1
|
Amona FM, Pang Y, Gong X, Wang Y, Fang X, Zhang C, Chen X. Mechanism of PRRSV infection and antiviral role of polyphenols. Virulence 2024; 15:2417707. [PMID: 39432383 PMCID: PMC11497994 DOI: 10.1080/21505594.2024.2417707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/21/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is associated with the endemic outbreak of fever, anorexia, and abortion in pregnant sows, resulting in an enormous economic impact on the global swine industry. Current mainstream prophylactic agents and therapies have been developed to prevent PRRSV infection; however, they have limited efficacy. Therefore, there is an urgent need to develop novel antiviral strategies to prevent PRRSV infection and transmission. The identification of new PRRSV entry mediators, such as MYH9 and HSPA8; viral apoptotic mimicry; and TIM-induced macropinocytosis, to facilitate infection has led to a novel molecular understanding of the PRRSV infection mechanism, which can be utilized in the development of prophylactic agents and therapies for PRRSV infection. Polyphenols, complex chemical molecules with abundant biological activities derived from microorganisms and plants, have demonstrated great potential for controlling PRRSV infection via different mechanisms. To explore new possibilities for treating PRRSV infection with polyphenols, this review focuses on summarizing the pathogenesis of PRRSV, reviewing the potential antiviral mechanisms of polyphenols against PRRSV, and addressing the challenges associated with the widespread use of polyphenols.
Collapse
Affiliation(s)
- Fructueux Modeste Amona
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yipeng Pang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xingyu Gong
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
2
|
Hangyu W, Panpan L, Jie S, Hongyan W, Linmiao W, Kangning H, Yichen S, Shuai W, Cheng W. Advancements in Antiviral Drug Development: Comprehensive Insights into Design Strategies and Mechanisms Targeting Key Viral Proteins. J Microbiol Biotechnol 2024; 34:1376-1384. [PMID: 38934770 PMCID: PMC11294656 DOI: 10.4014/jmb.2403.03008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 06/28/2024]
Abstract
Viral infectious diseases have always been a threat to human survival and quality of life, impeding the stability and progress of human society. As such, researchers have persistently focused on developing highly efficient, low-toxicity antiviral drugs, whether for acute or chronic infectious diseases. This article presents a comprehensive review of the design concepts behind virus-targeted drugs, examined through the lens of antiviral drug mechanisms. The intention is to provide a reference for the development of new, virus-targeted antiviral drugs and guide their clinical usage.
Collapse
Affiliation(s)
- Wang Hangyu
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Li Panpan
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Shen Jie
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Wang Hongyan
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Wei Linmiao
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Han Kangning
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Shi Yichen
- School of Stomatology, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Wang Shuai
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia 010050, P.R. China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Inner Mongolia 010110, P.R. China
| | - Wang Cheng
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia 010050, P.R. China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Inner Mongolia 010110, P.R. China
| |
Collapse
|
3
|
Stierhof M, Myronovskyi M, Zapp J, Luzhetskyy A. Heterologous Production and Biosynthesis of Threonine-16:0dioic acids with a Hydroxamate Moiety. JOURNAL OF NATURAL PRODUCTS 2023; 86:2258-2269. [PMID: 37728876 PMCID: PMC10616846 DOI: 10.1021/acs.jnatprod.3c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Indexed: 09/21/2023]
Abstract
Dereplication and genome mining in Streptomyces aureus LU18118 combined with heterologous expression of selected biosynthetic gene clusters (BGCs) led to the discovery of various threonine-16:0dioic acids named lipothrenins. Lipothrenins consist of the core elements l-Thr, d-allo-Thr, or Dhb, which are linked to hexadecanedioic acid by an amide bond. The main compound lipothrenin A (1) carries the N-hydroxylated d-allo form of threonine and expresses a siderophore activity. The lipothrenin BGC was analyzed by a series of deletion experiments. As a result, a variety of interesting genes involved in the recruitment and selective activation of linear 16:0dioic acids, amide bond formation, and the epimerization of l-Thr were revealed. Furthermore, a diiron N-oxygenase was identified that may be directly involved in the monooxygenation of the amide bond. This is divergent from the usual hydroxamate formation mechanism in siderophores, which involves hydroxylation of the free amine prior to amide bond formation. Siderophore activity was observed for all N-hydroxylated lipothrenins by application of the CAS assay method.
