1
|
Wu F, Bu S, Wang H. Role of TRP Channels in Metabolism-Related Diseases. Int J Mol Sci 2024; 25:692. [PMID: 38255767 PMCID: PMC10815096 DOI: 10.3390/ijms25020692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic syndrome (MetS), with its high prevalence and significant impact on cardiovascular disease, poses a substantial threat to human health. The early identification of pathological abnormalities related to MetS and prevention of the risk of associated diseases is of paramount importance. Transient Receptor Potential (TRP) channels, a type of nonselective cation channel, are expressed in a variety of tissues and have been implicated in the onset and progression of numerous metabolism-related diseases. This study aims to review and discuss the expression and function of TRP channels in metabolism-related tissues and blood vessels, and to elucidate the interactions and mechanisms between TRP channels and metabolism-related diseases. A comprehensive literature search was conducted using keywords such as TRP channels, metabolic syndrome, pancreas, liver, oxidative stress, diabetes, hypertension, and atherosclerosis across various academic databases including PubMed, Google Scholar, Elsevier, Web of Science, and CNKI. Our review of the current research suggests that TRP channels may be involved in the development of metabolism-related diseases by regulating insulin secretion and release, lipid metabolism, vascular functional activity, oxidative stress, and inflammatory response. TRP channels, as nonselective cation channels, play pivotal roles in sensing various intra- and extracellular stimuli and regulating ion homeostasis by osmosis. They present potential new targets for the diagnosis or treatment of metabolism-related diseases.
Collapse
Affiliation(s)
| | | | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing 210009, China; (F.W.); (S.B.)
| |
Collapse
|
2
|
Jesus RLC, Araujo FA, Alves QL, Dourado KC, Silva DF. Targeting temperature-sensitive transient receptor potential channels in hypertension: far beyond the perception of hot and cold. J Hypertens 2023; 41:1351-1370. [PMID: 37334542 DOI: 10.1097/hjh.0000000000003487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Transient receptor potential (TRP) channels are nonselective cation channels and participate in various physiological roles. Thus, changes in TRP channel function or expression have been linked to several disorders. Among the many TRP channel subtypes, the TRP ankyrin type 1 (TRPA1), TRP melastatin type 8 (TRPM8), and TRP vanilloid type 1 (TRPV1) channels are temperature-sensitive and recognized as thermo-TRPs, which are expressed in the primary afferent nerve. Thermal stimuli are converted into neuronal activity. Several studies have described the expression of TRPA1, TRPM8, and TRPV1 in the cardiovascular system, where these channels can modulate physiological and pathological conditions, including hypertension. This review provides a complete understanding of the functional role of the opposing thermo-receptors TRPA1/TRPM8/TRPV1 in hypertension and a more comprehensive appreciation of TRPA1/TRPM8/TRPV1-dependent mechanisms involved in hypertension. These channels varied activation and inactivation have revealed a signaling pathway that may lead to innovative future treatment options for hypertension and correlated vascular diseases.
Collapse
Affiliation(s)
- Rafael Leonne C Jesus
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Fênix A Araujo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| | - Quiara L Alves
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Keina C Dourado
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Darizy F Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| |
Collapse
|
3
|
Mak YY, Loong BJ, Millns P, Bauer CC, Bon RS, Mbaki Y, Lee FK, Lim KH, Kong C, Then SM, Ting KN. Schwarzinicine A inhibits transient receptor potential canonical channels and exhibits overt vasorelaxation effects. Phytother Res 2022; 36:2952-2963. [PMID: 35537691 PMCID: PMC9544403 DOI: 10.1002/ptr.7489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/10/2022] [Accepted: 04/19/2022] [Indexed: 11/15/2022]
Abstract
This study investigated the vasorelaxant effects of schwarzinicine A, an alkaloid recently reported from Ficus schwarzii Koord. Regulation of calcium homeostasis in vascular smooth muscle cells (VSMC) is viewed as one of the main mechanisms for controlling blood pressure. L‐type voltage‐gated calcium channel (VGCC) blockers are commonly used for controlling hypertension. Recently, the transient receptor potential canonical (TRPC) channels were found in blood vessels of different animal species with evidence of their roles in the regulation of vascular contractility. In this study, we studied the mechanism of actions of schwarzinicine A focusing on its regulation of L‐type VGCC and TRPC channels. Schwarzinicine A exhibited the highest vasorelaxant effect (123.1%) compared to other calcium channel blockers. It also overtly attenuated calcium‐induced contractions of the rat isolated aortae in a calcium‐free environment showing its mechanism to inhibit calcium influx. Fluorometric intracellular calcium recordings confirmed its inhibition of hTRPC3‐, hTRPC4‐, hTRPC5‐ and hTRPC6‐mediated calcium influx into HEK cells with IC50 values of 3, 17, 19 and 7 μM, respectively. The evidence gathered in this study suggests that schwarzinicine A blocks multiple TRPC channels and L‐type VGCC to exert a significant vascular relaxation response.
