1
|
Liu Q, Wang Y, Xia X, Li Z, Li Y, Shen Y, Wang H. Combinatorial Biosynthesis of 3- O-Carbamoylmaytansinol by Rational Engineering of the Tailoring Steps of Ansamitocins. ACS Synth Biol 2024; 13:721-727. [PMID: 38377312 DOI: 10.1021/acssynbio.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Currently, most maytansine-containing antibody-drug conjugates (ADCs) in clinical trials are prepared with DM1 or DM4, which in turn is synthesized mainly from ansamitocin P-3 (AP-3), a bacterial maytansinoid, isolated from Actinosynnema pretiosum. However, due to the high self-toxicity of AP-3 to A. pretiosum, the yield of AP-3 has been difficult to improve. Herein, a new maytansinoid with much lower self-toxicity to A. pretiosum, 3-O-carbamoylmaytansinol (CAM, 3), was designed and generated by introducing the 3-O-carbamoyltransferase gene asc21b together with the N-methyltransferase genes from exogenous maytansinoid gene clusters into the 3-O-acyltransferase gene (asm19) deleted mutant HGF052. Meanwhile, two new shunt products, 20-O-demethyl-19-dechloro-N-demethyl-4,5-desepoxy-CAM (4) and 20-O-demethyl-N-demethyl-4,5-desepoxy-CAM (5) were identified from the recombinant strain. Furthermore, by screening of liquid fermentation media, overexpression of bottleneck tailoring enzymes and the pathway-specific activator, the titer of CAM reached 498 mg/L in the engineered strain. Since the 3-O-carbamoyl group of CAM can be removed by chemical cleavage as AP-3 to produce maytansinol, our work suggests that CAM may be a promising alternative to AP-3 in the future development of ADCs.
Collapse
Affiliation(s)
- Qingqing Liu
- State Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yu Wang
- State Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xin Xia
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhongyue Li
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Haoxin Wang
- State Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
2
|
Guo S, Leng T, Sun X, Zheng J, Li R, Chen J, Hu F, Liu F, Hua Q. Global Regulator AdpA_1075 Regulates Morphological Differentiation and Ansamitocin Production in Actinosynnema pretiosum subsp. auranticum. Bioengineering (Basel) 2022; 9:719. [PMID: 36421120 PMCID: PMC9687425 DOI: 10.3390/bioengineering9110719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 09/08/2024] Open
Abstract
Actinosynnema pretiosum is a well-known producer of maytansinoid antibiotic ansamitocin P-3 (AP-3). Growth of A. pretiosum in submerged culture was characterized by the formation of complex mycelial particles strongly affecting AP-3 production. However, the genetic determinants involved in mycelial morphology are poorly understood in this genus. Herein a continuum of morphological types of a morphologically stable variant was observed during submerged cultures. Expression analysis revealed that the ssgA_6663 and ftsZ_5883 genes are involved in mycelial aggregation and entanglement. Combing morphology observation and morphology engineering, ssgA_6663 was identified to be responsible for the mycelial intertwining during liquid culture. However, down-regulation of ssgA_6663 transcription was caused by inactivation of adpA_1075, gene coding for an AdpA-like protein. Additionally, the overexpression of adpA_1075 led to an 85% increase in AP-3 production. Electrophoretic mobility shift assays (EMSA) revealed that AdpA_1075 may bind the promoter regions of asm28 gene in asm gene cluster as well as the promoter regions of ssgA_6663. These results confirm that adpA_1075 plays a positive role in AP-3 biosynthesis and morphological differentiation.