Collapse
Affiliation(s)
- Marc Stierhof
- Department
of Pharmaceutical Biotechnology and Department of Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Maksym Myronovskyi
- Department
of Pharmaceutical Biotechnology and Department of Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Josef Zapp
- Department
of Pharmaceutical Biotechnology and Department of Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Andriy Luzhetskyy
- Department
of Pharmaceutical Biotechnology and Department of Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
- Helmholtz
Institute for Pharmaceutical Research Saarland, Saarland University, 66123 Saarbruecken, Germany
| |
Collapse
|
4
|
Song L, Qian W, Yin H, Sun Y, Sun X, Li G, He J, Zheng Y, Zhang Y, Wang J, Li Y. TCMSTD 1.0: a systematic analysis of the traditional Chinese medicine system toxicology database. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2189-2192. [PMID: 37086361 DOI: 10.1007/s11427-022-2318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/07/2023] [Indexed: 04/23/2023]
Affiliation(s)
- Lili Song
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenxiu Qian
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hongqing Yin
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yu Sun
- Baokang Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300073, China
| | - Xiuyan Sun
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guohui Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Junjie He
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanxue Zheng
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yue Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiayi Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yubo Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
5
|
Kumar N, Khanna A, Kaur K, Kaur H, Sharma A, Bedi PMS. Quinoline derivatives volunteering against antimicrobial resistance: rational approaches, design strategies, structure activity relationship and mechanistic insights. Mol Divers 2023; 27:1905-1934. [PMID: 36197551 PMCID: PMC9533295 DOI: 10.1007/s11030-022-10537-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/29/2022] [Indexed: 11/27/2022]
Abstract
Emergence of antimicrobial resistance has become a great threat to human species as there is shortage of development of new antimicrobial agents. So, its mandatary to combat AMR by initiating research and developing new novel antimicrobial agents. Among phytoconstituents, Quinoline (nitrogen containing heterocyclic) have played a wide role in providing new bioactive molecules. So, this review provides rational approaches, design strategies, structure activity relationship and mechanistic insights of newly developed quinoline derivatives as antimicrobial agents.
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| | - Aanchal Khanna
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Komalpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Harmandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | | |
Collapse
|
6
|
Bhushan A, Rani D, Tabassum M, Kumar S, Gupta PN, Gairola S, Gupta AP, Gupta P. HPLC-PDA Method for Quantification of Bioactive Compounds in Crude Extract and Fractions of Aucklandia costus Falc. and Cytotoxicity Studies against Cancer Cells. Molecules 2023; 28:4815. [PMID: 37375368 DOI: 10.3390/molecules28124815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 06/29/2023] Open
Abstract
Aucklandia costus Falc. (Synonym: Saussurea costus (Falc.) Lipsch.) is a perennial herb of the family Asteraceae. The dried rhizome is an essential herb in the traditional systems of medicine in India, China and Tibet. The important pharmacological activities reported for Aucklandia costus are anticancer, hepatoprotective, antiulcer, antimicrobial, antiparasitic, antioxidant, anti-inflammatory and anti-fatigue activities. The objective of this study was the isolation and quantification of four marker compounds in the crude extract and different fractions of A. costus and the evaluation of the anticancer activity of the crude extract and its different fractions. The four marker compounds isolated from A. costus include dehydrocostus lactone, costunolide, syringin and 5-hydroxymethyl-2-furaldehyde. These four compounds were used as standard compounds for quantification. The chromatographic data showed good resolution and excellent linearity (r2 ˃ 0.993). The validation parameters, such as inter- and intraday precision (RSD < 1.96%) and analyte recovery (97.52-110.20%; RSD < 2.00%),revealed the high sensitivity and reliability of the developed HPLC method. The compounds dehydrocostus lactone and costunolide were concentrated in the hexane fraction (222.08 and 65.07 µg/mg, respectively) and chloroform fraction (99.02 and 30.21 µg/mg, respectively), while the n-butanol fraction is a rich source of syringin (37.91 µg/mg) and 5-hydroxymethyl-2-furaldehyde (7.94 µg/mg). Further, the SRB assay was performed for the evaluation of anticancer activity using lung, colon, breast and prostate cancer cell lines. The hexane and chloroform fractions show excellent IC50 values of 3.37 ± 0.14 and 7.527 ± 0.18 µg/mL, respectively, against the prostate cancer cell line (PC-3).
