1
|
Li R, Fang Q, Chen M, Yamada M, Tsuji Y, Kugai Y, Li W, Kawai T. Synthesis and Photochromic Properties of Diaryl [5]Helicene Derivatives. Chemistry 2023; 29:e202302693. [PMID: 37749870 DOI: 10.1002/chem.202302693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Photoinduced tuning of aromaticity and correlative molecular properties has attracted enormous interest in recent years both for modulating photochromism properties and designing novel photochromic materials. Here, we report the synthesis and photochemical characterization of diaryl[5]helicene-based diarylethene molecular switches. 3,4-Bis(2,4-dimethyl-5-phenylthiophen-3-yl)dibenzo[c,g]phenanthrene derivative 1 a showed no photochromic reaction, whereas 3,4-bis(2-methyl-5-phenylthiophen-3-yl)dibenzo[c,g]phenanthrene derivative 2 a and 3,4-bis(5-methyl-2-phenylthiazol-4-yl)dibenzo[c,g]phenanthrene derivative 3 a exhibited reversible photochromism in different aprotic solvents with specific light irradiation. Meanwhile, the diarylethene compounds 2 a and 3 a underwent turn-off mode fluorescence photoswitching together with photoisomerization upon light irradiation. Remarkably, the photoinduced changes in the aromaticity of [5]helicene as a central ethene bridge along with the relative smaller activation energy and higher frequency factor facilitated the thermal bleaching rates of diarylethene switches 2 and 3 in solution. This research provides new insight for designing aromatic diarylethene photoswitches for reversible fluorescence switching, photoinduced changes in aromaticity and further fast thermal back reactions.
Collapse
Affiliation(s)
- Ruiji Li
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, 276826, P. R. China
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara, 630-0192, Japan
| | - Qi Fang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, 276826, P. R. China
| | - Minghui Chen
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, 276826, P. R. China
| | - Mihoko Yamada
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara, 630-0192, Japan
| | - Yugo Tsuji
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara, 630-0192, Japan
| | - Yusuke Kugai
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara, 630-0192, Japan
| | - Wei Li
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, 276826, P. R. China
| | - Tsuyoshi Kawai
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
2
|
Highly sensitive updatable green hologram recording polymer with photoisomerizable azobenzene with highly birefringent acetylene as the side chain. Polym J 2020. [DOI: 10.1038/s41428-020-00447-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3
|
Ding F, Wang R, Chen B. Effect of exogenous ammonium gluconate on growth, ion flux and antioxidant enzymes of maize (Zea Mays L.) seedlings under NaCl stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:643-651. [PMID: 30663821 DOI: 10.1111/plb.12963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Ammonium gluconate (AG) provides both an organic carbon source and a nitrogen source, which can positively improve soil fertility and delay soil degradation. We investigated the underlying mechanisms of both NH4 + - and C6 H11 O7 - -mediated resistance to high salt concentrations in maize (Zea mays L.), and how they relate to antioxidant cellular machinery, root system architecture, root activity and lignin content in roots. Seedlings treated with AG maintained lower Na+ content, higher chlorophyll content, higher CAT and POD activity, compared with those without AG and ammonium carbonate (AC). The total size of the root system, primary root length and number of lateral roots detected on the primary root treated with AG decreased compared with those not treated with AG at the same NaCl concentration. However, average root diameter and root activity when treated with AG were significantly higher than roots without AG at the same NaCl concentration. Furthermore, total size of the root system, primary root length and number of lateral roots detected on primary rootsof seedlings treated with AG were higher than those treated with AC at the same NaCl concentration. These results suggested that AG may be a good organic fertiliser under salt stress by decreasing Na+ content and increasing chlorophyll content, activity of antioxidant enzymes, root diameter and root activity in maize seedlings.
Collapse
Affiliation(s)
- F Ding
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Shandong Provincial Key Laboratory of Microbial Engineering, College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - R Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Shandong Provincial Key Laboratory of Microbial Engineering, College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - B Chen
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Shandong Provincial Key Laboratory of Microbial Engineering, College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
4
|
Bhattacharyya S, Chowdhury A, Saha R, Mukherjee PS. Multifunctional Self-Assembled Macrocycles with Enhanced Emission and Reversible Photochromic Behavior. Inorg Chem 2019; 58:3968-3981. [DOI: 10.1021/acs.inorgchem.9b00039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Aniket Chowdhury
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
5
|
Abstract
A photochromic poly(2-hydroxyl-ethyl methacrylate-N-vinylpyrrolidone-spironaphthoxazine) hydrogel (p(HEMA-NVP-SPO)) has been designed and synthesized by free radical polymerization in this work. The chemical and structural information of hydrogels was investigated by IR spectra, equilibrium water content (EWC), and SEM. The IR spectra confirmed successful synthesis of copolymer. The domain of NVP contributed to not only EWC but also inner structure of hydrogel, while SPO had little influence on these properties of hydrogel. The photochromic behaviors of hydrogel including photochromic properties and thermal fading kinetics were systematically studied and compared with hydrogel made by immersing method. Results showed that when SPO was incorporated in hydrogel by polymerization, maximum absorbance wavelength got shorter, and the relaxation half-life became longer. In addition, salicylic acid as a drug model could be loaded into hydrogel by immersing method, and its sustained drug release in a given period was dependent on the characteristics of solution and loading time.
Collapse
|
6
|
Li X, Liu G, Pu S. Photochromism of a novel asymmetrical diarylethene with a (formyloxyethoxy)ethyl-linked naphthalimide moiety. J PHYS ORG CHEM 2014. [DOI: 10.1002/poc.3336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xue Li
- Jiangxi Key Laboratory of Organic Chemistry; Jiangxi Science and Technology Normal University; Nanchang 330013 China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry; Jiangxi Science and Technology Normal University; Nanchang 330013 China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry; Jiangxi Science and Technology Normal University; Nanchang 330013 China
| |
Collapse
|