Collapse
Affiliation(s)
- Siyu Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Tingting Leng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xueyuan Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiawei Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ruihua Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jun Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fengxian Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
3
|
Cheng H, Xiong G, Li Y, Zhu J, Xiong X, Wang Q, Zhang L, Dong H, Zhu C, Liu G, Chen H. Increased yield of AP-3 by inactivation of asm25 in Actinosynnema pretiosum ssp. auranticum ATCC 31565. PLoS One 2022; 17:e0265517. [PMID: 35316825 PMCID: PMC8939807 DOI: 10.1371/journal.pone.0265517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
Asamitocins are maytansinoids produced by Actinosynnema pretiosum ssp. auranticum ATCC 31565 (A. pretiosum ATCC 31565), which have a structure similar to that of maytansine, therefore serving as a precursor of maytansine in the development of antibody-drug conjugates (ADCs). Currently, there are more than 20 known derivatives of ansamitocins, among which ansamitocin P-3 (AP-3) exhibits the highest antitumor activity. Despite its importance, the application of AP-3 is restricted by low yield, likely due to a substrate competition mechanism underlying the synthesis pathways of AP-3 and its byproducts. Given that N-demethylansamitocin P-3, the precursor of AP-3, is regulated by asm25 and asm10 to synthesize AGP-3 and AP-3, respectively, asm25 is predicted to be an inhibitory gene for AP-3 production. In this study, we inactivated asm25 in A. pretiosum ATCC 31565 by CRISPR-Cas9-guided gene editing. asm25 depletion resulted in a more than 2-fold increase in AP-3 yield. Surprisingly, the addition of isobutanol further improved AP-3 yield in the asm25 knockout strain by more than 6 times; in contrast, only a 1.53-fold increase was found in the WT strain under the parallel condition. Thus, we uncovered an unknown function of asm25 in AP-3 yield and identified asm25 as a promising target to enhance the large-scale industrial production of AP-3.
Collapse
Affiliation(s)
- Hong Cheng
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
- Academy of Military Medical Sciences, Beijing, China
| | - Guoqing Xiong
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
- Academy of Military Medical Sciences, Beijing, China
| | - Yi Li
- Academy of Military Medical Sciences, Beijing, China
| | - Jiaqi Zhu
- Academy of Military Medical Sciences, Beijing, China
- School of Life Science and Technology, Dalian University, Dalian, China
| | | | - Qingyang Wang
- Academy of Military Medical Sciences, Beijing, China
| | | | - Haolong Dong
- Academy of Military Medical Sciences, Beijing, China
| | - Chen Zhu
- Academy of Military Medical Sciences, Beijing, China
- * E-mail: (GL); (HC)
| | - Gang Liu
- Academy of Military Medical Sciences, Beijing, China
- * E-mail: (GL); (HC)
| | - Huipeng Chen
- Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
4
|
DAI LP, WANG ZS, WANG HX, LU CH, SHEN YM. Shunt products of aminoansamycins from aas1 overexpressed mutant strain of Streptomyces sp. S35. Chin J Nat Med 2020; 18:952-956. [DOI: 10.1016/s1875-5364(20)60039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 11/30/2022]
|
5
|
Metabolomic change and pathway profiling reveal enhanced ansamitocin P-3 production in Actinosynnema pretiosum with low organic nitrogen availability in culture medium. Appl Microbiol Biotechnol 2020; 104:3555-3568. [PMID: 32114676 DOI: 10.1007/s00253-020-10463-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/07/2019] [Accepted: 02/12/2020] [Indexed: 10/24/2022]
Abstract
Ansamitocin P-3 (AP-3), a 19-membered polyketide macrocyclic lactam, has potent antitumor activity. Our previous study showed that a relatively low organic nitrogen concentration in culture medium could significantly improve AP-3 production of Actinosynnema pretiosum. In the present study, we aimed to reveal the possible reasons for this improvement through metabolomic and gene transcriptional analytical methods. At the same time, a metabolic pathway profile based on metabolome data and pathway correlation information was performed to obtain a systematic view of the metabolic network modulations of A. pretiosum. Orthogonal partial least squares discriminant analysis showed that nine and eleven key metabolites directly associated with AP-3 production at growth phase and ansamitocin production phase, respectively. In-depth pathway analysis results highlighted that low organic nitrogen availability had significant impacts on central carbon metabolism and amino acid metabolic pathways of A. pretiosum and these metabolic responses were found to be beneficial to precursor supply and ansamitocin biosynthesis. Furthermore, real-time PCR results showed that the transcription of genes involved in precursor and ansamitocin biosynthetic pathways were remarkably upregulated under low organic nitrogen condition thus directing increased carbon flux toward ansamitocin biosynthesis. More importantly, the metabolic pathway analysis demonstrated a competitive relationship between fatty acid and AP-3 biosynthesis could significantly affect the accumulation of AP-3. Our findings provided new knowledge on the organic nitrogen metabolism and ansamitocin biosynthetic precursor in A. pretiosum and identified several important rate-limiting steps involved in ansamitocin biosynthesis thus providing a theoretical basis of further improvement in AP-3 production.
