1
|
Yu H, Li Y, Wang H, Zhang L, Suo P, Su T, Han Q. Preparation of a long-lasting tablet of spinosad microspheres and its residual insecticidal efficacy against the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae) larvae. PEST MANAGEMENT SCIENCE 2024; 80:3912-3921. [PMID: 38517127 DOI: 10.1002/ps.8094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUNDS In order to provide a long-lasting formulation for spinosad (SP) targeting larval stages of Aedes aegypti (Linnaeus) and others alike, a SP tablet was developed based on microspheres, using polylactic acid as inside coating material. The microspheres were encapsulated using polyethylene glycol and 1-hexadecanol to form a sustained-release SP tablet. Micromorphology, active ingredient loading, structure identification, photolysis resistance and biological activity were evaluated in this report. RESULTS (i) The SP microspheres had an average particle size of 6.16 ± 2.28 μm, low adhesion and good dispersion as evaluated by scanning electron microscopy and morphology. (ii) The average active ingredient loading and encapsulation of SP microspheres were 32.80 ± 0.74% and 78.41 ± 2.22%, respectively. (iii) The chemical structure of encapsulated SP was confirmed by Fourier transform infrared and 1H-nuclear magnetic resonance. (iv) The photostability of the microspheres and the tablets were evaluated. The results showed that DT50 (time required to dissipate 50% of the mass originally present) of SP was 0.95 days in microspheres and 6.94 days in tablets. (v) The long-term insecticidal activity of SP tablets was investigated, and the tablet had a long-lasting activity against the mosquito larvae, showing 100% larval mortality for 63 days. CONCLUSIONS The study provided a new long-lasting formulation of SP, which displayed good efficacy in the control of Ae. aegypti larvae. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongxiao Yu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Yunqi Li
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Hong Wang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Lei Zhang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Penghui Suo
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Tianyun Su
- EcoZone International LLC, Riverside, California, USA
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| |
Collapse
|
2
|
Chen M, Wang J, Lin L, Xu X, Wei W, Shen Y, Wei D. Synergistic Regulation of Metabolism by Ca 2+/Reactive Oxygen Species in Penicillium brevicompactum Improves Production of Mycophenolic Acid and Investigation of the Ca 2+ Channel. ACS Synth Biol 2022; 11:273-285. [PMID: 34941247 DOI: 10.1021/acssynbio.1c00413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although Penicillium brevicompactum is a very important industrial strain for mycophenolic acid production, there are no reports on Ca2+/reactive oxygen species (ROS) synergistic regulation and calcium channels, Cch-pb. This study initially intensified the concentration of the intracellular Ca2+ in the high yielding mycophenolic acid producing strain NRRL864 to explore the physiological role of intracellular redox state in metabolic regulation by Penicillium brevicompactum. The addition of Ca2+ in the media caused an increase of intracellular Ca2+, which was accompanied by a strong increase, 1.5 times, in the higher intracellular ROS concentration. In addition, the more intensive ROS sparked the production of an unreported pigment and increase in mycophenolic acid production. Furthermore, the Ca2+ channel, the homologous gene of Cch1, Cch-pb, was investigated to verify the relationship between Ca2+ and the intracellular ROS. The Vitreoscilla hemoglobin was overexpressed, which was bacterial hemoglobin from Vitreoscilla, reducing the intracellular ROS concentration to verify the relationship between the redox state and the yield of mycophenolic acid. The strain pb-VGB expressed the Vitreoscilla hemoglobin exhibited a lower intracellular ROS concentration, 30% lower, and decreased the yield of mycophenolic acid as 10% lower at the same time. Subsequently, with the NRRL864 fermented under 1.7 and 28 mM Ca2+, the [NADH]/[NAD+] ratios were detected and the higher [NADH]/[NAD+] ratios (4 times higher with 28 mM) meant a more robust primary metabolism which provided more precursors to produce the pigment and the mycophenolic acid. Finally, the 10 times higher calcium addition in the media resulted in 25% enhanced mycophenolic acid production to 6.7 g/L and induced pigment synthesis in NRRL864.
