1
|
Hemnani M, da Silva PG, Thompson G, Poeta P, Rebelo H, Mesquita JR. Detection and Prevalence of Coronaviruses in European Bats: A Systematic Review. ECOHEALTH 2024; 21:125-140. [PMID: 39580592 DOI: 10.1007/s10393-024-01688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/23/2024] [Accepted: 07/15/2024] [Indexed: 11/25/2024]
Abstract
Bats are known hosts for a wide range of coronaviruses (CoVs), including those that cause severe acute respiratory syndrome (SARS-CoV-1) and Middle East respiratory syndrome (MERS-CoV). With the emergence of the COVID-19 pandemic caused by the SARS-CoV-2 virus, it has become increasingly important to understand the diversity and prevalence of CoVs in bat populations. This systematic review aimed to compile studies that have sampled CoVs from bats across Europe and assessed various aspects related to the testing of bat samples, including the country where the bats were collected, the CoV genomic region studied, the CoV genera that were detected, and the identification of bat species that were found to be carrying CoV. We identified 30 studies that assessed CoVs presence in bats across multiple countries including Italy, Germany, and various other nations with one or two studies each, which tested them for CoVs using a variety of matrices. CoVs were found in nine genera of bats, and the genomic regions included RdRp, ORF1a gene, as well as full genome, detecting α- and/or β-CoVs, with most of them being detectable only in faeces. This review provides a comprehensive overview of the CoVs detected in bats across Europe and highlights the importance of continued surveillance and monitoring of bat populations for potential emerging zoonotic CoVs.
Collapse
Affiliation(s)
- Mahima Hemnani
- ICBAS-School of Medicine and Biomedical Sciences, Porto University, 4050-313, Porto, Portugal
| | - Priscilla Gomes da Silva
- ICBAS-School of Medicine and Biomedical Sciences, Porto University, 4050-313, Porto, Portugal
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Gertrude Thompson
- ICBAS-School of Medicine and Biomedical Sciences, Porto University, 4050-313, Porto, Portugal
- CIBIO/InBIO, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os Montes e Alto Douro, 5000-801, Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 1099-085, Caparica, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os Montes e Alto Douro, 5000-801, Vila Real, Portugal
- Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Vila Real, Portugal
| | - Hugo Rebelo
- CIBIO/InBIO, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - João R Mesquita
- ICBAS-School of Medicine and Biomedical Sciences, Porto University, 4050-313, Porto, Portugal.
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, Porto, Portugal.
- Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| |
Collapse
|
2
|
Li R, Tendu A, Kane Y, Omondi V, Ying J, Mao L, Xu S, Xu R, Chen X, Chen Y, Descorps-Declère S, Bienes KM, Fassatoui M, Hughes AC, Berthet N, Wong G. Differential prevalence and risk factors for infection with coronaviruses in bats collected from Yunnan Province, China. One Health 2024; 19:100923. [PMID: 39605930 PMCID: PMC11600012 DOI: 10.1016/j.onehlt.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Coronaviruses (CoVs) pose a threat to human health globally, as highlighted by severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and the COVID-19 pandemic. Bats from the Greater Mekong Subregion (GMS) are an important natural reservoir for CoVs. Here we report the differential prevalence of CoVs in bats within Yunnan Province across biological and ecological variables. We also show the coexistence of CoVs in individual bats and identify an additional putative host for SARS-related CoV, with higher dispersal capacity than other known hosts. Notably, 11 SARS-related coronaviruses (SARSr-CoVs) were discovered in horseshoe bats (family Rhinolophidae) and a Chinese water myotis bat (Myotis laniger) by pan-CoV detection and Illumina sequencing. Our findings facilitate an understanding of the fundamental features of the distribution and circulation of CoVs in nature as well as zoonotic spillover risk in the One health framework.