Collapse
Affiliation(s)
- Anil Bhushan
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dixhya Rani
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Misbah Tabassum
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Saajan Kumar
- Drug Testing Laboratory, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Prem N Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sumeet Gairola
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Plant Science and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ajai P Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Drug Testing Laboratory, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Prasoon Gupta
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Peng Y, Chen SY, Wang ZN, Zhou ZQ, Sun J, Zhang GA, Li J, Wang L, Zhao JC, Tang XX, Wang DY, Zhong NS. Dicoumarol is an effective post-exposure prophylactic for SARS-CoV-2 Omicron infection in human airway epithelium. Signal Transduct Target Ther 2023; 8:242. [PMID: 37301869 PMCID: PMC10256976 DOI: 10.1038/s41392-023-01511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Repurposing existing drugs to inhibit SARS-CoV-2 infection in airway epithelial cells (AECs) is a quick way to find novel treatments for COVID-19. Computational screening has found dicoumarol (DCM), a natural anticoagulant, to be a potential SARS-CoV-2 inhibitor, but its inhibitory effects and possible working mechanisms remain unknown. Using air-liquid interface culture of primary human AECs, we demonstrated that DCM has potent antiviral activity against the infection of multiple Omicron variants (including BA.1, BQ.1 and XBB.1). Time-of-addition and drug withdrawal assays revealed that early treatment (continuously incubated after viral absorption) of DCM could markedly inhibit Omicron replication in AECs, but DCM did not affect the absorption, exocytosis and spread of viruses or directly eliminate viruses. Mechanistically, we performed single-cell sequencing analysis (a database of 77,969 cells from different airway locations from 10 healthy volunteers) and immunofluorescence staining, and showed that the expression of NAD(P)H quinone oxidoreductase 1 (NQO1), one of the known DCM targets, was predominantly localised in ciliated AECs. We further found that the NQO1 expression level was positively correlated with both the disease severity of COVID-19 patients and virus copy levels in cultured AECs. In addition, DCM treatment downregulated NQO1 expression and disrupted signalling pathways associated with SARS-CoV-2 disease outcomes (e.g., Endocytosis and COVID-19 signalling pathways) in cultured AECs. Collectively, we demonstrated that DCM is an effective post-exposure prophylactic for SARS-CoV-2 infection in the human AECs, and these findings could help physicians formulate novel treatment strategies for COVID-19.
Collapse
Affiliation(s)
- Yang Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Otolaryngology, Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shi-Ying Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhao-Ni Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zi-Qing Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gui-An Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jia Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Laboratory, Guangzhou, China
| | - Lei Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Laboratory, Guangzhou, China
| | - Jin-Cun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou Laboratory, Guangzhou, China.
| | - De-Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou Laboratory, Guangzhou, China.