Collapse
Affiliation(s)
- Mianhui Chen
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Jingjing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Lin Lin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People’s Republic of China
- Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai 200241, People’s Republic of China
| | - Xiangyang Xu
- Zaozhuang jie nuo enzyme co. ltd, Zaozhuang 277100, People’s Republic of China
| | - Wei Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
3
|
An Z, Tao H, Wang Y, Xia B, Zou Y, Fu S, Fang F, Sun X, Huang R, Xia Y, Deng Z, Liu R, Liu T. Increasing the heterologous production of spinosad in Streptomyces albus J1074 by regulating biosynthesis of its polyketide skeleton. Synth Syst Biotechnol 2021; 6:292-301. [PMID: 34584996 PMCID: PMC8453208 DOI: 10.1016/j.synbio.2021.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
Spinosyns are natural broad-spectrum biological insecticides with a double glycosylated polyketide structure that are produced by aerobic fermentation of the actinomycete, Saccharopolyspora spinosa. However, their large-scale overproduction is hindered by poorly understood bottlenecks in optimizing the original strain, and poor adaptability of the heterologous strain to the production of spinosyn. In this study, we genetically engineered heterologous spinosyn-producer Streptomyces albus J1074 and optimized the fermentation to improve the production of spinosad (spinosyn A and spinosyn D) based on our previous work. We systematically investigated the result of overexpressing polyketide synthase genes (spnA, B, C, D, E) using a constitutive promoter on the spinosad titer in S. albus J1074. The supply of polyketide synthase precursors was then increased to further improve spinosad production. Finally, increasing or replacing the carbon source of the culture medium resulted in a final spinosad titer of ∼70 mg/L, which is the highest titer of spinosad achieved in heterologous Streptomyces species. This research provides useful strategies for efficient heterologous production of natural products.
Collapse
Key Words
- 2-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl)amino]ethanesulfonic acid, (TES)
- HPLC-high resolution mass spectrometer, (HPLC-HRMS)
- Heterologous production
- Luria−Bertani, (LB)
- Polyketide
- Polyketide synthase
- Spinosad
- Spinosyn
- Streptomyces
- acetyl-CoA carboxylase, (ACC)
- acetyl-CoA synthetase, (AcsA)
- biosynthetic gene cluster, (BGC)
- high-performance liquid chromatography, (HPLC)
- limit of detection, (LoD)
- overlap extension-polymerase chain reaction, (OE-PCR)
- polyketide synthase, (PKS)
- propionyl-CoA carboxylase, (PCC)
- soya flour mannitol, (SFM)
- β and ε subunits of Acc, (AccBE)
- β and ε subunits of PCC, (PccBE)
Collapse
Affiliation(s)
- Ziheng An
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Hui Tao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Yong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Bingqing Xia
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Yang Zou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Shuai Fu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Fang Fang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Xiao Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Renqiong Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Yao Xia
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Ran Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
- Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan, 430075, PR China
| |
Collapse
|
4
|
Wang ZK, Gong JS, Qin J, Li H, Lu ZM, Shi JS, Xu ZH. Improving the Intensity of Integrated Expression for Microbial Production. ACS Synth Biol 2021; 10:2796-2807. [PMID: 34738786 DOI: 10.1021/acssynbio.1c00334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chromosomal integration of exogenous genes is preferred for industrially related fermentation, as plasmid-mediated fermentation leads to extra metabolic burden and genetic instability. Moreover, with the development and advancement of genome engineering and gene editing technologies, inserting genes into chromosomes has become more convenient; integration expression is extensively utilized in microorganisms for industrial bioproduction and expected to become the trend of recombinant protein expression. However, in actual research and application, it is important to enhance the expression of heterologous genes at the host genome level. Herein, we summarized the basic principles and characteristics of genomic integration; furthermore, we highlighted strategies to improve the expression of chromosomal integration of genes and pathways in host strains from three aspects, including chassis cell optimization, regulation of expression elements in gene expression cassettes, optimization of gene dose level and integration sites on chromosomes. Moreover, we reviewed and summarized the relevant studies on the application of integrated expression in the exploration of gene function and the various types of industrial microorganism production. Consequently, this review would serve as a reference for the better application of integrated expression.