Collapse
|
6
|
Li Z, Zhu D, Shen Y. Discovery of novel bioactive natural products driven by genome mining. Drug Discov Ther 2018; 12:318-328. [DOI: 10.5582/ddt.2018.01066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhongyue Li
- Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University
| | - Deyu Zhu
- School of Basic Medical Sciences, Shandong University
| | - Yuemao Shen
- Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University
| |
Collapse
|
7
|
Li J, Sun R, Ning X, Wang X, Wang Z. Genome-Scale Metabolic Model of Actinosynnema pretiosum ATCC 31280 and Its Application for Ansamitocin P-3 Production Improvement. Genes (Basel) 2018; 9:E364. [PMID: 30036981 PMCID: PMC6070911 DOI: 10.3390/genes9070364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 01/12/2023] Open
Abstract
Actinosynnema pretiosum ATCC 31280 is the producer of antitumor agent ansamitocin P-3 (AP-3). Understanding of the AP-3 biosynthetic pathway and the whole metabolic network in A. pretiosum is important for the improvement of AP-3 titer. In this study, we reconstructed the first complete Genome-Scale Metabolic Model (GSMM) Aspm1282 for A. pretiosum ATCC 31280 based on the newly sequenced genome, with 87% reactions having definite functional annotation. The model has been validated by effectively predicting growth and the key genes for AP-3 biosynthesis. Then we built condition-specific models for an AP-3 high-yield mutant NXJ-24 by integrating Aspm1282 model with time-course transcriptome data. The changes of flux distribution reflect the metabolic shift from growth-related pathway to secondary metabolism pathway since the second day of cultivation. The AP-3 and methionine metabolisms were both enriched in active flux for the last two days, which uncovered the relationships among cell growth, activation of methionine metabolism, and the biosynthesis of AP-3. Furthermore, we identified four combinatorial gene modifications for overproducing AP-3 by in silico strain design, which improved the theoretical flux of AP-3 biosynthesis from 0.201 to 0.372 mmol/gDW/h. Upregulation of methionine metabolic pathway is a potential strategy to improve the production of AP-3.
Collapse
Affiliation(s)
- Jian Li
- Bio-X Institutes, Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Renliang Sun
- Bio-X Institutes, Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Xinjuan Ning
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200040, China.
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Xinran Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200040, China.
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Zhuo Wang
- Bio-X Institutes, Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200040, China.
| |
Collapse
|
8
|
Du Z, Zhong J. Rational approach to improve ansamitocin P‐3 production by integrating pathway engineering and substrate feeding in
Actinosynnema pretiosum. Biotechnol Bioeng 2018; 115:2456-2466. [DOI: 10.1002/bit.26775] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Zhi‐Qiang Du
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai China
- Joint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai China
- Laboratory of Molecular Biochemical Engineering and Advanced Fermentation TechnologySchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai China
| | - Jian‐Jiang Zhong
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai China
- Joint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai China
- Laboratory of Molecular Biochemical Engineering and Advanced Fermentation TechnologySchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai China
| |
Collapse
|
9
|
Wang J, Xiao H, Qian ZG, Zhong JJ. Bioproduction of Antibody–Drug Conjugate Payload Precursors by Engineered Cell Factories. Trends Biotechnol 2017; 35:466-478. [DOI: 10.1016/j.tibtech.2017.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/25/2017] [Accepted: 03/01/2017] [Indexed: 12/30/2022]
|
10
|
Proteomic studies on anti-tumor agent ansamitocin P-3 producer Actinosynnema pretiosum in response to ammonium and isobutanol. Bioprocess Biosyst Eng 2017; 40:1133-1139. [PMID: 28382459 DOI: 10.1007/s00449-017-1763-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
Abstract
Our previous work showed that the biosynthesis of ansamitocin P-3 (AP-3), an anti-tumor agent, by Actinosynnema pretiosum was depressed by ammonium but enhanced by isobutanol in the medium. Here we show proteomics analyses on A. pretiosum in different fermentation conditions with and without ammonium or isobutanol using two-dimensional electrophoresis (2-DE), matrix-assisted laser desorption/ionization, and linear ion trap quadrupole mass spectrometry. Pairwise comparison of repetitive 2-DE maps was performed to find differentially expressed spots, and eight proteins were identified as functionally annotated ones. Among these proteins, D-3-phosphoglycerate dehydrogenase (PGDH) and glyceraldehyde 3-phosphate dehydrogenase showed statistically significant up-regulation in ammonium vs. basic or isobutanol medium, while fatty acid synthetase, histidine-tRNA ligase, transposase, molecular chaperone GroEL, SAM-dependent methyltransferase, and Crp/Fnr family transcriptional regulator were overexpressed in ammonium vs. basic medium. Based on the 2-DE data, exogenous L-serine which could inhibit the PGDH activity was added to the cultures with isobutanol, and a lower AP-3 production was confirmed under 2.5 mM serine addition (24 or 48 h).