Collapse
Affiliation(s)
- Ruiya Li
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alexander Tendu
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yakhouba Kane
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Victor Omondi
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Jiaxu Ying
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Lingjing Mao
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Shiman Xu
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Xu
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Chen
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Yanhua Chen
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Kathrina Mae Bienes
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Meriem Fassatoui
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Alice C. Hughes
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Nicolas Berthet
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
- Institut Pasteur, Unité Environnement et Risque Infectieux, Cellule d'Intervention Biologique d'Urgence, 75015 Paris, France
| | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
3
|
Ohlopkova OV, Kononova YV, Tyumentseva MA, Tyumentsev AI, Shestopalov AM, Akimkin VG. Plain-nosed bats (family Vespertilionidae) as a possible reservoir of lyssaviruses and coronaviruses in Western Siberia and the south of European Russia. Vopr Virusol 2024; 69:415-428. [PMID: 39527764 DOI: 10.36233/0507-4088-267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Indexed: 11/16/2024]
Abstract
The review presents current data on the chiropterofauna inhabiting Western Siberia and the south of the European part of Russia. A general description of the genus of lyssaviruses and the family of coronaviruses is given. The potential for virus carriage in relation to lyssaviruses and coronaviruses in bat populations of two geographically distant regions is considered.
Collapse
Affiliation(s)
- O V Ohlopkova
- Central Research Institute of Epidemiology, Rospotrebnadzor
- Virology Research Institute of the Federal Research Center for Fundamental and Translational Medicine
| | - Y V Kononova
- Virology Research Institute of the Federal Research Center for Fundamental and Translational Medicine
| | | | - A I Tyumentsev
- Central Research Institute of Epidemiology, Rospotrebnadzor
| | - A M Shestopalov
- Virology Research Institute of the Federal Research Center for Fundamental and Translational Medicine
| | - V G Akimkin
- Central Research Institute of Epidemiology, Rospotrebnadzor
| |
Collapse
|
4
|
Wang Z, Li X, Shang Y, Wu J, Lan X. A novel and cost-effective real-time RT-PCR targeting 24 nucleotides deletion to differentiate PEDV wild-type and classical attenuated vaccine strains. J Virol Methods 2024; 329:114986. [PMID: 38914314 DOI: 10.1016/j.jviromet.2024.114986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/26/2024]
Abstract
Porcine Epidemic Diarrhea Virus (PEDV) poses a significant threat to the swine industry, causing severe disease and resulting in substantial economic losses. Despite China's implementation of a large-scale vaccine immunization strategy in recent years, various strains of PEDV, including classical attenuated vaccine strains, continue to emerge in immunized pig herds. Here, we established a one-step real-time fluorescent reverse transcription PCR (one-step real-time RT-PCR) assay targeting a 24-nucleotide deletion in the ORF1 region of three PEDV classical attenuated vaccine strains, derived from classical strains. This assay effectively distinguishes between PEDV classical attenuated vaccine strains and wild-type strains, and we also explore the causes of this discriminatory target deficiency of this method through phylogenetic and recombination analysis. We found that these three classical attenuated vaccine strains exhibit closer phylogenetic relationships and higher sequence similarity with five cell-adapted strains. Recombination analysis revealed that although recombination is widespread in the PEDV genome, the 24-nucleotide deletion site remains stable without undergoing recombination and can be utilized as a target for identification. Further analysis revealed there are no enzyme cleavage sites near the 24-nucleotide site, suggesting that this deletion may have been lost during the process of culturing these viral strains in cells.The detection method we have established exhibits high specificity and sensitivity to PEDV, without cross-reactivity with other viruses causing diarrheal diseases. A total of 117 swine fecal samples were analyzed using this established one-step real-time reverse transcription PCR assay, indicating the presence of classical attenuated vaccine strains in pig herds in Gansu province, China. Additionally, the designed primer pairs and two probes can be placed in a single reaction tube to differentiate between these two types of strains, effectively reducing detection costs. These findings offer an efficient and cost-effective technological platform for clinical rapid identification testing of both wild-type and classical attenuated vaccine strains of PEDV, as well as for precise investigation of clinical data on natural infections and vaccine immunity in pig herds.
Collapse
Affiliation(s)
- Zhilin Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| | - Xuerui Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| | - Youjun Shang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| | - Jinyan Wu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| | - Xi Lan
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China.
