1
|
García-Hernández AP, Corona DN, Carlos-Reyes Á, Sierra-Martínez M, Acosta-Altamirano G, Cisneros-Villanueva M, Pérez-Navarro Y, Ibarra-Sierra E, Marchat LA, López-Camarillo C. The lncRNA AFAP1-AS1 is upregulated in metastatic triple-negative breast tumors and controls hypoxia-activated vasculogenic mimicry and angiogenesis. BMC Cancer 2024; 24:1332. [PMID: 39472818 PMCID: PMC11523880 DOI: 10.1186/s12885-024-13019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Vasculogenic mimicry (VM) is an alternative intratumoral microcirculation system that depends on the capacity of tumor cells to reorganize and grow in three-dimensional (3D) channel architectures like the capillaries formed by endothelial cells. Both VM and angiogenesis may coordinately function to feed cancer cells, allowing tumor growth. Long noncoding RNAs (lncRNAs) regulate critical cellular functions in cancer cells, including cell proliferation, apoptosis, angiogenesis, invasion, and metastasis. The lncRNA, known as actin filament-associated protein 1-antisense RNA 1 (AFAP1-AS1), has been described as an oncogene in diverse types of cancers. However, its role in VM and metastasis in triple-negative breast cancer (TNBC) is unknown. METHODS Reverse transcription and quantitative polymerase chain reaction (RT‒qPCR) experiments were performed to evaluate the expression of 10 selected lncRNAs from literature in metastatic and nonmetastatic biopsies from TNBC patients. The expression of AFAP1-AS1 was analyzed in Genotype-Tissue Expression Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) datasets. The AFAP1-AS1 expression was knocked in TNBC Hs578T cells by transfection of specific siRNAs. Channel-like formation assays were performed using 3D cultures over Matrigel in hypoxia-treated Hs578T cancer cells with diminished expression of AFAP1-AS1. The angiogenesis tests were conducted using human umbilical vein endothelial cells (HUVECs) and AFAP1-AS1- silenced Hs578T cells on 3D cell cultures. The presence of VM (CD31-/PAS+) in tumor tissues from TNBC patients with and without metastasis was assessed through immunohistochemistry using endothelial marker CD31 antibodies and periodic acid-Schiff (PAS) staining. RESULTS Compared with normal mammary tissues, AFAP1-AS1 expression was higher in breast cancer tissues. Moreover, AFAP1-AS1 expression was upregulated in the TNBC subtype compared to receptor-positive breast tumors. In addition, the expression of AFAP1-AS1 was correlated with the expression of the thirteen genes characteristic of a previously reported hypoxia signature. Interestingly, AFAP1-AS1 was upregulated in primary TNBC tumors from patients who developed metastasis compared with the nonmetastatic group. Functional analysis revealed that the knockdown of AFAP1-AS1 in Hs578T cells significantly impaired the hypoxia-induced VM, accompanied by a decrease in the development of 3D channel networks. Similarly, AFAP1-AS1 knockdown counteracts the angiogenic potential of cancer cells, as indicated by a reduction in the number of polygons, sprouting cells, and nodes in HUVEC cells. Remarkably, an increase in CD31-/PAS + staining of 3D channel networks in primary breast tumors from metastatic patients was found compared with the nonmetastatic group. Finally, we found that the number of blood vessels increased in the nonmetastatic group more than in the metastatic cohort. CONCLUSIONS Our data suggested that AFAP1-AS1 controls both VM and angiogenesis in Hs578T breast cancer cells and that increased metastasis is associated with VM in TNBC patients.