| |
Collapse
|
8
|
Xu N, Du LH, Chen YC, Zhang JH, Zhu QF, Chen R, Peng GP, Wang QM, Yu HZ, Rao LQ. Lonicera japonica Thunb. as a promising antibacterial agent for Bacillus cereus ATCC14579 based on network pharmacology, metabolomics, and in vitro experiments. RSC Adv 2023; 13:15379-15390. [PMID: 37223411 PMCID: PMC10201548 DOI: 10.1039/d3ra00802a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023] Open
Abstract
Lonicera japonica Thunb. has attracted much attention for its treatment of bacterial and viral infectious diseases, while its active ingredients and potential mechanisms of action have not been fully elucidated. Here, we combined metabolomics, and network pharmacology to explore the molecular mechanism of Bacillus cereus ATCC14579 inhibition by Lonicera japonica Thunb. In vitro inhibition experiments showed that the Lonicera japonica Thunb.'s water extracts, ethanolic extract, luteolin, quercetin, and kaempferol strongly inhibited Bacillus cereus ATCC14579. In contrast, chlorogenic acid and macranthoidin B had no inhibitory effect on Bacillus cereus ATCC14579. Meanwhile, the minimum inhibitory concentrations of luteolin, quercetin, and kaempferol against Bacillus cereus ATCC14579 were 15.625 μg mL-1, 31.25 μg mL-1, and 15.625 μg mL-1. Based on the previous experimental basis, the metabolomic analysis showed the presence of 16 active ingredients in Lonicera japonica Thunb.'s water extracts and ethanol extracts, with differences in the luteolin, quercetin, and kaempferol contents between the water extracts and ethanol extracts. Network pharmacology studies indicated that fabZ, tig, glmU, secA, deoD, nagB, pgi, rpmB, recA, and upp were potential key targets. Active ingredients of Lonicera japonica Thunb. may exert their inhibitory effects by inhibiting ribosome assembly, the peptidoglycan biosynthesis process, and the phospholipid biosynthesis process of Bacillus cereus ATCC14579. An alkaline phosphatase activity assay, peptidoglycan concentration assay, and protein concentration assay showed that luteolin, quercetin, and kaempferol disrupted the Bacillus cereus ATCC14579 cell wall and cell membrane integrity. Transmission electron microscopy results showed significant changes in the morphology and ultrastructure of the cell wall and cell membrane of Bacillus cereus ATCC14579, further confirming the disruption of the cell wall and cell membrane integrity of Bacillus cereus ATCC14579 by luteolin, quercetin, and kaempferol. In conclusion, Lonicera japonica Thunb. can be used as a potential antibacterial agent for Bacillus cereus ATCC14579, which may exert its antibacterial activity by destroying the integrity of the cell wall and membrane.
Collapse
Affiliation(s)
- Nan Xu
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| | - Li-Hua Du
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| | - Yan-Chao Chen
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| | - Jin-Hao Zhang
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| | - Qian-Feng Zhu
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| | - Rong Chen
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| | - Guo-Ping Peng
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| | - Qi-Ming Wang
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| | - Hua-Zhong Yu
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University Jishou China
| | - Li-Qun Rao
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| |
Collapse
|
9
|
Leesombun A, Sungpradit S, Bangphoomi N, Thongjuy O, Wechusdorn J, Riengvirodkij S, Wannawong J, Boonmasawai S. Effects of Piper betle Extracts against Biofilm Formation by Methicillin-Resistant Staphylococcus pseudintermedius Isolated from Dogs. Pharmaceuticals (Basel) 2023; 16:ph16050741. [PMID: 37242523 DOI: 10.3390/ph16050741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Emergence of methicillin-resistant Staphylococcus pseudintermedius (MRSP) isolated from dogs with cutaneous and wound infections has significantly impacted veterinary medicine. This study aimed to isolate S. pseudintermedius from canine pyoderma and investigate the effects of ethanolic extracts of Piper betle (PB), P. sarmentosum (PS), and P. nigrum (PN) on the bacterial growth and biofilm formation of S. pseudintermedius and MRSP. Of the isolated 152 isolates, 53 were identified as S. pseudintermedius using polymerase chain reaction, and 10 isolates (6.58%) were identified as MRSP based on the presence of mecA. Based on phenotype, 90% of MRSPs were multidrug-resistant. All MRSP had moderate (10%, 1/10) and strong (90%, 9/10) biofilm production ability. PB extracts were the most effective in inhibiting planktonic cells, and the minimum inhibitory concentration at which ≥50% of the isolates were inhibited (MIC50) was 256 µg/mL (256-1024 µg/mL) for S. pseudintermedius isolates and 512 µg/mL (256-1024 µg/mL) for MRSP isolates. The MIC90 for S. pseudintermedius and MRSP was 512 µg/mL. In XTT assay, PB at 4× MIC showed an inhibition rate of 39.66-68.90% and 45.58-59.13% for S. pseudintermedius and MRSP, respectively, in inhibiting biofilm formation. For PB at 8× MIC, the inhibition rates for S. pseudintermedius and MRSP were 50.74-81.66% and 59.57-78.33%, respectively. Further, 18 compounds were identified in PB using gas chromatography-mass spectrometry, and hydroxychavicol (36.02%) was the major constituent. These results indicated that PB could inhibit bacteria growth of and biofilm formation by S. pseudintermedius and MRSP isolated from canine pyoderma in a concentration-dependent manner. Therefore, PB is a potential candidate for the treatment of MRSP infection and biofilm formation in veterinary medicine.