| |
Collapse
|
5
|
Lu S, Zeng H, Xiong F, Yao M, He S. Advances in environmental DNA monitoring: standardization, automation, and emerging technologies in aquatic ecosystems. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1368-1384. [PMID: 38512561 DOI: 10.1007/s11427-023-2493-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/30/2023] [Indexed: 03/23/2024]
Abstract
Environmental DNA (eDNA) monitoring, a rapidly advancing technique for assessing biodiversity and ecosystem health, offers a noninvasive approach for detecting and quantifying species from various environmental samples. In this review, a comprehensive overview of current eDNA collection and detection technologies is provided, emphasizing the necessity for standardization and automation in aquatic ecological monitoring. Furthermore, the intricacies of water bodies, from streams to the deep sea, and the associated challenges they pose for eDNA capture and analysis are explored. The paper delineates three primary eDNA survey methods, namely, bringing back water, bringing back filters, and bringing back data, each with specific advantages and constraints in terms of labor, transport, and data acquisition. Additionally, innovations in eDNA sampling equipment, including autonomous drones, subsurface samplers, and in-situ filtration devices, and their applications in monitoring diverse taxa are discussed. Moreover, recent advancements in species-specific detection and eDNA metabarcoding are addressed, highlighting the integration of novel techniques such as CRISPR-Cas and nanopore sequencing that enable precise and rapid detection of biodiversity. The implications of environmental RNA and epigenetic modifications are considered for future applications in providing nuanced ecological data. Lastly, the review stresses the critical role of standardization and automation in enhancing data consistency and comparability for robust long-term biomonitoring. We propose that the amalgamation of these technologies represents a paradigm shift in ecological monitoring, aligning with the urgent call for biodiversity conservation and sustainable management of aquatic ecosystems.
Collapse
Affiliation(s)
- Suxiang Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Honghui Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fan Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Meng Yao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
- School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
6
|
Fan H, Liu T, Chen Y, Liao Z, Chen J, Hu Y, Qiao G, Wei F. Geographical patterns and determinants of insect biodiversity in China. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1255-1265. [PMID: 38407773 DOI: 10.1007/s11427-023-2483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/21/2023] [Indexed: 02/27/2024]
Abstract
Insects play important roles in the maintenance of ecosystem functioning and the provision of livelihoods for millions of people. However, compared with terrestrial vertebrates and angiosperms, such as the giant panda, crested ibis, and the metasequoia, insect conservation has not attracted enough attention, and a basic understanding of the geographical biodiversity patterns for major components of insects in China is lacking. Herein, we investigated the geographical distribution of insect biodiversity across multiple dimensions (taxonomic, genetic, and phylogenetic diversity) based on the spatial distribution and molecular DNA sequencing data of insects. Our analysis included 18 orders, 360 families, 5,275 genera, and 14,115 species of insects. The results revealed that Southwestern and Southeastern China harbored higher insect biodiversity and numerous older lineages, representing a museum, whereas regions located in Northwestern China harbored lower insect biodiversity and younger lineages, serving as an evolutionary cradle. We also observed that mean annual temperature and precipitation had significantly positive effects, whereas altitude had significantly negative effects on insect biodiversity in most cases. Moreover, cultivated vegetation harbored the highest insect taxonomic and phylogenetic diversity, and needleleaf and broadleaf mixed forests harbored the highest insect genetic diversity. These results indicated that human activities may positively contribute to insect spatial diversity on a regional scale. Our study fills a knowledge gap in insect spatial diversity in China. These findings could help guide national-level conservation plans and the post-2020 biodiversity conservation framework.
Collapse
Affiliation(s)
- Huizhong Fan
- Chinese Academy of Sciences, Beijing, 100101, China
| | - Tongyi Liu
- Chinese Academy of Sciences, Beijing, 100101, China
| | - Youhua Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Ziyan Liao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Jun Chen
- Chinese Academy of Sciences, Beijing, 100101, China
| | - Yibo Hu
- Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gexia Qiao
- Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Fuwen Wei
- Chinese Academy of Sciences, Beijing, 100101, China.
