1
|
Wong JK, Mayberg HS, Wang DD, Richardson RM, Halpern CH, Krinke L, Arlotti M, Rossi L, Priori A, Marceglia S, Gilron R, Cavanagh JF, Judy JW, Miocinovic S, Devergnas AD, Sillitoe RV, Cernera S, Oehrn CR, Gunduz A, Goodman WK, Petersen EA, Bronte-Stewart H, Raike RS, Malekmohammadi M, Greene D, Heiden P, Tan H, Volkmann J, Voon V, Li L, Sah P, Coyne T, Silburn PA, Kubu CS, Wexler A, Chandler J, Provenza NR, Heilbronner SR, Luciano MS, Rozell CJ, Fox MD, de Hemptinne C, Henderson JM, Sheth SA, Okun MS. Proceedings of the 10th annual deep brain stimulation think tank: Advances in cutting edge technologies, artificial intelligence, neuromodulation, neuroethics, interventional psychiatry, and women in neuromodulation. Front Hum Neurosci 2023; 16:1084782. [PMID: 36819295 PMCID: PMC9933515 DOI: 10.3389/fnhum.2022.1084782] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/12/2022] [Indexed: 02/05/2023] Open
Abstract
The deep brain stimulation (DBS) Think Tank X was held on August 17-19, 2022 in Orlando FL. The session organizers and moderators were all women with the theme women in neuromodulation. Dr. Helen Mayberg from Mt. Sinai, NY was the keynote speaker. She discussed milestones and her experiences in developing depression DBS. The DBS Think Tank was founded in 2012 and provides an open platform where clinicians, engineers and researchers (from industry and academia) can freely discuss current and emerging DBS technologies as well as the logistical and ethical issues facing the field. The consensus among the DBS Think Tank X speakers was that DBS has continued to expand in scope however several indications have reached the "trough of disillusionment." DBS for depression was considered as "re-emerging" and approaching a slope of enlightenment. DBS for depression will soon re-enter clinical trials. The group estimated that globally more than 244,000 DBS devices have been implanted for neurological and neuropsychiatric disorders. This year's meeting was focused on advances in the following areas: neuromodulation in Europe, Asia, and Australia; cutting-edge technologies, closed loop DBS, DBS tele-health, neuroethics, lesion therapy, interventional psychiatry, and adaptive DBS.
Collapse
Affiliation(s)
- Joshua K. Wong
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Helen S. Mayberg
- Department of Neurology, Neurosurgery, Psychiatry, and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Doris D. Wang
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - R. Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Casey H. Halpern
- Richards Medical Research Laboratories, Department of Neurosurgery, Perelman School of Medicine, Pennsylvania Hospital, University of Pennsylvania, Philadelphia, PA, United States
| | - Lothar Krinke
- Newronika, Goose Creek, SC, United States
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
| | | | | | | | | | | | - James F. Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Jack W. Judy
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States
| | - Svjetlana Miocinovic
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Annaelle D. Devergnas
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Roy V. Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Stephanie Cernera
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Carina R. Oehrn
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Aysegul Gunduz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Wayne K. Goodman
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Erika A. Petersen
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Helen Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Robert S. Raike
- Restorative Therapies Group Implantables, Research, and Core Technology, Medtronic Inc., Minneapolis, MN, United States
| | | | - David Greene
- NeuroPace, Inc., Mountain View, CA, United States
| | - Petra Heiden
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jens Volkmann
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Luming Li
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Pankaj Sah
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Terry Coyne
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Peter A. Silburn
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Cynthia S. Kubu
- Department of Neurology, Cleveland Clinic, Cleveland, OH, United States
| | - Anna Wexler
- Department of Medical Ethics and Health Policy, University of Pennsylvania, Philadelphia, PA, United States
| | - Jennifer Chandler
- Centre for Health Law, Policy, and Ethics, Faculty of Law, University of Ottawa, Ottawa, ON, Canada
| | - Nicole R. Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Sarah R. Heilbronner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Marta San Luciano
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Christopher J. Rozell
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Michael D. Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women’s Hospital, Boston, MA, United States
| | - Coralie de Hemptinne
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Jaimie M. Henderson
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Michael S. Okun
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Guo T, Chang YC, Li L, Dokos S, Li L. Editorial: Advances in bioelectronics and stimulation strategies for next generation neuroprosthetics. Front Neurosci 2023; 16:1116900. [PMID: 36704005 PMCID: PMC9872720 DOI: 10.3389/fnins.2022.1116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Affiliation(s)
- Tianruo Guo
- Graduate School of Biomedical Engineering, The University of New South Wales Sydney, Sydney, NSW, Australia
| | - Yao-chuan Chang
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States,Medtronic PLC, Minneapolis, MN, United States
| | - Luming Li