Collapse
Affiliation(s)
- Arpron Leesombun
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sivapong Sungpradit
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Norasuthi Bangphoomi
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Orathai Thongjuy
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Jantraporn Wechusdorn
- Prasu-Arthorn Animal Hospital, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sunee Riengvirodkij
- Prasu-Arthorn Animal Hospital, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Jakaphan Wannawong
- Prasu-Arthorn Animal Hospital, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sookruetai Boonmasawai
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| |
Collapse
|
10
|
Cai P, Liu S, Zhang D, Xing H, Han M, Liu D, Gong L, Hu QN. SynBioTools: a one-stop facility for searching and selecting synthetic biology tools. BMC Bioinformatics 2023; 24:152. [PMID: 37069545 PMCID: PMC10111727 DOI: 10.1186/s12859-023-05281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND The rapid development of synthetic biology relies heavily on the use of databases and computational tools, which are also developing rapidly. While many tool registries have been created to facilitate tool retrieval, sharing, and reuse, no relatively comprehensive tool registry or catalog addresses all aspects of synthetic biology. RESULTS We constructed SynBioTools, a comprehensive collection of synthetic biology databases, computational tools, and experimental methods, as a one-stop facility for searching and selecting synthetic biology tools. SynBioTools includes databases, computational tools, and methods extracted from reviews via SCIentific Table Extraction, a scientific table-extraction tool that we built. Approximately 57% of the resources that we located and included in SynBioTools are not mentioned in bio.tools, the dominant tool registry. To improve users' understanding of the tools and to enable them to make better choices, the tools are grouped into nine modules (each with subdivisions) based on their potential biosynthetic applications. Detailed comparisons of similar tools in every classification are included. The URLs, descriptions, source references, and the number of citations of the tools are also integrated into the system. CONCLUSIONS SynBioTools is freely available at https://synbiotools.lifesynther.com/ . It provides end-users and developers with a useful resource of categorized synthetic biology databases, tools, and methods to facilitate tool retrieval and selection.