- Jiangxi Provincial Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Zhao R, Niu S, Han P, Gao Y, Liu D, Luo C, Liu H, Liu B, Xu Y, Qi J, Chen Z, Shi W, Wu L, Gao GF, Wang Q. Cross-species recognition of bat coronavirus RsYN04 and cross-reaction of SARS-CoV-2 antibodies against the virus. Zool Res 2023; 44:1015-1025. [PMID: 37804113 PMCID: PMC10802104 DOI: 10.24272/j.issn.2095-8137.2023.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023] Open
Abstract
Following the outbreak of coronavirus disease 2019 (COVID-19), several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related coronaviruses have been discovered. Previous research has identified a novel lineage of SARS-CoV-2-related CoVs in bats, including RsYN04, which recognizes human angiotensin-converting enzyme 2 (ACE2) and thus poses a potential threat to humans. Here, we screened the binding of the RsYN04 receptor-binding domain (RBD) to ACE2 orthologs from 52 animal species and found that the virus showed a narrower ACE2-binding spectrum than SARS-CoV-2. However, the presence of the T484W mutation in the RsYN04 RBD broadened its range. We also evaluated 44 SARS-CoV-2 antibodies targeting seven epitope communities in the SARS-CoV-2 RBD, together with serum obtained from COVID-19 convalescents and vaccinees, to determine their cross-reaction against RsYN04. Results showed that no antibodies, except for the RBD-6 and RBD-7 classes, bound to the RsYN04 RBD, indicating substantial immune differences from SARS-CoV-2. Furthermore, the structure of the RsYN04 RBD in complex with cross-reactive antibody S43 in RBD-7 revealed a potently broad epitope for the development of therapeutics and vaccines. Our findings suggest RsYN04 and other viruses belonging to the same clade have the potential to infect several species, including humans, highlighting the necessity for viral surveillance and development of broad anti-coronavirus countermeasures.
Collapse
Affiliation(s)
- Runchu Zhao
- Institute of Physical Science and Information, Anhui University, Hefei, Anhui 230039, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Pu Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Dezhi Liu
- Institute of Physical Science and Information, Anhui University, Hefei, Anhui 230039, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunliang Luo
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Honghui Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Yanli Xu
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhihai Chen
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Lili Wu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. E-mail:
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qihui Wang
- Institute of Physical Science and Information, Anhui University, Hefei, Anhui 230039, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China. E-mail:
| |
Collapse
|
8
|
Temmam S, Tu TC, Regnault B, Bonomi M, Chrétien D, Vendramini L, Duong TN, Phong TV, Yen NT, Anh HN, Son TH, Anh PT, Amara F, Bigot T, Munier S, Thong VD, van der Werf S, Nam VS, Eloit M. Genotype and Phenotype Characterization of Rhinolophus sp. Sarbecoviruses from Vietnam: Implications for Coronavirus Emergence. Viruses 2023; 15:1897. [PMID: 37766303 PMCID: PMC10536463 DOI: 10.3390/v15091897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Bats are a major reservoir of zoonotic viruses, including coronaviruses. Since the emergence of SARS-CoV in 2002/2003 in Asia, important efforts have been made to describe the diversity of Coronaviridae circulating in bats worldwide, leading to the discovery of the precursors of epidemic and pandemic sarbecoviruses in horseshoe bats. We investigated the viral communities infecting horseshoe bats living in Northern Vietnam, and report here the first identification of sarbecoviruses in Rhinolophus thomasi and Rhinolophus siamensis bats. Phylogenetic characterization of seven strains of Vietnamese sarbecoviruses identified at least three clusters of viruses. Recombination and cross-species transmission between bats seemed to constitute major drivers of virus evolution. Vietnamese sarbecoviruses were mainly enteric, therefore constituting a risk of spillover for guano collectors or people visiting caves. To evaluate the zoonotic potential of these viruses, we analyzed in silico and in vitro the ability of their RBDs to bind to mammalian ACE2s and concluded that these viruses are likely restricted to their bat hosts. The workflow applied here to characterize the spillover potential of novel sarbecoviruses is of major interest for each time a new virus is discovered, in order to concentrate surveillance efforts on high-risk interfaces.