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China,Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, The University of New South Wales Sydney, Sydney, NSW, Australia
| | - Liming Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Liming Li ✉
| |
Collapse
|
3
|
Sui Y, Yu H, Zhang C, Chen Y, Jiang C, Li L. Deep brain-machine interfaces: sensing and modulating the human deep brain. Natl Sci Rev 2022; 9:nwac212. [PMID: 36644311 PMCID: PMC9834907 DOI: 10.1093/nsr/nwac212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 01/18/2023] Open
Abstract
Different from conventional brain-machine interfaces that focus more on decoding the cerebral cortex, deep brain-machine interfaces enable interactions between external machines and deep brain structures. They sense and modulate deep brain neural activities, aiming at function restoration, device control and therapeutic improvements. In this article, we provide an overview of multiple deep brain recording and stimulation techniques that can serve as deep brain-machine interfaces. We highlight two widely used interface technologies, namely deep brain stimulation and stereotactic electroencephalography, for technical trends, clinical applications and brain connectivity research. We discuss the potential to develop closed-loop deep brain-machine interfaces and achieve more effective and applicable systems for the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Yanan Sui
- National Engineering Research Center of Neuromodulation, Tsinghua University, Beijing 100084, China
| | - Huiling Yu
- National Engineering Research Center of Neuromodulation, Tsinghua University, Beijing 100084, China
| | - Chen Zhang
- National Engineering Research Center of Neuromodulation, Tsinghua University, Beijing 100084, China
| | - Yue Chen
- National Engineering Research Center of Neuromodulation, Tsinghua University, Beijing 100084, China
| | - Changqing Jiang
- National Engineering Research Center of Neuromodulation, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
4
|
Chen Y, Zhang G, Guan L, Gong C, Ma B, Hao H, Li L. Progress in the development of a fully implantable brain-computer interface: the potential of sensing-enabled neurostimulators. Natl Sci Rev 2022; 9:nwac099. [PMID: 36196114 PMCID: PMC9522391 DOI: 10.1093/nsr/nwac099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/14/2022] [Accepted: 05/23/2022] [Indexed: 11/12/2022] Open
Abstract
This perspective article investigates the performance of using a sensing-enabled neurostimulator as a motor brain-computer interface.
Collapse
Affiliation(s)
- Yue Chen
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, China
| | - Guokun Zhang
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, China
| | - Linxiao Guan
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, China
| | - Chen Gong
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, China
| | - Bozhi Ma
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, China
| | - Hongwei Hao
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, China
| | - Luming Li
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, China
- Precision Medicine & Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, China
- IDG/McGovern Institute for Brain Research at Tsinghua University, China
- Institute of Epilepsy, Beijing Institute for Brain Disorders, China
| |
Collapse
|
5
|
Vedam-Mai V, Deisseroth K, Giordano J, Lazaro-Munoz G, Chiong W, Suthana N, Langevin JP, Gill J, Goodman W, Provenza NR, Halpern CH, Shivacharan RS, Cunningham TN, Sheth SA, Pouratian N, Scangos KW, Mayberg HS, Horn A, Johnson KA, Butson CR, Gilron R, de Hemptinne C, Wilt R, Yaroshinsky M, Little S, Starr P, Worrell G, Shirvalkar P, Chang E, Volkmann J, Muthuraman M, Groppa S, Kühn AA, Li L, Johnson M, Otto KJ, Raike R, Goetz S, Wu C, Silburn P, Cheeran B, Pathak YJ, Malekmohammadi M, Gunduz A, Wong JK, Cernera S, Wagle Shukla A, Ramirez-Zamora A, Deeb W, Patterson A, Foote KD, Okun MS. Proceedings of the Eighth Annual Deep Brain Stimulation Think Tank: Advances in Optogenetics, Ethical Issues Affecting DBS Research, Neuromodulatory Approaches for Depression, Adaptive Neurostimulation, and Emerging DBS Technologies. Front Hum Neurosci 2021; 15:644593. [PMID: 33953663 PMCID: PMC8092047 DOI: 10.3389/fnhum.2021.644593] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
We estimate that 208,000 deep brain stimulation (DBS) devices have been implanted to address neurological and neuropsychiatric disorders worldwide. DBS Think Tank presenters pooled data and determined that DBS expanded in its scope and has been applied to multiple brain disorders in an effort to modulate neural circuitry. The DBS Think Tank was founded in 2012 providing a space where clinicians, engineers, researchers from industry and academia discuss current and emerging DBS technologies and logistical and ethical issues facing the field. The emphasis is on cutting edge research and collaboration aimed to advance the DBS field. The Eighth Annual DBS Think Tank was held virtually on September 1 and 2, 2020 (Zoom Video Communications) due to restrictions related to the COVID-19 pandemic. The meeting focused on advances in: (1) optogenetics as a tool for comprehending neurobiology of diseases and on optogenetically-inspired DBS, (2) cutting edge of emerging DBS technologies, (3) ethical issues affecting DBS research and access to care, (4) neuromodulatory approaches for depression, (5) advancing novel hardware, software and imaging methodologies, (6) use of neurophysiological signals in adaptive neurostimulation, and (7) use of more advanced technologies to improve DBS clinical outcomes. There were 178 attendees who participated in a DBS Think Tank survey, which revealed the expansion of DBS into several indications such as obesity, post-traumatic stress disorder, addiction and Alzheimer’s disease. This proceedings summarizes the advances discussed at the Eighth Annual DBS Think Tank.