Collapse
Affiliation(s)
- Yin-Ying Mak
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Bi-Juin Loong
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Paul Millns
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Claudia C Bauer
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Robin S Bon
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Yvonne Mbaki
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Fong-Kai Lee
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Kuan-Hon Lim
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Cin Kong
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Sue-Mian Then
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Kang-Nee Ting
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|
4
|
Zhou Y, Wang X, Guo L, Chen L, Zhang M, Chen X, Li J, Zhang L. TRPV1 activation inhibits phenotypic switching and oxidative stress in vascular smooth muscle cells by upregulating PPARα. Biochem Biophys Res Commun 2021; 545:157-163. [PMID: 33550097 DOI: 10.1016/j.bbrc.2021.01.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
The proliferation and migration of vascular smooth muscle cells (VSMCs) is one of main reasons of vascular remodeling and is the pathogenesis of atherosclerosis and other vascular diseases. Transient receptor potential vanilloid 1 (TRPV1) is the specific receptor of capsaicin. TRPV1 has been previously reported to inhibit proliferation, migration and phenotypic switching, but the regulatory mechanisms and relevant signalling pathways are not clear. The aim of this study was to investigate the effects of capsaicin-activated TRPV1 on VSMC phenotypic switching. In this study, oxidized low density lipoprotein (ox-LDL) was used to induce the proliferation and migration of VSMCs. Our data showed that the VSMC proliferation induced by ox-LDL was dependent on the concentration of ox-LDL. Nevertheless, the data showed that capsaicin activated TRPV1 significantly decreased ox-LDL-induced superoxide anion generation. Phenotypic switching of VSMCs was inhibited by the activation of TRPV1. Furthermore, capsaicin decreased ox-LDL-induced superoxide anion generation by activating peroxisome proliferator activated receptor α (PPARα). TRPV1 inhibited VSMC phenotypic switching via upregulated expression of PPARα. It may be considered a useful target for the treatment of vascular remodeling.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Neurology, 980 Hospital of PLA Joint Logistics Support Forces, 398 ZhongShan Xi Road, QiaoXi District, ShiJiaZhuang, Hebei Province, China
| | - Xueli Wang
- Department of Neurology, 980 Hospital of PLA Joint Logistics Support Forces, 398 ZhongShan Xi Road, QiaoXi District, ShiJiaZhuang, Hebei Province, China
| | - Lu Guo
- Department of Neurology, Army Medical University Daping Hospital, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Lizhao Chen
- Department of Neurosurgery, Army Medical University Daping Hospital, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Mingjie Zhang
- Department of Neurology, The General Hospital of Western Theater Command, 270 Tianhuan Road, Rongdu Avenue, Chengdu, Sichuan Province, China
| | - Xue Chen
- Department of Neurology, Ya 'an People's Hospital, 358 Chenghou Road, Ya 'an City, Sichuan Province, China
| | - Jingcheng Li
- Department of Neurology, Army Medical University Daping Hospital, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China.
| | - Lili Zhang
- Department of Neurology, Army Medical University Daping Hospital, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China.
