransferase gene, identified in a species near the base of the food web, has enriched our knowledge of As methyltransferases and has great potential for bioremediation of As-contaminated environments.
Collapse
Affiliation(s)
- Jun Ye
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yue Chang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yu Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xi-Mei Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongxia Yuan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guo-Xin Sun
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
9
|
CHANG ZY. Science China Life Sciences in 2011: a Retrospect. PROG BIOCHEM BIOPHYS 2013. [DOI: 10.3724/sp.j.1206.2012.00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|