Collapse
Affiliation(s)
- Pengli Cai
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Sheng Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dachuan Zhang
- Ecological Systems Design, Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
| | - Huadong Xing
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengying Han
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dongliang Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Linlin Gong
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qian-Nan Hu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
11
|
Luo L, Li C, Huang N, Wang Q, Zhang Z, Song C, Yang H, Yuan M, Xu Z, Sun J, Zhang Z. Traditional mineral medicine realgar and Realgar-Indigo naturalis formula potentially exerted therapeutic effects by altering the gut microbiota. Front Microbiol 2023; 14:1143173. [PMID: 37143539 PMCID: PMC10151705 DOI: 10.3389/fmicb.2023.1143173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Realgar has a long history ofuse in traditional medicines. However, the mechanism through which Realgar or Realgar-Indigo naturalis formula (RIF) exert therapeutic effects is only partially understood. Methods In this study, 60 feces and 60 ileum samples from rats administered with realgar or RIF were collected to examine the gut microbiota. Results The results showed that realgar and RIF influenced different microbiota in both feces and ileum. Compared with realgar, RIF at low dosage (0.1701 g/3 ml) significantly increased the microbiota diversity. LEfSe and random forest analyses showed that the bacterium Bacteroidales was significantly altered after RIF administration, and it was predicted that these microorganisms contribute to the inorganic arsenic metabolic process. Discussion Our results suggest that realgar and RIF may exert their therapeutic effects through influencing microbiota. The low dose of RIF had greater effects on increasing the diversity of microbiota, and Bacteroidales in feces might participate in the inorganic arsenic metabolic process to exert therapeutic effects for realgar.
Collapse
Affiliation(s)
- Lu Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States
| | - Chaofeng Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Nanxi Huang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States
| | - Qiaochu Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States
| | - Zihao Zhang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States
| | - Chen Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Maowen Yuan
- School of Earth Science and Resources, China University of Geosciences, Beijing, China
| | - Ziwen Xu
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States
| | - Jialei Sun
- Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Zhijie Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Zhijie Zhang,
| |
Collapse
|
12
|
Phytochemical, Antimicrobial, Antioxidant, and In Vitro Cytotoxicity Evaluation of Echinops erinaceus Kit Tan. SEPARATIONS 2022. [DOI: 10.3390/separations9120447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Wild plants are used by many cultures for the treatment of diverse ailments. However, they are formed from mixtures of many wanted and unwanted phytochemicals. Thus, there is a necessity to separate the bioactive compounds responsible for their biological activity. In this study, the chemical composition as well as antimicrobial and cytotoxic activities of Echinops erinaceus Kit Tan (Asteraceae) were investigated. This led to the isolation and identification of seven compounds, two of which are new (erinaceosin C3 and erinaceol C5), in addition to methyl oleate (C1) and ethyl oleate (C2), loliolide (C4), (E)-p-coumaric acid (C6), and 5,7,3`,5`-tetrahydroxy flavanone (C7). The structures of the isolated compounds were elucidated by 1D, 2D NMR, and HR-ESI-MS. The methanol extract showed the highest antimicrobial activity among the tested extracts and fractions. The n-hexane and EtOAc extracts showed remarkable antimicrobial activity against B. subtilus, P. aeruginosa, E. coli, and C. albicans. A cytotoxicity-guided fractionation of the most bioactive chloroform extract resulted in the isolation of bioactive compounds C1/C2, which showed significant cytotoxicity against HCT-116 and CACO2 cell lines (IC50 24.95 and 19.74 µg/mL, respectively), followed by compounds C3 (IC50 82.82 and 76.70 µg/mL) and C5 (IC50 99.09 and 87.27 µg/mL), respectively. The antioxidant activity of the bioactive chloroform fractions was screened. Molecular docking was used to explain the results of the antimicrobial and anticancer activities against five protein targets, including DNA gyrase topoisomerase II, enoyl-acyl carrier protein reductase of S. aureus (FabI), dihydrofolate reductase (DHFR), β-catenin, and human P-glycoprotein (P-gp).