| |
Collapse
|
5
|
Silva DF, Wenceslau CF, Mccarthy CG, Szasz T, Ogbi S, Webb RC. TRPM8 channel activation triggers relaxation of pudendal artery with increased sensitivity in the hypertensive rats. Pharmacol Res 2019; 147:104329. [PMID: 31340190 DOI: 10.1016/j.phrs.2019.104329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Erectile dysfunction (ED) is frequently encountered in patients with arterial hypertension and there is a recent functional correlation between the expression of thermoreceptor channels TRPM8 (melastatin 8) and alterations in blood pressure in hypertension. The aim of this study was to investigate the function of cold-sensing TRPM8 channel in internal pudendal artery (IPA) in both normotensive and hypertensive rats. METHODS We performed experiments integrating physiological, pharmacological, biochemical and cellular techniques. RESULTS TRPM8 channels are expressed in the IPA and in vascular smooth muscle cells from IPA. In addition, TRPM8 activation, by both a cooling compound icilin (82.1 ± 3.0%, n = 6) and cold temperature [thermal stimulus, basal tone (25 °C, 41.2 ± 3.4%, n = 5) or pre-contracted tone induced by phenylephrine (25 °C, 87.0 ± 3.6%, n = 7)], induced relaxation in IPA. Furthermore, the results showed that the concentration-response curve to icilin was significantly shifted to the right in different conditions, such as: the absence of the vascular endothelium, in the presence of L-NAME (10-4 M), or indomethacin (10-5 M) or by a combination of charybdotoxin (10-7 M) and apamin (5 × 10-6 M), and Y27632 (10-6 M). Interestingly, icilin-induced vasodilation was significantly higher in IPA from spontaneously hypertensive (SHR, E10-4M = 75.3 ± 1.7%) compared to wistar rats (E10-4M = 56.4 ± 2.6%), despite no changes in the TRPM8 expression in IPA between the strains, suggesting that the sensitivity of TRPM8 channels is higher in SHR. CONCLUSIONS These data demonstrate for the first time, the expression and function of TRPM8 channels in the IPA involving, at least in part, endothelium-derived relaxing factors and ROCK inhibition. Overall, this channel could potentially be a new target for the treatment of hypertension associated-ED.
Collapse
Affiliation(s)
- Darizy Flavia Silva
- Department of Bioregulation, Federal University of Bahia, Salvador, BA, Brazil.
| | - Camilla Ferreira Wenceslau
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Cameron G Mccarthy
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Theodora Szasz
- Department of Physiology, Augusta University, Augusta, GA, USA
| | - Safia Ogbi
- Department of Physiology, Augusta University, Augusta, GA, USA
| | - R Clinton Webb
- Department of Physiology, Augusta University, Augusta, GA, USA
| |
Collapse
|
6
|
Sun J, Zhang X, Ruan XZ. Immunity, atherogenesis and vascular function. Exp Physiol 2016; 101:1325-1326. [PMID: 27800668 DOI: 10.1113/ep085569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Ruan XZ, Guan Y, Liu ZH, Eckardt KU, Unwin R. Summary of ISN Forefronts Symposium 2015: ‘Immunomodulation of Cardio-Renal Function’. Kidney Int Rep 2016. [PMCID: PMC5678622 DOI: 10.1016/j.ekir.2016.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The International Society of Nephrology Forefronts Symposium Immunomodulation of Cardio-Renal Function took place October 22 to 25, 2015, in Shenzhen, China. The program covered basic and clinical aspects of cardio-renal pathophysiology and immunity. Leading scientists from different and related disciplines of clinical and basic research described and reviewed recent discoveries, and discussed emerging topics under the headings “Immunity and Renal Pathophysiology”; “Autoimmunity and the Inflammasome”; “Immunity and the Gut Microbiome”; “Immuno-Metabolism”; “Immunogenetics, Transcriptomics and Epigenetics; “Immunity and Hypertension”; and “Immunity, Fibrosis, and Kidney Disease.”
Collapse
|
8
|
Zhu Z, Xiong S, Li Q. The role of transient receptor potential channels in hypertension and metabolic vascular damage. Exp Physiol 2016; 101:1338-1344. [PMID: 27339201 DOI: 10.1113/ep085568] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/20/2016] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the topic of this review? Transient receptor potential (TRP) channels are highly implicated in the pathogenesis of hypertension and the regulation of metabolism. What advances does it highlight? Dysfunction of TRP channels leads to hypertension and metabolic disorders. Elucidating the role of TRP channels in hypertension and metabolic vascular damage would facilitate the design of novel target therapeutics for these intractable diseases. Intracellular Ca2+ homeostasis is critical for vascular function and the regulation of metabolism. Metabolic disorders are major risk factors for hypertension. A family of transient receptor potential (TRP) channels plays an important role in the regulation of cellular calcium signalling and cardiometabolic function. Emerging evidence indicates that TRP channels are highly implicated in the pathogenesis of hypertension and metabolic disorders. Dysfunction of TRP channels leads to hypertension and metabolic dysfunction. Activation of certain subtypes of TRP channels could attenuate metabolic vascular damage and alleviate hypertension. Therefore, elucidating the role of TRP channels in the physiological state and in cardiometabolic diseases will facilitate the design of novel targeted therapeutics for these intractable diseases.