Collapse
Affiliation(s)
- Alejandra Paola García-Hernández
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290. Col. Del Valle, Ciudad de México, 03100, México
| | - David Núñez Corona
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290. Col. Del Valle, Ciudad de México, 03100, México
| | - Ángeles Carlos-Reyes
- Laboratorio de Onco-inmunobiologia, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México, México
| | - Mónica Sierra-Martínez
- Unidad de Investigación en Salud del Hospital Regional de Alta Especialidad de Ixtapaluca, IMSS- Bienestar, Ixtapaluca Estado de México, Ciudad de México, México
| | - Gustavo Acosta-Altamirano
- Dirección de Investigación, Hospital General de México "Dr. Eduardo Liceaga", Ciudad de México, México
| | | | - Yussel Pérez-Navarro
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290. Col. Del Valle, Ciudad de México, 03100, México
| | - Eloisa Ibarra-Sierra
- Departamento de Investigación, Instituto Estatal de Cancerología "Dr. Arturo Beltrán Ortega", Acapulco, Guerrero, México
| | - Laurence A Marchat
- Programa en Biomedicina Molecular y Red de Biotecnología, Instituto Politécnico Nacional, Ciudad de México, México
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290. Col. Del Valle, Ciudad de México, 03100, México.
| |
Collapse
|
2
|
Mohan S, Hakami MA, Dailah HG, Khalid A, Najmi A, Zoghebi K, Halawi MA. The emerging role of noncoding RNAs in the EGFR signaling pathway in lung cancer. Pathol Res Pract 2024; 253:155016. [PMID: 38070221 DOI: 10.1016/j.prp.2023.155016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 01/24/2024]
Abstract
Noncoding ribonucleic acids (ncRNAs) have surfaced as essential orchestrators within the intricate system of neoplastic biology. Specifically, the epidermal growth factor receptor (EGFR) signalling cascade shows a central role in the etiological underpinnings of pulmonary carcinoma. Pulmonary malignancy persists as a preeminent contributor to worldwide mortality attributable to malignant neoplasms, with non-small cell lung carcinoma (NSCLC) emerging as the most predominant histopathological subcategory. EGFR is a key driver of NSCLC, and its dysregulation is frequently associated with tumorigenesis, metastasis, and resistance to therapy. Over the past decade, researchers have unveiled a complex network of ncRNAs, encompassing microRNAs, long noncoding RNAs, and circular RNAs, which intricately regulate EGFR signalling. MicroRNAs, as versatile post-transcriptional regulators, have been shown to target various components of the EGFR pathway, influencing cancer cell proliferation, migration, and apoptosis. Additionally, ncRNAs have emerged as critical modulators of EGFR signalling, with their potential to act as scaffolds, decoys, or guides for EGFR-related proteins. Circular RNAs, a relatively recent addition to the ncRNA family, have also been implicated in EGFR signalling regulation. The clinical implications of ncRNAs in EGFR-driven lung cancer are substantial. These molecules exhibit diagnostic potential as robust biomarkers for early cancer detection and personalized treatment. Furthermore, their predictive value extends to predicting disease progression and therapeutic outcomes. Targeting ncRNAs in the EGFR pathway represents a novel therapeutic approach with promising results in preclinical and early clinical studies. This review explores the increasing evidence supporting the significant role of ncRNAs in modulating EGFR signalling in lung cancer, shedding light on their potential diagnostic, prognostic, and therapeutic implications.
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Maryam A Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
3
|
Tang Q, Li L, Wang Y, Wu P, Hou X, Ouyang J, Fan C, Li Z, Wang F, Guo C, Zhou M, Liao Q, Wang H, Xiang B, Jiang W, Li G, Zeng Z, Xiong W. RNA modifications in cancer. Br J Cancer 2023; 129:204-221. [PMID: 37095185 PMCID: PMC10338518 DOI: 10.1038/s41416-023-02275-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
Currently, more than 170 modifications have been identified on RNA. Among these RNA modifications, various methylations account for two-thirds of total cases and exist on almost all RNAs. Roles of RNA modifications in cancer are garnering increasing interest. The research on m6A RNA methylation in cancer is in full swing at present. However, there are still many other popular RNA modifications involved in the regulation of gene expression post-transcriptionally besides m6A RNA methylation. In this review, we focus on several important RNA modifications including m1A, m5C, m7G, 2'-O-Me, Ψ and A-to-I editing in cancer, which will provide a new perspective on tumourigenesis by peeking into the complex regulatory network of epigenetic RNA modifications, transcript processing, and protein translation.