Collapse
|
13
|
Fleitas MMD, Kim SS, Kim NK, Seo SR. Cynanoside F Controls Skin Inflammation by Suppressing Mitogen-Activated Protein Kinase Activation. Antioxidants (Basel) 2022; 11:antiox11091740. [PMID: 36139814 PMCID: PMC9495541 DOI: 10.3390/antiox11091740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease accompanied by severe itching and dry skin. Currently, the incidence of AD due to excessive activation of immune cells by various environmental factors is increasing worldwide, and research on inflammatory response inhibitors with fewer side effects is continuously needed. Cynanoside F (CF) is one of the pregnane-type compounds in the root of Cynanchum atratum, an oriental medicinal herb that has been shown to have antioxidant, antitumor, and anti-inflammatory effects. Although CF has been isolated as a component in Cynanchum atratum, the scientific role of CF has not yet been explored. In this study, we evaluated the effect of CF on AD and revealed the mechanism using in vitro and in vivo experimental models. CF significantly reduced lipopolysaccharide (LPS)-induced protein expression levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), and cyclooxygenase-2 (COX-2), which are important proinflammatory mediators in the RAW264.7 macrophage cell line. CF did not inhibit the nuclear factor-kappa B (NF-κB) signaling activated by LPS but significantly reduced the phosphorylation of mitogen-activated protein kinases (MAPKs), such as p38 MAPK, JNK, and ERK. CF consistently inhibited the activity of the activator protein-1 (AP-1) transcription factor, a downstream molecule of MAPK signaling. In addition, in an experiment using an oxazolone-induced AD mouse model, the CF-treated group showed a marked decrease in epidermal thickness, the number of infiltrated mast cells, and the amount of histamine. The mRNA levels of IL-1β, interleukin-4 (IL-4), and thymic stromal lymphopoietin (TSLP) were consistently lowered in the group treated with CF. Moreover, the phosphorylation of c-Jun and c-Fos protein levels, which are the AP-1 components, were lowered in the skin tissues of CF-treated mice. These results provide the first evidence that CF has an inhibitory effect on AD and suggest the possibility of CF being developed as a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Mara Melissa Duarte Fleitas
- Department of Molecular Bioscience, College of Biomedical Science Kangwon National University, Chuncheon 24341, Korea
| | - Seon Sook Kim
- Department of Molecular Bioscience, College of Biomedical Science Kangwon National University, Chuncheon 24341, Korea
- Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 24341, Korea
| | | | - Su Ryeon Seo
- Department of Molecular Bioscience, College of Biomedical Science Kangwon National University, Chuncheon 24341, Korea
- Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: ; Tel.: +82-33-250-8541; Fax: +82-33-241-4627
| |
Collapse
|
14
|
Melatonin inhibits Gram-negative pathogens by targeting citrate synthase. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1430-1444. [PMID: 35000061 DOI: 10.1007/s11427-021-2032-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Bacterial infections caused by Gram-negative pathogens represent a growing burden for public health worldwide. Despite the urgent need for new antibiotics that effectively fight against pathogenic bacteria, very few compounds are currently under development or approved in the clinical setting. Repurposing compounds for other uses offers a productive strategy for the development of new antibiotics. Here we report that the multifaceted melatonin effectively improves survival rates of mice and decreases bacterial loads in the lung during infection. Mechanistically, melatonin specifically inhibits the activity of citrate synthase of Gram-negative pathogens through directly binding to the R300, D363, and H265 sites, particularly for the notorious Pasteurella multocida. These findings highlight that usage of melatonin is a feasible and alternative therapy to tackle the increasing threat of Gram-negative pathogen infections via disrupting metabolic flux of bacteria.
Collapse
|
15
|
COVID-19 Crisis, Herbal Medicines, and Natural Products - Concerns and Suggestions. Jundishapur J Nat Pharm Prod 2022. [DOI: 10.5812/jjnpp-120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
: Since the outbreak of the COVID-19 pandemic in the last days of 2019 in China, medical experts and organizations worldwide have proposed guidelines for its prevention and treatment. However, despite the availability of state-of-the-art technologies, modern medicine specialists have so far not been successful in controlling it. This has led traditional medicine experts to propagate their knowledge to prevent and cure COVID-19, creating an open debate. According to scientific literature, traditional medicine experts claim beneficial effects of herbal medicines against viral infections and their effectiveness in controlling the symptoms of respiratory disorders. Modern medicine specialists express their concerns about the quality, safety, and efficacy of herbal medicines, in addition to the risk of herb-drug interactions and the lack of randomized clinical studies. Herbal medicines have been popular since prehistoric times, and during the COVID-19 pandemic, they are increasingly used worldwide. The lack of definite cure and the high cost of available modern medicines have also promoted the use of herbal medicines. An evidence-based approach using herbal medicines with proven antiviral activities or containing compounds providing symptomatic relief in COVID-19 can be considered for clinical studies. The interaction of herbal medicines with modern drugs should also be considered in patients taking them. Traditional and modern medicine aim to provide effective and safe treatment and prevent COVID-19 infection. Considering the ground realities of the COVID-19 crisis and keeping in view the worldwide use of herbal medicines, in our opinion, the pros and cons of their use should be carefully weighed, and practical solutions should be considered.