Collapse
Affiliation(s)
- Zi-Kai Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jiufu Qin
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China
| | - Hui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
5
|
Liu Z, Xiao J, Tang J, Liu Y, Shuai L, Cao L, Xia Z, Ding X, Rang J, Xia L. Effects of acuC on the growth development and spinosad biosynthesis of Saccharopolyspora spinosa. Microb Cell Fact 2021; 20:141. [PMID: 34294095 PMCID: PMC8296664 DOI: 10.1186/s12934-021-01630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acetoin utilization protein (acuC) is a type I histone deacetylase which is highly conserved in bacteria. The acuC gene is related to the acetylation/deacetylation posttranslational modification (PTM) system in S. spinosa. Spinosyns, the secondary metabolites produced by Saccharopolyspora spinosa, are the active ingredients in a family of insect control agents. However, the specific functions and influences of acuC protein in S. spinosa are yet to be characterized. RESULTS The knockout strain and overexpression strain were constructed separately with the shuttle vector pOJ260. The production of spinosyns A and D from S. spinosa-acuC were 105.02 mg/L and 20.63 mg/L, which were 1.82-fold and 1.63-fold higher than those of the wild-type strain (57.76 mg/L and 12.64 mg/L), respectively. The production of spinosyns A and D from S. spinosa-ΔacuC were 32.78 mg/L and 10.89 mg/L, respectively. The qRT-PCR results of three selected genes (bldD, ssgA and whiA) confirmed that the overexpression of acuC affected the capacities of mycelial differentiation and sporulation. Comparative proteomics analysis was performed on these strains to investigate the underlying mechanism leading to the enhancement of spinosad yield. CONCLUSIONS This study first systematically analysed the effects of overexpression acuC on the growth of S. spinosa and the production of spinosad. The results identify the differentially expressed proteins and provide evidences to understand the acetylation metabolic mechanisms which can lead to the increase of secondary metabolites.
Collapse
Affiliation(s)
- Zhudong Liu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha, 410081, China
| | - Jie Xiao
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha, 410081, China
| | - Jianli Tang
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha, 410081, China
| | - Yang Liu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha, 410081, China
| | - Ling Shuai
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha, 410081, China
| | - Li Cao
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha, 410081, China
| | - Ziyuan Xia
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha, 410081, China
| | - Xuezhi Ding
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha, 410081, China
| | - Jie Rang
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha, 410081, China.
| | - Liqiu Xia
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha, 410081, China.
| |
Collapse
|
6
|
Comparative transcriptomic analysis of two Saccharopolyspora spinosa strains reveals the relationships between primary metabolism and spinosad production. Sci Rep 2021; 11:14779. [PMID: 34285307 PMCID: PMC8292330 DOI: 10.1038/s41598-021-94251-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/06/2021] [Indexed: 11/23/2022] Open
Abstract
Saccharopolyspora spinosa is a well-known actinomycete for producing the secondary metabolites, spinosad, which is a potent insecticides possessing both efficiency and safety. In the previous researches, great efforts, including physical mutagenesis, fermentation optimization, genetic manipulation and other methods, have been employed to increase the yield of spinosad to hundreds of folds from the low-yield strain. However, the metabolic network in S. spinosa still remained un-revealed. In this study, two S. spinosa strains with different spinosad production capability were fermented and sampled at three fermentation periods. Then the total RNA of these samples was isolated and sequenced to construct the transcriptome libraries. Through transcriptomic analysis, large numbers of differentially expressed genes were identified and classified according to their different functions. According to the results, spnI and spnP were suggested as the bottleneck during spinosad biosynthesis. Primary metabolic pathways such as carbon metabolic pathways exhibited close relationship with spinosad formation, as pyruvate and phosphoenolpyruvic acid were suggested to accumulate in spinosad high-yield strain during fermentation. The addition of soybean oil in the fermentation medium activated the lipid metabolism pathway, enhancing spinosad production. Glutamic acid and aspartic acid were suggested to be the most important amino acids and might participate in spinosad biosynthesis.