Collapse
Affiliation(s)
- Vinata Vedam-Mai
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, United States.,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - James Giordano
- Department of Neurology and Neuroethics Studies Program, Georgetown University Medical Center, Washington, DC, United States
| | - Gabriel Lazaro-Munoz
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Winston Chiong
- Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Nanthia Suthana
- Department of Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jean-Philippe Langevin
- Department of Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Neurosurgery Service, Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Jay Gill
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Wayne Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Nicole R Provenza
- School of Engineering, Brown University, Providence, RI, United States
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States
| | - Rajat S Shivacharan
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States
| | - Tricia N Cunningham
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States
| | - Sameer A Sheth
- Department of Neurological Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Nader Pouratian
- Department of Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Katherine W Scangos
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Helen S Mayberg
- Department of Neurology and Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Andreas Horn
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Berlin, Germany
| | - Kara A Johnson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Christopher R Butson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Ro'ee Gilron
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Coralie de Hemptinne
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States.,Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Robert Wilt
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Yaroshinsky
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Simon Little
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Philip Starr
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Greg Worrell
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Prasad Shirvalkar
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States.,Department of Anesthesiology (Pain Management) and Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Edward Chang
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Jens Volkmann
- Neurologischen Klinik Universitätsklinikum Würzburg, Würzburg, Germany
| | - Muthuraman Muthuraman
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Matthew Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Robert Raike
- Restorative Therapies Group Implantables, Research and Core Technology, Medtronic, Minneapolis, MN, United States
| | - Steve Goetz
- Restorative Therapies Group Implantables, Research and Core Technology, Medtronic, Minneapolis, MN, United States
| | - Chengyuan Wu
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA, United States
| | - Peter Silburn
- Asia Pacific Centre for Neuromodulation, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Binith Cheeran
- Neuromodulation Division, Abbott, Plano, TX, United States
| | - Yagna J Pathak
- Neuromodulation Division, Abbott, Plano, TX, United States
| | | | - Aysegul Gunduz
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Joshua K Wong
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Stephanie Cernera
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Aparna Wagle Shukla
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Adolfo Ramirez-Zamora
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Wissam Deeb
- Department of Neurology, University of Massachusetts, Worchester, MA, United States
| | - Addie Patterson
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Jimenez-Shahed J. Device profile of the percept PC deep brain stimulation system for the treatment of Parkinson's disease and related disorders. Expert Rev Med Devices 2021; 18:319-332. [PMID: 33765395 DOI: 10.1080/17434440.2021.1909471] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Several software and hardware advances in the field of deep brain stimulation (DBS) have been realized in recent years and devices from three manufacturers are available. The Percept™ PC platform (Medtronic, Inc.) enables brain sensing, the latest innovation. Clinicians should be familiar with the differences in devices, and with the latest technologies to deliver optimized patient care.Areas covered: In this device profile, the sensing capabilities of the Percept™ PC platform are described, and the system capabilities are differentiated from other available platforms. The development of the preceding Activa™ PC+S research platform, an investigational device to simultaneously sense brain signals and provide therapeutic stimulation, is provided to place Percept™ PC in the appropriate context.Expert opinion: Percept™ PC offers unique sensing and diary functions as a means to refine therapeutic stimulation, track symptoms and correlate them to neurophysiologic characteristics. Additional features enhance the patient experience with DBS, including 3 T magnetic resonance imaging compatibility, wireless telemetry, a smaller and thinner battery profile, and increased battery longevity. Future work will be needed to illustrate the clinical utility and added value of using sensing to optimize DBS therapy. Patients implanted with Percept™ PC will have ready access to future technology developments.