Collapse
Affiliation(s)
- Sarah Temmam
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015 Paris, France
- Institut Pasteur, The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
| | - Tran Cong Tu
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Béatrice Regnault
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015 Paris, France
- Institut Pasteur, The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
| | - Massimiliano Bonomi
- Structural Bioinformatics Unit, Institut Pasteur, CNRS UMR3528, Université Paris Cité, 75015 Paris, France
| | - Delphine Chrétien
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015 Paris, France
- Institut Pasteur, The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
| | - Léa Vendramini
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015 Paris, France
- Institut Pasteur, The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
| | - Tran Nhu Duong
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Tran Vu Phong
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Nguyen Thi Yen
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Hoang Ngoc Anh
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Tran Hai Son
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Pham Tuan Anh
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Faustine Amara
- Institut Pasteur, G5 Evolutionary Genomics of RNA Viruses, Université Paris Cité, 75015 Paris, France
| | - Thomas Bigot
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015 Paris, France
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Université Paris Cité, 75015 Paris, France
| | - Sandie Munier
- Institut Pasteur, G5 Evolutionary Genomics of RNA Viruses, Université Paris Cité, 75015 Paris, France
| | - Vu Dinh Thong
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), Hanoi 70072, Vietnam
| | - Sylvie van der Werf
- Molecular Genetics of RNA Viruses Unit, Institut Pasteur, CNRS UMR 3569, Université Paris Cité, 75015 Paris, France
- Institut Pasteur, National Reference Center for Respiratory Viruses, Université Paris Cité, 75015 Paris, France
| | - Vu Sinh Nam
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015 Paris, France
- Institut Pasteur, The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
- Ecole Nationale Vétérinaire d’Alfort, University of Paris-Est, 77420 Maisons-Alfort, France
| |
Collapse
|
9
|
Dundarova H, Ivanova-Aleksandrova N, Bednarikova S, Georgieva I, Kirov K, Miteva K, Neov B, Ostoich P, Pikula J, Zukal J, Hristov P. Phylogeographic Aspects of Bat Lyssaviruses in Europe: A Review. Pathogens 2023; 12:1089. [PMID: 37764897 PMCID: PMC10534866 DOI: 10.3390/pathogens12091089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
During the last few decades, bat lyssaviruses have become the topic of intensive molecular and epidemiological investigations. Since ancient times, rhabdoviruses have caused fatal encephalitis in humans which has led to research into effective strategies for their eradication. Modelling of potential future cross-species virus transmissions forms a substantial component of the recent infection biology of rabies. In this article, we summarise the available data on the phylogeography of both bats and lyssaviruses in Europe and the adjacent reg ions, especially in the contact zone between the Palearctic and Ethiopian realms. Within these zones, three bat families are present with high potential for cross-species transmission and the spread of lyssaviruses in Phylogroup II to Europe (part of the western Palearctic). The lack of effective therapies for rabies viruses in Phylogroup II and the most divergent lyssaviruses generates impetus for additional phylogenetic and virological research within this geographical region.
Collapse
Affiliation(s)
- Heliana Dundarova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | | | - Sarka Bednarikova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Irina Georgieva
- National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Krasimir Kirov
- Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tzar Assen Str., 4000 Plovdiv, Bulgaria
| | - Kalina Miteva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | - Boyko Neov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | - Peter Ostoich
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - Peter Hristov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| |
Collapse
|
10
|
Li J, Tian F, Zhang S, Liu SS, Kang XP, Li YD, Wei JQ, Lin W, Lei Z, Feng Y, Jiang JF, Jiang T, Tong Y. Genomic representation predicts an asymptotic host adaptation of bat coronaviruses using deep learning. Front Microbiol 2023; 14:1157608. [PMID: 37213516 PMCID: PMC10198438 DOI: 10.3389/fmicb.2023.1157608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/03/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Coronaviruses (CoVs) are naturally found in bats and can occasionally cause infection and transmission in humans and other mammals. Our study aimed to build a deep learning (DL) method to predict the adaptation of bat CoVs to other mammals. Methods The CoV genome was represented with a method of dinucleotide composition representation (DCR) for the two main viral genes, ORF1ab and Spike. DCR features were first analyzed for their distribution among adaptive hosts and then trained with a DL classifier of convolutional neural networks (CNN) to predict the adaptation of bat CoVs. Results and discussion The results demonstrated inter-host separation and intra-host clustering of DCR-represented CoVs for six host types: Artiodactyla, Carnivora, Chiroptera, Primates, Rodentia/Lagomorpha, and Suiformes. The DCR-based CNN with five host labels (without Chiroptera) predicted a dominant adaptation of bat CoVs to Artiodactyla hosts, then to Carnivora and Rodentia/Lagomorpha mammals, and later to primates. Moreover, a linear asymptotic adaptation of all CoVs (except Suiformes) from Artiodactyla to Carnivora and Rodentia/Lagomorpha and then to Primates indicates an asymptotic bats-other mammals-human adaptation. Conclusion Genomic dinucleotides represented as DCR indicate a host-specific separation, and clustering predicts a linear asymptotic adaptation shift of bat CoVs from other mammals to humans via deep learning.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Fengjuan Tian
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Shun-Shuai Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Xiao-Ping Kang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Ya-Dan Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Jun-Qing Wei
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wei Lin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zhongyi Lei
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ye Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
- Jia-Fu Jiang
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
- Tao Jiang
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Yigang Tong
| |
Collapse
|