Collapse
|
7
|
Rang J, He H, Yuan S, Tang J, Liu Z, Xia Z, Khan TA, Hu S, Yu Z, Hu Y, Sun Y, Huang W, Ding X, Xia L. Deciphering the Metabolic Pathway Difference Between Saccharopolyspora pogona and Saccharopolyspora spinosa by Comparative Proteomics and Metabonomics. Front Microbiol 2020; 11:396. [PMID: 32256469 PMCID: PMC7093602 DOI: 10.3389/fmicb.2020.00396] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Butenyl-spinosyn, a secondary metabolite produced by Saccharopolyspora pogona, exhibits strong insecticidal activity than spinosyn. However, the low synthesis capacity and unknown metabolic characteristics of butenyl-spinosyn in wild-type S. pogona limit its broad application and metabolic engineering. Here, we showed that S. pogona exhibited increased glucose consumption ability and growth rate compared with S. spinosa, but the production of butenyl-spinosyn was much lower than that of spinosyn. To further elucidate the metabolic mechanism of these different phenotypes, we performed a comparative proteomic and metabolomic study on S. pogona and S. spinosa to identify the change in the abundance levels of proteins and metabolites. We found that the abundance of most proteins and metabolites associated with glucose transport, fatty acid metabolism, tricarboxylic acid cycle, amino acid metabolism, energy metabolism, purine and pyrimidine metabolism, and target product biosynthesis in S. pogona was higher than that in S. spinosa. However, the overall abundance of proteins involved in butenyl-spinosyn biosynthesis was much lower than that of the high-abundance protein chaperonin GroEL, such as the enzymes related to rhamnose synthesis. We speculated that these protein and metabolite abundance changes may be directly responsible for the above phenotypic changes in S. pogona and S. spinosa, especially affecting butenyl-spinosyn biosynthesis. Further studies revealed that the over-expression of the rhamnose synthetic genes and methionine adenosyltransferase gene could effectively improve the production of butenyl-spinosyn by 2.69- and 3.03-fold, respectively, confirming the reliability of this conjecture. This work presents the first comparative proteomics and metabolomics study of S. pogona and S. spinosa, providing new insights into the novel links of phenotypic change and metabolic difference between two strains. The result will be valuable in designing strategies to promote the biosynthesis of butenyl-spinosyn by metabolic engineering.
Collapse
Affiliation(s)
- Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Haocheng He
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shuangqin Yuan
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jianli Tang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zhudong Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Tahir Ali Khan
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ziquan Yu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yibo Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yunjun Sun
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Weitao Huang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
8
|
Li L, Rang J, He H, He S, Liu Z, Tang J, Xiao J, He L, Hu S, Yu Z, Ding X, Xia L. Impact on strain growth and butenyl-spinosyn biosynthesis by overexpression of polynucleotide phosphorylase gene in Saccharopolyspora pogona. Appl Microbiol Biotechnol 2018; 102:8011-8021. [DOI: 10.1007/s00253-018-9178-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/05/2018] [Accepted: 06/13/2018] [Indexed: 01/15/2023]
|
9
|
Tao H, Zhang Y, Deng Z, Liu T. Strategies for Enhancing the Yield of the Potent Insecticide Spinosad in Actinomycetes. Biotechnol J 2018; 14:e1700769. [DOI: 10.1002/biot.201700769] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/19/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Hui Tao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education and Wuhan University School of Pharmaceutical Sciences; Wuhan 430071 P. R. China
| | - Yuchen Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education and Wuhan University School of Pharmaceutical Sciences; Wuhan 430071 P. R. China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education and Wuhan University School of Pharmaceutical Sciences; Wuhan 430071 P. R. China