Collapse
Affiliation(s)
- Joohi Jimenez-Shahed
- Movement Disorders Neuromodulation & Brain Circuit Therapeutics, Neurology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
7
|
Chen Y, Gong C, Tian Y, Orlov N, Zhang J, Guo Y, Xu S, Jiang C, Hao H, Neumann WJ, Kühn AA, Liu H, Li L. Neuromodulation effects of deep brain stimulation on beta rhythm: A longitudinal local field potential study. Brain Stimul 2020; 13:1784-1792. [PMID: 33038597 DOI: 10.1016/j.brs.2020.09.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/15/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) holds great promise in treating various brain diseases but its chronic therapeutic mechanisms are unclear. OBJECTIVE To explore the immediate and chronic effects of DBS on brain oscillations, and understand how different sub-bands of oscillations may be related to symptom improvement in Parkinson's patients. METHODS We carried out a longitudinal study to examine the effects of DBS on local field potentials recorded by sensing-enabled neurostimulators in the subthalamic nuclei of Parkinson's patients, using a novel block-design stimulation paradigm. RESULTS DBS significantly suppressed beta activity (13-35Hz) but the suppression effect appeared to gradually attenuate during a 6-month follow-up period after surgery (p = 0.002). However, beta suppression did not attenuate after repeated stimulation over several minutes (p > 0.110), suggesting that the changes in beta suppression may reflect a slow reconfiguration of neural pathways instead of habituation. Suppression of beta was also associated with clinical symptom improvement across subjects. Importantly, symptom-relevant features fell within the high beta band at month 1 but shifted to the low beta band at month 6, indicating that the high beta and the low beta oscillations may play different functional roles and respond differently to stimulation over the long-term treatment. CONCLUSION These data may advance understanding of chronic DBS effects on beta oscillations and their association with clinical improvement, offering novel insights to the therapeutic mechanisms of DBS.
Collapse
Affiliation(s)
- Yue Chen
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 10084, China
| | - Chen Gong
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 10084, China
| | - Ye Tian
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 10084, China
| | - Natasza Orlov
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yi Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, 100032, China
| | - Shujun Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Shandong, 250012, China
| | - Changqing Jiang
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 10084, China
| | - Hongwei Hao
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 10084, China
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, 29425, SC, USA.
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 10084, China; Precision Medicine & Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518071, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Beijing, 100084, China; Institute of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100093, China.
| |
Collapse
|
8
|
Chen Y, Sui Y, Gong C, Ma B, Hao H, Li L. Chronically monitoring the deep brain rhythms: latest clinical progress. Sci Bull (Beijing) 2020; 65:965-967. [PMID: 36659020 DOI: 10.1016/j.scib.2020.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yue Chen
- National Engineering Laboratory of Neuromodulation, Tsinghua University, Beijing 100084, China
| | - Yanan Sui
- National Engineering Laboratory of Neuromodulation, Tsinghua University, Beijing 100084, China
| | - Chen Gong
- National Engineering Laboratory of Neuromodulation, Tsinghua University, Beijing 100084, China
| | - Bozhi Ma
- National Engineering Laboratory of Neuromodulation, Tsinghua University, Beijing 100084, China
| | - Hongwei Hao
- National Engineering Laboratory of Neuromodulation, Tsinghua University, Beijing 100084, China
| | - Luming Li
- National Engineering Laboratory of Neuromodulation, Tsinghua University, Beijing 100084, China; Precision Medicine & Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518071, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Beijing 100084, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100069, China.
| |
Collapse
|
9
|
Chen Y, Gong C, Hao H, Guo Y, Xu S, Zhang Y, Yin G, Cao X, Yang A, Meng F, Ye J, Liu H, Zhang J, Sui Y, Li L. Automatic Sleep Stage Classification Based on Subthalamic Local Field Potentials. IEEE Trans Neural Syst Rehabil Eng 2019; 27:118-128. [PMID: 30605104 PMCID: PMC6544463 DOI: 10.1109/tnsre.2018.2890272] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Deep brain stimulation (DBS) is an established treatment for patients with Parkinson's disease (PD). Sleep disorders are common complications of PD and affected by subthalamic DBS treatment. To achieve more precise neuromodulation, chronicsleepmonitoringand closed-loop DBS toward sleep-wake cycles could potentially be utilized. Local field potential (LFP) signals that are sensed by the DBS electrode could be processed as primary feedback signals. This is the first study to systematically investigate the sleep-stage classification based on LFPs in subthalamic nucleus (STN). With our newly developed recording and transmission system, STN-LFPs were collected from 12 PD patients during wakefulness and nocturnal polysomnography sleep monitoring at one month after DBS implantation. Automatic sleep-stage classificationmodels were built with robust and interpretable machine learning methods (support vector machine and decision tree). The accuracy, sensitivity, selectivity, and specificity of the classification reached high values (above90% at most measures) at group and individual levels. Features extracted in alpha (8-13 Hz), beta (13-35 Hz), and gamma (35-50 Hz) bandswere found to contribute the most to the classification. These results will directly guide the engineering development of implantable sleepmonitoring and closed-loopDBS and pave the way for a better understanding of the STN-LFP sleep patterns.
Collapse
|