Collapse
Affiliation(s)
- Qiling Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Lvyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Pan Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Xiangchan Hou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Jiawei Ouyang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Zheng Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Hui Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China.
| |
Collapse
|
4
|
Teng M, Zhu ZJ, Yao Y, Nair V, Zhang GP, Luo J. Critical roles of non-coding RNAs in lifecycle and biology of Marek's disease herpesvirus. SCIENCE CHINA. LIFE SCIENCES 2023; 66:251-268. [PMID: 36617590 PMCID: PMC9838510 DOI: 10.1007/s11427-022-2258-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 01/10/2023]
Abstract
Over the past two decades, numerous non-coding RNAs (ncRNAs) have been identified in different biological systems including virology, especially in large DNA viruses such as herpesviruses. As a representative oncogenic alphaherpesvirus, Marek's disease virus (MDV) causes an important immunosuppressive and rapid-onset neoplastic disease of poultry, namely Marek's disease (MD). Vaccinations can efficiently prevent the onset of MD lymphomas and other clinical disease, often heralded as the first successful example of vaccination-based control of cancer. MDV infection is also an excellent model for research into virally-induced tumorigenesis. Recently, great progress has been made in understanding the functions of ncRNAs in MD biology. Herein, we give a review of the discovery and identification of MDV-encoded viral miRNAs, focusing on the genomics, expression profiles, and emerging critical roles of MDV-1 miRNAs as oncogenic miRNAs (oncomiRs) or tumor suppressor genes involved in the induction of MD lymphomas. We also described the involvements of host cellular miRNAs, lincRNAs, and circRNAs participating in MDV life cycle, pathogenesis, and/or tumorigenesis. The prospects, strategies, and new techniques such as the CRISPR/Cas9-based gene editing applicable for further investigation into the ncRNA-mediated regulatory mechanisms in MDV pathogenesis/oncogenesis were also discussed, together with the possibilities of future studies on antiviral therapy and the development of new efficient MD vaccines.
Collapse
Affiliation(s)
- Man Teng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zhi-Jian Zhu
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK
| | - Gai-Ping Zhang
- International Joint Research Center of National Animal Immunology & College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Jun Luo
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- Key Laboratory of Animal Disease and Public Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
5
|
Peña-Flores JA, Bermúdez M, Ramos-Payán R, Villegas-Mercado CE, Soto-Barreras U, Muela-Campos D, Álvarez-Ramírez A, Pérez-Aguirre B, Larrinua-Pacheco AD, López-Camarillo C, López-Gutiérrez JA, Garnica-Palazuelos J, Estrada-Macías ME, Cota-Quintero JL, Barraza-Gómez AA. Emerging role of lncRNAs in drug resistance mechanisms in head and neck squamous cell carcinoma. Front Oncol 2022; 12:965628. [PMID: 35978835 PMCID: PMC9376329 DOI: 10.3389/fonc.2022.965628] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) originates in the squamous cell lining the mucosal surfaces of the head and neck region, including the oral cavity, nasopharynx, tonsils, oropharynx, larynx, and hypopharynx. The heterogeneity, anatomical, and functional characteristics of the patient make the HNSCC a complex and difficult-to-treat disease, leading to a poor survival rate and a decreased quality of life due to the loss of important physiologic functions and aggressive surgical injury. Alteration of driver-oncogenic and tumor-suppressing lncRNAs has recently been recently in HNSCC to obtain possible biomarkers for diagnostic, prognostic, and therapeutic approaches. This review provides current knowledge about the implication of lncRNAs in drug resistance mechanisms in HNSCC. Chemotherapy resistance is a major therapeutic challenge in HNSCC in which lncRNAs are implicated. Lately, it has been shown that lncRNAs involved in autophagy induced by chemotherapy and epithelial–mesenchymal transition (EMT) can act as mechanisms of resistance to anticancer drugs. Conversely, lncRNAs involved in mesenchymal–epithelial transition (MET) are related to chemosensitivity and inhibition of invasiveness of drug-resistant cells. In this regard, long non-coding RNAs (lncRNAs) play a pivotal role in both processes and are important for cancer detection, progression, diagnosis, therapy response, and prognostic values. As the involvement of more lncRNAs is elucidated in chemoresistance mechanisms, an improvement in diagnostic and prognostic tools could promote an advance in targeted and specific therapies in precision oncology.