Collapse
|
11
|
Constitutive overexpression of asm18 increases the production and diversity of maytansinoids in Actinosynnema pretiosum. Appl Microbiol Biotechnol 2015; 100:2641-9. [PMID: 26572523 DOI: 10.1007/s00253-015-7127-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/25/2015] [Accepted: 10/27/2015] [Indexed: 01/13/2023]
Abstract
Ansamitocins isolated from Actinosynnema pretiosum, potent antitumor compounds, belong to the family of maytansinoids, and the antibody-maytansinoid conjugates are currently under different phases of clinical trials. The clinical applications of ansamitocins have stimulated extensive studies to improve their production yields. In this study, we investigated the function of a pathway-specific S treptomyces antibiotic regulatory protein (SARP) family regulator, Asm18, and observed that ectopic overexpression of the asm18 gene increased the production of N-demethyl-4,5-desepoxy-maytansinol (2) to 50 mg/L in the HGF052 + pJTU824-asm18 strain, an increase by 4.7-fold compared to that of the control strain HGF052 + pJTU824. Real-time PCR analysis showed that the overexpression of the asm18 gene selectively increased the transcription levels of the genes involved in the biosynthesis of the starter unit (asm43), polyketide assembly (asmA), post-PKS modification (asm21), as well as the transcription levels of the regulatory gene (asm8), which is a specific LAL-type activator in ansamitocin biosynthesis. With the increase of fermentation titre, seven ansamitocin analogs (1-7) including three new ones (1, 5, and 6) and maytansinol (7) were isolated from the HGF052 + pJTU824-asm18 strain. Our results not only pave the way for further improving the production of ansamitocin analogs but also indicate that the post-PKS modifications of ansamitocin biosynthesis are flexible, which brings a potential of producing maytansinol, the most fascinating intermediate for the synthesis of antibody-maytansinoid conjugates, by optimizing the HGF052 and/or HGF052 + pJTU824-asm18 strains.
Collapse
|
12
|
Two Master Switch Regulators Trigger A40926 Biosynthesis in Nonomuraea sp. Strain ATCC 39727. J Bacteriol 2015; 197:2536-44. [PMID: 25986904 DOI: 10.1128/jb.00262-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 05/13/2015] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED The actinomycete Nonomuraea sp. strain ATCC 39727 produces the glycopeptide A40926, the precursor of dalbavancin. Biosynthesis of A40926 is encoded by the dbv gene cluster, which contains 37 protein-coding sequences that participate in antibiotic biosynthesis, regulation, immunity, and export. In addition to the positive regulatory protein Dbv4, the A40926-biosynthetic gene cluster encodes two additional putative regulators, Dbv3 and Dbv6. Independent mutations in these genes, combined with bioassays and liquid chromatography-mass spectrometry (LC-MS) analyses, demonstrated that Dbv3 and Dbv4 are both required for antibiotic production, while inactivation of dbv6 had no effect. In addition, overexpression of dbv3 led to higher levels of A40926 production. Transcriptional and quantitative reverse transcription (RT)-PCR analyses showed that Dbv4 is essential for the transcription of two operons, dbv14-dbv8 and dbv30-dbv35, while Dbv3 positively controls the expression of four monocistronic transcription units (dbv4, dbv29, dbv36, and dbv37) and of six operons (dbv2-dbv1, dbv14-dbv8, dbv17-dbv15, dbv21-dbv20, dbv24-dbv28, and dbv30-dbv35). We propose a complex and coordinated model of regulation in which Dbv3 directly or indirectly activates transcription of dbv4 and controls biosynthesis of 4-hydroxyphenylglycine and the heptapeptide backbone, A40926 export, and some tailoring reactions (mannosylation and hexose oxidation), while Dbv4 directly regulates