Collapse
Affiliation(s)
- Zhiming Zhu
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China.
| | - Shiqiang Xiong
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Qiang Li
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| |
Collapse
|
9
|
Capsaicinoids Modulating Cardiometabolic Syndrome Risk Factors: Current Perspectives. J Nutr Metab 2016; 2016:4986937. [PMID: 27313880 PMCID: PMC4893589 DOI: 10.1155/2016/4986937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/10/2016] [Indexed: 12/20/2022] Open
Abstract
Capsaicinoids are bioactive nutrients present within red hot peppers reported to cut ad libitum food intake, to increase energy expenditure (thermogenesis) and lipolysis, and to result in weight loss over time. In addition it has shown more benefits such as improvement in reducing oxidative stress and inflammation, improving vascular health, improving endothelial function, lowering blood pressure, reducing endothelial cytokines, cholesterol lowering effects, reducing blood glucose, improving insulin sensitivity, and reducing inflammatory risk factors. All these beneficial effects together help to modulate cardiometabolic syndrome risk factors. The early identification of cardiometabolic risk factors can help try to prevent obesity, hypertension, diabetes, and cardiovascular disease.
Collapse
|
10
|
Xiong S, Wang P, Ma L, Gao P, Gong L, Li L, Li Q, Sun F, Zhou X, He H, Chen J, Yan Z, Liu D, Zhu Z. Ameliorating Endothelial Mitochondrial Dysfunction Restores Coronary Function via Transient Receptor Potential Vanilloid 1-Mediated Protein Kinase A/Uncoupling Protein 2 Pathway. Hypertension 2015; 67:451-60. [PMID: 26667415 DOI: 10.1161/hypertensionaha.115.06223] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 11/19/2015] [Indexed: 01/02/2023]
Abstract
Coronary heart disease arising from atherosclerosis is a leading cause of cardiogenic death worldwide. Mitochondria are the principal source of reactive oxygen species (ROS), and defective oxidative phosphorylation by the mitochondrial respiratory chain contributes to ROS generation. Uncoupling protein 2 (UCP2), an adaptive antioxidant defense factor, protects against mitochondrial ROS-induced endothelial dysfunction in atherosclerosis. The activation of transient receptor potential vanilloid 1 (TRPV1) attenuates vascular dysfunction. Therefore, whether TRPV1 activation antagonizes coronary lesions by alleviating endothelial mitochondrial dysfunction and enhancing the activity of the protein kinase A/UCP2 pathway warrants examination. ApoE(-/-), ApoE(-/-)/TRPV1(-/-), and ApoE(-/-)/UCP2(-/-) mice were fed standard chow, a high-fat diet (HFD), or the HFD plus 0.01% capsaicin. HFD intake profoundly impaired coronary vasodilatation and myocardial perfusion and shortened the survival duration of ApoE(-/-) mice. TRPV1 or UCP2 deficiency exacerbated HFD-induced coronary dysfunction and was associated with increased ROS generation and reduced nitric oxide production in the endothelium. The activation of TRPV1 by capsaicin upregulated UCP2 expression via protein kinase A phosphorylation, thereby alleviating endothelial mitochondrial dysfunction and inhibiting mitochondrial ROS generation. In vivo, dietary capsaicin supplementation enhanced coronary relaxation and prolonged the survival duration of HFD-fed ApoE(-/-) mice. These effects were not observed in ApoE(-/-) mice lacking the TRPV1 or UCP2 gene. The upregulation of protein kinase A /UCP2 via TRPV1 activation ameliorates coronary dysfunction and prolongs the lifespan of atherosclerotic mice by ameliorating endothelial mitochondrial dysfunction. Dietary capsaicin supplementation may represent a promising intervention for the primary prevention of coronary heart disease.
Collapse
Affiliation(s)
- Shiqiang Xiong
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Peijian Wang
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Liqun Ma
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Peng Gao
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Liuping Gong
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Li Li
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Qiang Li
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Fang Sun
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Xunmei Zhou
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Hongbo He
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Jing Chen
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Zhencheng Yan
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Daoyan Liu
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China.
| | - Zhiming Zhu
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China.
| |
Collapse
|