- Hubei Engineering Laboratory for Synthetic Microbiology; Wuhan Institute of Biotechnology; Wuhan 430075 P. R. China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education and Wuhan University School of Pharmaceutical Sciences; Wuhan 430071 P. R. China
- Hubei Engineering Laboratory for Synthetic Microbiology; Wuhan Institute of Biotechnology; Wuhan 430075 P. R. China
| |
Collapse
|
10
|
Lu C, Yin J, Zhao F, Li F, Lu W. Metabolomics analysis of the effect of dissolved oxygen on spinosad production by Saccharopolyspora spinosa. Antonie van Leeuwenhoek 2017; 110:677-685. [DOI: 10.1007/s10482-017-0835-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/19/2017] [Indexed: 11/30/2022]
|
11
|
High Level of Spinosad Production in the Heterologous Host Saccharopolyspora erythraea. Appl Environ Microbiol 2016; 82:5603-11. [PMID: 27401975 DOI: 10.1128/aem.00618-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/01/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Spinosad, a highly effective insecticide, has an excellent environmental and mammalian toxicological profile. Global market demand for spinosad is huge and growing. However, after much effort, there has been almost no improvement in the spinosad yield from the original producer, Saccharopolyspora spinosa Here, we report the heterologous expression of spinosad using Saccharopolyspora erythraea as a host. The native erythromycin polyketide synthase (PKS) genes in S. erythraea were replaced by the assembled spinosad gene cluster through iterative recombination. The production of spinosad could be detected in the recombinant strains containing the whole biosynthesis gene cluster. Both metabolic engineering and UV mutagenesis were applied to further improve the yield of spinosad. The final strain, AT-ES04PS-3007, which could produce spinosad with a titer of 830 mg/liter, has significant potential in industrial applications. IMPORTANCE This work provides an innovative and promising way to improve the industrial production of spinosad. At the same time, it also describes a successful method of heterologous expression for target metabolites of interest by replacing large gene clusters.
Collapse
|
12
|
Guojun Y, Yuping H, Yan J, Kaichun L, Haiyang X. A New Medium for Improving Spinosad Production by Saccharopolyspora spinosa. Jundishapur J Microbiol 2016; 9:e16765. [PMID: 27635207 PMCID: PMC5013548 DOI: 10.5812/jjm.16765] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 03/18/2016] [Accepted: 04/11/2016] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Spinosad (a mixture of spinosyns A and D) is a unique natural pesticide produced by Saccharopolyspora spinosa. With regard to attempts to improve S. spinosa by classical mutagenesis, we propose that the bottleneck of screening out high-spinosad-production strains is probably caused by the fermentation media. OBJECTIVES The current study aimed to identify a new medium to extensively investigate the potential of S. spinosa strains to produce spinosad. MATERIALS AND METHODS Statistical and regressive modeling methods were used to investigate the effects of the carbon source and to optimize the production media. RESULTS The spinosad production of S. spinosa Co121 increased 77.13%, from 310.44 ± 21.84 μg/mL in the initial fermentation medium (with glucose as the main carbon source) to 549.89 ± 38.59 μg/mL in a new optimized fermentation medium (98.0 g of mannitol, 43.0 g of cottonseed flour, 12.9 g of corn steep liquor, 0.5 g of KH2PO4, and 3.0 g of CaCO3 in 1 L of H2O; pH was adjusted to 7.0 before autoclaving). After screening 4,000 strains, an overall 3.33-fold increase was observed in spinosad titers, starting from the parental strain Co121 in the original fermentation medium and ending with the mutant strain J78 (1035 ± 34 μg/mL) in the optimized medium. CONCLUSIONS The optimized fermentation medium developed in this study can probably be used to improve spinosad production in screening industrial strains of S. spinosa.