Collapse
|
16
|
Pájaro-González Y, Oliveros-Díaz AF, Cabrera-Barraza J, Fernández-Daza E, Reyes N, Montes-Guevara OA, Caro-Fuentes D, Franco-Ospina L, Quiñones- Fletcher W, Quave CL, Díaz-Castillo F. Mammea B/BA Isolated From the Seeds of Mammea americana L. (Calophyllaceae) is a Potent Inhibitor of Methicillin-Resistant Staphylococcus aureus. Front Pharmacol 2022; 13:826404. [PMID: 35359842 PMCID: PMC8961693 DOI: 10.3389/fphar.2022.826404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/02/2022] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus remains a pathogen of high concern in public health programs worldwide due to antibiotic resistance and emergence of highly virulent strains. Many phytochemicals have demonstrated activity against S. aureus and other Gram-positive bacteria, but the minimum inhibitory concentration (MIC) values comparable to commonly used antibiotics are needed. In the present study, bio-guided fractionation of the ethanol extract of seeds of Mammea americana L. (Calophyllaceae) throughout the antibacterial activity, against S. aureus strains that are sensitive and resistant to methicillin, led to the isolation of four coumarins identified as mammea B/BA, mammea B/BC, mammea A/AA cyclo D and mammea A/AA cyclo F, and a mixture of mammea B/BA cyclo F plus mammea B/BD cyclo F. The extract inhibited the growth of S. aureus with MIC values of 2–4 μg/ml and Mammea B/BA (MaBBA) presented MIC values in a range between 0.5 and 1.0 μg/ml in six methicillin-sensitive strains and eight methicillin-resistant strains evaluated. We consider MaBBA the most potent of all mammea coumarins reported to date, according to the literature review carried out at the time of writing of this article. Toxicity assessment in vivo against the nematode Caenorhabditis elegans and in vitro against human fibroblasts of the extract and the compound MaBBA indicated that both had low toxicity.
Collapse
Affiliation(s)
- Yina Pájaro-González
- Laboratory of Phytochemical and Pharmacological Researches, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
- Research Group in Healthcare Pharmacy and Pharmacology, Faculty of Chemistry and Pharmacy, University of Atlántico, Barranquilla, Colombia
- *Correspondence: Yina Pájaro-González, ; Fredyc Díaz-Castillo,
| | - Andrés F. Oliveros-Díaz
- Laboratory of Phytochemical and Pharmacological Researches, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | - Julián Cabrera-Barraza
- Laboratory of Phytochemical and Pharmacological Researches, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | - Eduardo Fernández-Daza
- Laboratory of Phytochemical and Pharmacological Researches, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | - Niradiz Reyes
- Research Group Genetic and Molecular Biology, School of Medicine, University of Cartagena, Cartagena, Colombia
| | - Oscar A. Montes-Guevara
- Research Group Genetic and Molecular Biology, School of Medicine, University of Cartagena, Cartagena, Colombia
| | - Daneiva Caro-Fuentes
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | - Luis Franco-Ospina
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | | | - Cassandra L. Quave
- Center for the Study of Human Health and Department of Dermatology, Emory University, Atlanta, GA, United States
| | - Fredyc Díaz-Castillo
- Laboratory of Phytochemical and Pharmacological Researches, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
- *Correspondence: Yina Pájaro-González, ; Fredyc Díaz-Castillo,
| |
Collapse
|