Collapse
Affiliation(s)
- José A. Peña-Flores
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | - Mercedes Bermúdez
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
- *Correspondence: Mercedes Bermúdez,
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | - Uriel Soto-Barreras
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | | | | | | | | | | | - Jorge A. López-Gutiérrez
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | | | - Juan L. Cota-Quintero
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Odontology , Autonomous University of Sinaloa, Culiacán, Mexico
| | | |
Collapse
|
6
|
Zhong X, He X, Wang Y, Hu Z, Huang H, Zhao S, Zhang H, Wei P, Li D. Construction of a prognostic glycolysis-related lncRNA signature for patients with colorectal cancer. Cancer Med 2022; 12:930-948. [PMID: 35616307 PMCID: PMC9844662 DOI: 10.1002/cam4.4851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 01/26/2023] Open
Abstract
Aerobic glycolysis is a common metabolic phenotype in tumors that helps cancer cells adjust to severe living conditions and can aid metastasis in several types of carcinomas, including colorectal cancer (CRC). Long non-coding RNAs (lncRNAs) can influence tumor biology and have been previously used to assess patients' outcomes and to identify potential therapeutic targets. However, despite the importance of glycolysis-related lncRNAs (GRLs) in the development of CRC, studies on their use as prognostic markers are still limited. Herein, we applied a series of bioinformatic analyses to screen potential prognostic lncRNAs for colorectal cancer. Out of all lncRNAs screened, nine GRLs were selected to constitute a prognostic signature. Based on the signature, two molecular subtypes were classified with distinct prognostic outcomes and excellent diagnostic accuracy (The 1-, 3- and 5-year AUC are 0.756, 0.716, and 0.721, respectively). The prognostic value of this signature was further validated using another cohort. The enriched molecular pathways, immune infiltration, and mutation landscape were also significantly different between the two groups. The different drug sensitivity results between the two groups suggest a potential strategy for precise treatment. Furthermore, we confirmed that AFAP1-AS1 could regulate aerobic glycolysis and metastasis of CRC cells. Overall, we developed a glycolysis-related lncRNA (GRL) signature and suggested that this signature could offer a predictive value and identify potential therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Xinyang Zhong
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Xuefeng He
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Yaxian Wang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Zijuan Hu
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina,Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina,Cancer Institute, Fudan University Shanghai Cancer CenterShanghaiChina,Institute of PathologyFudan UniversityShanghaiChina
| | - Huixia Huang
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina,Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina,Cancer Institute, Fudan University Shanghai Cancer CenterShanghaiChina,Institute of PathologyFudan UniversityShanghaiChina
| | - Senlin Zhao
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Hong Zhang
- Colorectal Tumor Surgery Ward, Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Ping Wei
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina,Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina,Cancer Institute, Fudan University Shanghai Cancer CenterShanghaiChina,Institute of PathologyFudan UniversityShanghaiChina
| | - Dawei Li
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| |
Collapse
|
7
|
Wang X, Zhang M, Jiang L, Fang X, Zhang T. Exosomal AFAP1-AS1 binds to microRNA-15a-5p to promote the proliferation, migration, and invasion of ectopic endometrial stromal cells in endometriosis. Reprod Biol Endocrinol 2022; 20:77. [PMID: 35513844 PMCID: PMC9069797 DOI: 10.1186/s12958-022-00942-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/12/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Endometriosis (EMS) remains a major challenge to reproductive health due to multifactorial etiology, disease heterogeneity, and the lack of appropriate diagnostic markers and treatment. Eexosome (Exo) has become a major factor in progression of a variety of diseases. However, the mechanisms directing their role in the pathophysiology of EMS are ill-defined. Here, we aimed to investigate the clinical implications of actin filament associated protein 1-Antisense RNA 1 (AFAP1-AS1) in