1
|
Pacheco-Castillo H, Zagal-Huerta EE, Acevedo-Fernández JJ, Negrete-León E, Nishigaki T, Beltrán C. Hyperglycemia adversely affects critical physiological events related to rat sperm capacitation. Biochem Biophys Res Commun 2024; 734:150610. [PMID: 39217810 DOI: 10.1016/j.bbrc.2024.150610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Hyperglycemia, the hallmark of diabetes mellitus (DM), is the main cause of DM-related systemic complications, including reproductive issues. Furthermore, the incidence of DM in males of reproductive ages is becoming an increasing concern, as the complexity of sperm capacitation (an essential process for fertilizing the egg) extends beyond conventional sperm parameters such as count, viability, and motility. Capacitation defects cause male infertility, and DM-related hyperglycemia may affect this process. We explore the effects of uncontrolled hyperglycemia on sperm using alloxan-induced hyperglycemic Wistar rats. In addition to assessing conventional sperm parameters, we also evaluated functional indicators, including hyperactivation (HA) with a pharmacological approach and assessed its effects with a computer-assisted sperm analysis (CASA); fluorescence indicators to monitor membrane potential (EmR, DiSC3(5)) and mitochondrial membrane potential (Ψ, JC-1); CatSper activity, using its ability to permeate Na+ ions, and ATP levels with the luciferin-luciferase reaction. We confirmed previous findings with our hyperglycemic model, which replicated the typical reduction on conventional sperm parameters. In sperm from hyperglycemic rats, we observed increased motility and HA levels after pharmacological treatment. Additionally, CatSper activity was unaffected by hyperglycemia, while EmR was hyperpolarized under non-capacitating condition. Finally, we noted a low percentage of hyperpolarized Ψ and reduced ATP content. This study highlights the significance of impact of hyperglycemia on sperm physiology and capacitation. We proposed that low ATP levels perturb energy state, signaling pathways, ion channels activity, motility, and HA. Our findings offer insight into DM-associated infertility and potential treatment strategies.
Collapse
Affiliation(s)
- Hiram Pacheco-Castillo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Erika Elena Zagal-Huerta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Juan José Acevedo-Fernández
- Laboratorio de Electrofisiología y Bioevaluación Farmacológica, Facultad de Medicina, Universidad Autónoma del Estado de Morelos (UAEM), Leñeros S/N, Los Volcanes, Cuernavaca, Morelos, 62350, Mexico.
| | - Elizabeth Negrete-León
- Laboratorio de Electrofisiología y Bioevaluación Farmacológica, Facultad de Medicina, Universidad Autónoma del Estado de Morelos (UAEM), Leñeros S/N, Los Volcanes, Cuernavaca, Morelos, 62350, Mexico.
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Carmen Beltrán
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
2
|
Lou Y, Yu W, Han L, Yang S, Wang Y, Ren T, Yu J, Zhao A. ROS activates autophagy in follicular granulosa cells via mTOR pathway to regulate broodiness in goose. Anim Reprod Sci 2017; 185:97-103. [PMID: 28866373 DOI: 10.1016/j.anireprosci.2017.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 07/21/2017] [Accepted: 08/09/2017] [Indexed: 12/20/2022]
Abstract
Broodiness causes reduced reproductive ability in poultry, but its regulatory mechanism remains poorly understood. ROS (reactive oxygen species) and autophagy are important for follicular development, and the interaction between the two may play a role in regulating broodiness. We examined goose follicles for ROS and oxidation scavenger activities during the egg-laying and broody stages. The follicular granulosa cells were exposed to media containing H2O2, and the interactions between ROS and autophagy in follicular granulosa cells in vitro were analyzed using a Western blot method. We found that the activities of superoxide dismutase (SOD) and lactate dehydrogenase (LDH) were enhanced and the amount of malondialdehyde (MDA) decreased in broody goose follicles. H2O2 inhibited the cell viability and induced autophagy. Furthermore, it was also found that H2O2 regulated autophagy by reducing mTOR and increasing p53; however, H2O2 had no impact on Beclin1 or ATG12. It was also shown that the enhanced autophagy lessened ROS-induced damages. We conclude that ROS and autophagy both played important roles in regulating follicular development to control broodiness in geese, and ROS activated autophagy in follicular granulosa cells via the mTOR pathway.