biosynthesis of 3,5-dihydroxyphenylglycine and other tailoring reactions, including the four cross-links, halogenation, glycosylation, and acylation. IMPORTANCE This report expands knowledge of the regulatory mechanisms used to control the biosynthesis of the glycopeptide antibiotic A40926 in the actinomycete Nonomuraea sp. strain ATCC 39727. A40926 is the precursor of dalbavancin, approved for treatment of skin infections by Gram-positive bacteria. Therefore, understanding the regulation of its biosynthesis is also of industrial importance. So far, the regulatory mechanisms used to control two other similar glycopeptides (balhimycin and teicoplanin) have been elucidated, and beyond a common step, different clusters seem to have devised different strategies to control glycopeptide production. Thus, our work provides one more example of the pitfalls of deducing regulatory roles from bioinformatic analyses only, even when analyzing gene clusters directing the synthesis of structurally related compounds.
Collapse
|
13
|
Xie F, Dai S, Shen J, Ren B, Huang P, Wang Q, Liu X, Zhang B, Dai H, Zhang L. A new salicylate synthase AmS is identified for siderophores biosynthesis in Amycolatopsis methanolica 239(T). Appl Microbiol Biotechnol 2015; 99:5895-905. [PMID: 25586582 DOI: 10.1007/s00253-014-6370-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/17/2014] [Accepted: 12/26/2014] [Indexed: 12/14/2022]
Abstract
Siderophores are important for the growth of bacteria or the applications in treatment of iron overload-associated diseases due to the iron-chelating property. Salicylate synthase played a key role in the biosynthesis of some NRPS-derived siderophores by the providing of an iron coordination moiety as the initial building block. A new salicylate synthase, namely AmS, was identified in the biosynthesis pathway of siderophore amychelin in Amycolatopsis methanolica 239(T), since it shunt chorismate, an integrant precursor, from primary to secondary metabolite flow. The amino acid sequence alignment and phylogenetic analysis showed that AmS grouped into a new cluster. In vitro assays of AmS revealed its wide temperature tolerance ranged from 0 to 40 °C and narrow pH tolerant ranged from 7.0 to 9.0. AmS was resistant to organic solvents and non-ionic detergents. Moreover, AmS converted chorismate to salicylate with K m of 129.05 μM, k cat of 2.20 min(-1) at optimal conditions, indicating its low substrate specificity and comparable velocity to reported counterparts (Irp9 and MbtI). These properties of AmS may improve the iron-seizing ability of A. methanolica to compete with its neighbors growing in natural environments. Most importantly, serine and cysteine residues were found to be important for the catalytic activity of AmS. This study presented AmS as a new cluster of salicylate synthase and the reaction mechanism and potential applications of salicylate synthase were highlighted as well.
Collapse
Affiliation(s)
- Feng Xie
- School of Life Sciences, University of Science and Technology of China, No. 443 HuangShan Road, Hefei, 230061, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Li T, Fan Y, Nambou K, Hu F, Imanaka T, Wei L, Hua Q. Improvement of Ansamitocin P-3 Production by Actinosynnema mirum with Fructose as the Sole Carbon Source. Appl Biochem Biotechnol 2015; 175:2845-56. [DOI: 10.1007/s12010-014-1445-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 12/14/2014] [Indexed: 10/24/2022]
|
15
|
Fan Y, Gao Y, Zhou J, Wei L, Chen J, Hua Q. Process optimization with alternative carbon sources and modulation of secondary metabolism for enhanced ansamitocin P-3 production in Actinosynnema pretiosum. J Biotechnol 2014; 192 Pt A:1-10. [DOI: 10.1016/j.jbiotec.2014.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 12/19/2022]
|