EMS. METHODS Bioinformatics analysis was used to predict the expression and interaction of AFAP1-AS1, miR-15a-5p and BCL9 in EMS, and dual luciferase reporter assay was used to verify the targeted relationship of AFAP1-AS1, miR-15a-5p, and BCL9. The Exo from endometrial stromal cells (ESCs) was isolated and characterized by transmission electron microscopy (TEM) and Nanoparticle tracking analysis (NTA). Exosome uptake studies were performed. For in vitro assay, ectopic ESCs (EcESCs) proliferation, migration, and invasion were assessed by CCK-8 and Transwell assays. In vivo assay was performed by establishment of EMS mice to validate the result derived from in vitro assay. RESULTS The Exo was successfully isolated from ESCs and we observed high expression of AFAP1-AS1 and BCL9 but low expression of miR-15a-5p in EMS. Moreover, Exo derived from EcESCs could deliver AFAP1-AS1 to EcESCs and thus promoting proliferation, migration, and invasion of ESCs. AFAP1-AS1 bound to BCL9, which was targeted by miR-15a-5p in EMS. In vivo experiments in nude mice revealed that inhibition of Exosomal AFAP1-AS1 suppressed migration and invasion of EcESCs through miR-15a-5p/BCL9. CONCLUSIONS Collectively, these findings suggested that ESCs-derived Exo carrying AFAP1-AS1 contributed to EMS pathogenesis. This study might help us realize the etiology of EMS and improve the treatment of the related complications.
Collapse
Affiliation(s)
- Xi Wang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, NO.139 Renmin Road, Changsha, Hunan, 410000, PR China
| | - Mengmeng Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, NO.139 Renmin Road, Changsha, Hunan, 410000, PR China
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, PR China
| | - Liaofei Jiang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, NO.139 Renmin Road, Changsha, Hunan, 410000, PR China
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, NO.139 Renmin Road, Changsha, Hunan, 410000, PR China
| | - Tingting Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, NO.139 Renmin Road, Changsha, Hunan, 410000, PR China.
| |
Collapse
|
8
|
Long non-coding RNAs are involved in alternative splicing and promote cancer progression. Br J Cancer 2022; 126:1113-1124. [PMID: 34750493 PMCID: PMC9023592 DOI: 10.1038/s41416-021-01600-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 09/14/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing (AS) is a key process in which precursor RNAs produce different mature RNAs, and the disorder of AS is a key factor in promoting cancer development. Compared with coding RNA, studies on the functions of long non-coding RNAs (lncRNAs) are far from enough. In fact, lncRNA is an important participant and regulator in the process of AS. On the one hand, lncRNAs regulate cancer progression as AS products of precursor messenger RNA (mRNA), but on the other hand, precursor lncRNA generates cancer-related abnormal splicing variants through AS. In addition, lncRNAs directly or indirectly regulate the AS events of downstream target genes, thus affecting the occurrence and development of cancer. Here, we reviewed how lncRNAs regulate AS and influence oncogenesis in different ways.
Collapse
|
9
|
Zhao M, Wang Y, Tan F, Liu L, Hou X, Fan C, Tang L, Mo Y, Wang Y, Yan Q, Gong Z, Li Z, Liao Q, Guo C, Huang H, Zeng X, Li G, Zeng Z, Xiong W, Wang F. Circular RNA circCCNB1 inhibits the migration and invasion of nasopharyngeal carcinoma through binding and stabilizing TJP1 mRNA. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2233-2247. [PMID: 35471687 DOI: 10.1007/s11427-021-2089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor that usually occurs in people from Southeast Asia and Southern China. NPC is prone to migration and invasion, leading to poor prognosis. A large number of circular RNAs (circRNAs) exacerbate the process of metastasis in NPC; however, their underlying mechanisms remain unclear. We found that the circular RNA circCCNB1, encoded by the oncogene CCNB1, was downregulated in NPC biopsies and cell lines. In vitro assays show that circCCNB1 inhibits NPC cell migration and invasion. Moreover, circCCNB1 induces a protein, nuclear factor 90 (NF90), to bind and prolong the half-life of tight junction protein 1 (TJP1) mRNA. Upregulation of TJP1 enhances tight junctions between cancer cells and inhibits NPC cell migration and invasion. This study reveals a novel biological function of circCCNB1 in the migration and invasion of NPC by enhancing the tight junctions of cancer cells by binding to NF90 proteins and TJP1 mRNA, and may provide a potential therapeutic target for NPC.