Collapse
Affiliation(s)
- Yang Guojun
- Hubei Nature’s Favor Biotechnology, Hanchuan, Hubei, People’s Republic of China
| | - He Yuping
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Jiang Yan
- Hubei Nature’s Favor Biotechnology, Hanchuan, Hubei, People’s Republic of China
| | - Lin Kaichun
- Hubei Nature’s Favor Biotechnology, Hanchuan, Hubei, People’s Republic of China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Xia Haiyang
- Hubei Nature’s Favor Biotechnology, Hanchuan, Hubei, People’s Republic of China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- Key laboratory of Synthetic Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, People’s Republic of China
| |
Collapse
|
13
|
Zhao F, Zhang C, Yin J, Shen Y, Lu W. Coupling of Spinosad Fermentation and Separation Process via Two-Step Macroporous Resin Adsorption Method. Appl Biochem Biotechnol 2015; 176:2144-56. [PMID: 26077683 DOI: 10.1007/s12010-015-1704-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 06/02/2015] [Indexed: 10/23/2022]
Abstract
In this paper, a two-step resin adsorption technology was investigated for spinosad production and separation as follows: the first step resin addition into the fermentor at early cultivation period to decrease the timely product concentration in the broth; the second step of resin addition was used after fermentation to adsorb and extract the spinosad. Based on this, a two-step macroporous resin adsorption-membrane separation process for spinosad fermentation, separation, and purification was established. Spinosad concentration in 5-L fermentor increased by 14.45 % after adding 50 g/L macroporous at the beginning of fermentation. The established two-step macroporous resin adsorption-membrane separation process got the 95.43 % purity and 87 % yield for spinosad, which were both higher than that of the conventional crystallization of spinosad from aqueous phase that were 93.23 and 79.15 % separately. The two-step macroporous resin adsorption method has not only carried out the coupling of spinosad fermentation and separation but also increased spinosad productivity. In addition, the two-step macroporous resin adsorption-membrane separation process performs better in spinosad yield and purity.
Collapse
Affiliation(s)
- Fanglong Zhao
- Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | | | | | | | | |
Collapse
|
14
|
Bai Y, Zhou PP, Fan P, Zhu YM, Tong Y, Wang HB, Yu LJ. Four-stage dissolved oxygen strategy based on multi-scale analysis for improving spinosad yield by Saccharopolyspora spinosa ATCC49460. Microb Biotechnol 2015; 8:561-8. [PMID: 25808914 PMCID: PMC4408188 DOI: 10.1111/1751-7915.12264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/24/2014] [Accepted: 12/26/2014] [Indexed: 11/29/2022] Open
Abstract
Dissolved oxygen (DO) is an important influencing factor in the process of aerobic microbial fermentation. Spinosad is an aerobic microbial-derived secondary metabolite. In our study, spinosad was used as an example to establish a DO strategy by multi-scale analysis, which included a reactor, cell and gene scales. We changed DO conditions that are related to the characteristics of cell metabolism (glucose consumption rate, biomass accumulation and spinosad production). Consequently, cell growth was promoted by maintaining DO at 40% in the first 24 h and subsequently increasing DO to 50% in 24 h to 96 h. In an in-depth analysis of the key enzyme genes (gtt, spn A, spn K and spn O), expression of spinosad and specific Adenosine Triphosphate (ATP), the spinosad yield was increased by regulating DO to 30% within 96 h to 192 h and then changing it to 25% in 192 h to 240 h. Under the four-phase DO strategy, spinosad yield increased by 652.1%, 326.1%, 546.8%, and 781.4% compared with the yield obtained under constant DO control at 50%, 40%, 30%, and 20% respectively. The proposed method provides a novel way to develop a precise DO strategy for fermentation.
Collapse
Affiliation(s)
- Yun Bai
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Recent applications of Vitreoscilla hemoglobin technology in bioproduct synthesis and bioremediation. Appl Microbiol Biotechnol 2015; 99:1627-36. [PMID: 25575886 DOI: 10.1007/s00253-014-6350-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 10/24/2022]
Abstract
Since its first use in 1990 to enhance production of α-amylase in E. coli, engineering of heterologous hosts to express the hemoglobin from the bacterium Vitreoscilla (VHb) has become a widely used strategy to enhance production of a variety of bioproducts, stimulate bioremediation, and increase growth and survival of engineered organisms. The hosts have included a variety of bacteria, yeast, fungi, higher plants, and even animals. The beneficial effects of VHb expression are presumably the result of one or more of its activities. The available evidence indicates that these include oxygen binding and delivery to the respiratory chain and oxygenases, protection against reactive oxygen species, and control of gene expression. In the past 4 to 5 years, the use of this "VHb technology" has continued in a variety of biotechnological applications in a wide range of organisms. These include enhancement of production of an ever wider array of bioproducts, new applications in bioremediation, a possible role in enhancing aerobic waste water treatment, and the potential to enhance growth and survival of both plants and animals of economic importance.