Collapse
Affiliation(s)
- Yaping Lou
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 88 Huanbei Road, Lin'an 311300, China
| | - Wensai Yu
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 88 Huanbei Road, Lin'an 311300, China
| | - Lu Han
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 88 Huanbei Road, Lin'an 311300, China
| | - Songbai Yang
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 88 Huanbei Road, Lin'an 311300, China
| | - Yali Wang
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 88 Huanbei Road, Lin'an 311300, China
| | - Ting Ren
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 88 Huanbei Road, Lin'an 311300, China
| | - Jing Yu
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 88 Huanbei Road, Lin'an 311300, China.
| | - Ayong Zhao
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 88 Huanbei Road, Lin'an 311300, China.
| |
Collapse
|
3
|
Transcriptome analysis of follicles reveals the importance of autophagy and hormones in regulating broodiness of Zhedong white goose. Sci Rep 2016; 6:36877. [PMID: 27833138 PMCID: PMC5105085 DOI: 10.1038/srep36877] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
Broodiness, a maternal behavior and instinct for natural breeding in poultry, inhibits egg production and affects the poultry industry. Phenotypic and physiological factors influencing broodiness in poultry have been extensively studied, but the molecular regulation mechanism of broodiness remains unclear. Effective research strategies focusing on broodiness are hindered by limited understanding of goose developmental biology. Here we established the transcriptomes of goose follicles at egg-laying and broody stages by Illumina HiSeq platform and compared the sequenced transcriptomes of three types of follicles (small white, large white and small yellow). It was found that there were 92 up-regulated and 84 down-regulated transcription factors and 101 up-regulated and 51 down-regulated hormone-related genes. Many of these genes code for proteins involved in hormone response, follicular development, autophagy, and oxidation. Moreover, the contents of progesterone and estradiol in follicles were altered, and the autophagy levels of follicles were enhanced during the broody stage. These results suggest that hormone- and autophagy-signaling pathways are critical for controlling broodiness in the goose. We demonstrated that transcriptome analysis of egg-laying and broody Zhedong white goose follicles provided novel insights into broodiness in birds.
Collapse
|
4
|
Yu J, Lou Y, He K, Yang S, Yu W, Han L, Zhao A. Goose broodiness is involved in granulosa cell autophagy and homeostatic imbalance of follicular hormones. Poult Sci 2016; 95:1156-64. [PMID: 26908882 DOI: 10.3382/ps/pew006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022] Open
Abstract
Broodiness is observed in most domestic fowls and influences egg production. The goose is one of the most important waterfowls, having strong broody behavior. However, whether autophagy and follicular internal environment play a role in the broodiness behavior of goose is unknown. In this report, we analyzed the follicular internal environment and granulosa cell autophagy of goose follicles. The results show that the contents of hormones, including prolactin (PRL), progesterone (P4), and estradiol (E2), increased in broody goose follicles. Most importantly, the level of granulosa cell autophagy in broody goose follicles was elevated, detected by electron microscopy and western blotting. Also, the expressions of positive regulators of autophagy, including miR-7, miR-29, miR-100, miR-181, PRLR, LC3, p53,Beclin1, Atg9, and Atg12, were up-regulated and the expressions of negative regulators of autophagy, including miR-34b and miR-34c, were down-regulated in broody goose follicles. Our results suggest that goose broodiness is involved in increased granulosa cell autophagy and homeostasis imbalance of internal environment in the follicles. This work contributes to our knowledge of goose broodiness and may influence egg production.
Collapse
Affiliation(s)
- Jing Yu
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 88 Huanbei Road, Lin'an 311300, China
| | - Yaping Lou
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 88 Huanbei Road, Lin'an 311300, China
| | - Ke He
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 88 Huanbei Road, Lin'an 311300, China
| | - Songbai Yang
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 88 Huanbei Road, Lin'an 311300, China
| | - Wensai Yu
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 88 Huanbei Road, Lin'an 311300, China
| | - Lu Han
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 88 Huanbei Road, Lin'an 311300, China
| | - Ayong Zhao
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 88 Huanbei Road, Lin'an 311300, China
| |
Collapse
|