Collapse
Affiliation(s)
- Mengyao Zhao
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - Yian Wang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - Fenghua Tan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - Lingyun Liu
- Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, 421009, China
| | - Xiangchan Hou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - Chunmei Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - Le Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - Qijia Yan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zheng Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - He Huang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - Xi Zeng
- Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, 421009, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China.
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China.
| |
Collapse
|
10
|
Xiong G, Pan S, Jin J, Wang X, He R, Peng F, Li X, Wang M, Zheng J, Zhu F, Qin R. Long Noncoding Competing Endogenous RNA Networks in Pancreatic Cancer. Front Oncol 2021; 11:765216. [PMID: 34760707 PMCID: PMC8573238 DOI: 10.3389/fonc.2021.765216] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is a highly malignant disease characterized by insidious onset, rapid progress, and poor therapeutic effects. The molecular mechanisms associated with PC initiation and progression are largely insufficient, hampering the exploitation of novel diagnostic biomarkers and development of efficient therapeutic strategies. Emerging evidence recently reveals that noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs) and microRNAs (miRNAs), extensively participate in PC pathogenesis. Specifically, lncRNAs can function as competing endogenous RNAs (ceRNAs), competitively sequestering miRNAs, therefore modulating the expression levels of their downstream target genes. Such complex lncRNA/miRNA/mRNA networks, namely, ceRNA networks, play crucial roles in the biological processes of PC by regulating cell growth and survival, epithelial-mesenchymal transition and metastasis, cancer stem cell maintenance, metabolism, autophagy, chemoresistance, and angiogenesis. In this review, the emerging knowledge on the lncRNA-associated ceRNA networks involved in PC initiation and progression will be summarized, and the potentials of the competitive crosstalk as diagnostic, prognostic, and therapeutic targets will be comprehensively discussed.
Collapse
Affiliation(s)
- Guangbing Xiong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shutao Pan
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jikuan Jin
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiang Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi He
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Peng
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianwei Zheng
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Long non-coding RNA AFAP1-AS1 accelerates lung cancer cells migration and invasion by interacting with SNIP1 to upregulate c-Myc. Signal Transduct Target Ther 2021; 6:240. [PMID: 34168109 PMCID: PMC8225811 DOI: 10.1038/s41392-021-00562-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/29/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Actin filament associated protein 1 antisense RNA 1 (named AFAP1-AS1) is a long non-coding RNA and overexpressed in many cancers. This study aimed to identify the role and mechanism of AFAP1-AS1 in lung cancer. The AFAP1-AS1 expression was firstly assessed in 187 paraffin-embedded lung cancer and 36 normal lung epithelial tissues by in situ hybridization. The migration and invasion abilities of AFAP1-AS1 were investigated in lung cancer cells. To uncover the molecular mechanism about AFAP1-AS1 function in lung cancer, we screened proteins that interact with AFAP1-AS1 by RNA pull down and the mass spectrometry analyses. AFAP1-AS1 was highly expressed in lung cancer clinical tissues and its expression was positively correlated with lung cancer patients’ poor prognosis. In vivo experiments confirmed that AFAP1-AS1 could promote lung cancer metastasis. AFAP1-AS1 promoted lung cancer cells migration and invasion through interacting with Smad nuclear interacting protein 1 (named SNIP1), which inhibited ubiquitination and degradation of c-Myc protein. Upregulation of c-Myc molecule in turn promoted the expression of ZEB1, ZEB2, and SNAIL gene, which ultimately enhanced epithelial to mesenchymal transition (EMT) and lung cancer metastasis. Understanding the molecular mechanism by which AFAP1-AS1 promotes lung cancer’s migration and invasion may provide novel therapeutic targets for lung cancer patients’ early diagnosis and therapy.
Collapse
|