Collapse
|
16
|
Celińska E, Grajek W. A novel multigene expression construct for modification of glycerol metabolism in Yarrowia lipolytica. Microb Cell Fact 2013; 12:102. [PMID: 24188724 PMCID: PMC3827991 DOI: 10.1186/1475-2859-12-102] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 10/29/2013] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND High supply of raw, residual glycerol from biodiesel production plants promote the search for novel biotechnological methods of its utilization. In this study we attempted modification of glycerol catabolism in a nonconventional yeast species Yarrowia lipolytica through genetic engineering approach. RESULTS To address this, we developed a novel genetic construct which allows transferring three heterologous genes, encoding glycerol dehydratase, its reactivator and a wide-spectrum alcohol oxidoreductase under the control of glycerol-induced promoter. The three genes, tandemly arrayed in an expression cassette with a marker gene ura3, regulatory and targeting sequences (G3P dh promoter and XPR-like terminator, 28S rDNA as a target locus), were transferred into Yarrowia lipolytica cells. The obtained recombinant strain NCYC3825 was characterized at the molecular level and with respect to its biotechnological potential. Our experiments indicated that the novel recombinant strain stably borne one copy of the expression cassette and efficiently expressed heterologous alcohol oxidoreductase, while glycerol dehydratase and its reactivator were expressed at lower level. Comparative shake flask cultivations in glucose- and glycerol-based media demonstrated higher biomass production by the recombinant strain when glycerol was the main carbon source. During bioreactor (5 L) fed-batch cultivation in glycerol-based medium, the recombinant strain was characterized by relatively high biomass and lipids accumulation (up to 42 gDCW L(-1), and a peak value of 38%LIPIDS of DCW, respectively), and production of high titers of citric acid (59 g L(-1)) and 2-phenylethanol (up to 1 g L(-1) in shake flask cultivation), which are industrially attractive bioproducts. CONCLUSIONS Due to heterogeneous nature of the observed alterations, we postulate that the main driving force of the modified phenotype was faster growth in glycerol-based media, triggered by modifications in the red-ox balance brought by the wide spectrum oxidoreductase. Our results demonstrate the potential multidirectional use of a novel Yarrowia lipolytica strain as a microbial cell factory.
Collapse
Affiliation(s)
- Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, Poznań 60-627, Poland
| | - Włodzimierz Grajek
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, Poznań 60-627, Poland
| |
Collapse
|
17
|
Gardner PR. Hemoglobin: a nitric-oxide dioxygenase. SCIENTIFICA 2012; 2012:683729. [PMID: 24278729 PMCID: PMC3820574 DOI: 10.6064/2012/683729] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/04/2012] [Indexed: 05/09/2023]
Abstract
Members of the hemoglobin superfamily efficiently catalyze nitric-oxide dioxygenation, and when paired with native electron donors, function as NO dioxygenases (NODs). Indeed, the NOD function has emerged as a more common and ancient function than the well-known role in O2 transport-storage. Novel hemoglobins possessing a NOD function continue to be discovered in diverse life forms. Unique hemoglobin structures evolved, in part, for catalysis with different electron donors. The mechanism of NOD catalysis by representative single domain hemoglobins and multidomain flavohemoglobin occurs through a multistep mechanism involving O2 migration to the heme pocket, O2 binding-reduction, NO migration, radical-radical coupling, O-atom rearrangement, nitrate release, and heme iron re-reduction. Unraveling the physiological functions of multiple NODs with varying expression in organisms and the complexity of NO as both a poison and signaling molecule remain grand challenges for the NO field. NOD knockout organisms and cells expressing recombinant NODs are helping to advance our understanding of NO actions in microbial infection, plant senescence, cancer, mitochondrial function, iron metabolism, and tissue O2 homeostasis. NOD inhibitors are being pursued for therapeutic applications as antibiotics and antitumor agents. Transgenic NOD-expressing plants, fish, algae, and microbes are being developed for agriculture, aquaculture, and industry.
Collapse
Affiliation(s)
- Paul R. Gardner
- Miami Valley Biotech, 1001 E. 2nd Street, Suite 2445, Dayton, OH 45402, USA
| |
Collapse
|