1
|
Jiang H, Gong B, Yan Z, Wang P, Hong J. Identification of novel biomarkers associated with immune infiltration in major depression disorder and atopic dermatitis. Arch Dermatol Res 2025; 317:417. [PMID: 39953304 DOI: 10.1007/s00403-025-03907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
Major depression disorder (MDD) and atopic dermatitis (AD) are distinct disorders involving immune inflammatory responses. This study aimed to investigate the comorbid relationship between AD and MDD and to identify possible common mechanisms. We obtained AD and MDD data from the Gene Expression Omnibus (GEO) database. Differential expression analysis and the Genecard database were employed to identify shared genes associated with inflammatory diseases. These shared genes were then subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Hub genes were selected based on the protein-protein interactions using CytoHubba, and key regulatory genes were identified through enrichment analysis. Subsequently, we conducted immune infiltration and correlation analyses of the shared genes in AD. Finally, we employed three machine learning models to predict the significance of shared genes. A total of 17 shared genes were identified in the AD_Inflammatory_MDD dataset (S100A9, PTGER2, PI3, SNCA, DAB2, PDGFA, FSTL1, CALD1, XK, UTS2, DHRS9, PARD3, NFIB, TMEM158, LIPH, RAB27B, and SH3BRL2). These genes were associated with biological processes such as the regulation of mesenchymal cell proliferation, cellular ketone metabolic processes, and glial cell differentiation. The neuroactive ligand-receptor interaction, IL-17 signaling, and Rap1 signaling pathways were significantly enriched in KEGG analysis. SNCA, S100A9, SH3BGRL2, RAB27B, TMEM158, DAB2, FSTL1, CALD1, and XK were identified as hub genes contributing to comorbid AD and MDD development. The three machine learning models consistently identified SNCA and PARD3 as important biomarkers.SNCA, S100A9, SH3BGRL2, RAB27B, TMEM158, DAB2, FSTL1, CALD1, and XK were identified as significant genes contributing to the development of AD and MDD comorbidities. Immune infiltration analysis showed a notable increase in the infiltration of various subtypes of CD4 + T cells, suggesting a potential association between the development of skin inflammation and the immune response. Across different machine learning models, SNCA and PARD3 consistently emerged as important biomarkers, providing a new direction for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Han Jiang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Bizhen Gong
- Postgraduate School, Medical School of Chinese People's Liberation Army, Beijing, 100853, China
- Senior Department of Traditional Chinese Medicine, the Sixth Medical Center of PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zhaoxian Yan
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China.
- Department of Integrative Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Peng Wang
- Postgraduate School, Medical School of Chinese People's Liberation Army, Beijing, 100853, China.
- Senior Department of Traditional Chinese Medicine, the Sixth Medical Center of PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Jing Hong
- Department of Integrative Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
2
|
Sadat Razavi Z, Sina Alizadeh S, Sadat Razavi F, Souri M, Soltani M. Advancing neurological disorders therapies: Organic nanoparticles as a key to blood-brain barrier penetration. Int J Pharm 2025; 670:125186. [PMID: 39788400 DOI: 10.1016/j.ijpharm.2025.125186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
The blood-brain barrier (BBB) plays a vital role in protecting the central nervous system (CNS) by preventing the entry of harmful pathogens from the bloodstream. However, this barrier also presents a significant obstacle when it comes to delivering drugs for the treatment of neurodegenerative diseases and brain cancer. Recent breakthroughs in nanotechnology have paved the way for the creation of a wide range of nanoparticles (NPs) that can serve as carriers for diagnosis and therapy. Regarding their promising properties, organic NPs have the potential to be used as effective carriers for drug delivery across the BBB based on recent advancements. These remarkable NPs have the ability to penetrate the BBB using various mechanisms. This review offers a comprehensive examination of the intricate structure and distinct properties of the BBB, emphasizing its crucial function in preserving brain balance and regulating the transport of ions and molecules. The disruption of the BBB in conditions such as stroke, Alzheimer's disease, and Parkinson's disease highlights the importance of developing creative approaches for delivering drugs. Through the encapsulation of therapeutic molecules and the precise targeting of transport processes in the brain vasculature, organic NP formulations present a hopeful strategy to improve drug transport across the BBB. We explore the changes in properties of the BBB in various pathological conditions and investigate the factors that affect the successful delivery of organic NPs into the brain. In addition, we explore the most promising delivery systems associated with NPs that have shown positive results in treating neurodegenerative and ischemic disorders. This review opens up new possibilities for nanotechnology-based therapies in cerebral diseases.
Collapse
Affiliation(s)
- Zahra Sadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran; Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | | - Fateme Sadat Razavi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada; Centre for Sustainable Business, International Business University, Toronto, Canada.
| |
Collapse
|
3
|
Daneshvar S, Moradi F, Rahmani M, Golshaniniya P, Frounchi N, Seifimansour S, Talebi M, Sanaie S, Naseri A. Association of serum levels of inflammation and oxidative stress markers with cognitive outcomes in multiple sclerosis; a systematic review. J Clin Neurosci 2025; 132:110990. [PMID: 39693809 DOI: 10.1016/j.jocn.2024.110990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is an immune-mediated disease with cognitive impairment being a crucial manifestation. Oxidative stress and inflammation play significant roles in the disease's pathogenesis. This systematic review explores the association between inflammation and oxidative stress markers, with cognitive outcomes in MS patients. METHODS This study adhered to the Joanna Briggs Institute (JBI) and PRISMA 2020 methods. Eligibility criteria included studies with MS patients, evaluating serum inflammation and/or oxidative stress markers, assessing cognitive function, and examining the relationship between these factors. PubMed, Scopus, Embase, and Web of Science, were searched and the risk of bias was assessed using the JBI checklists. RESULTS Out of 1609 identified records, 10 studies were included in this systematic review. The studies were published between 2006 and 2023 and involved 629 MS patients. Current evidence suggests a negative correlation between TNF-α, and cognitive outcomes in MS (reported in three out of five studies). Associations between the decreased native and total thiol levels, as well as interleukin (IL)-17A with cognitive impairment, and the correlation between IL-6 and C-reactive protein (CRP) with cognitive scores in MS are also reported (one study for each). IL-10 (four studies), glutathione peroxidase (GPX), reduced glutathione (GSH), catalase activity (CAT), ischemia-modified albumin (IMA), IL-8, IL-18, and IL-2 (one study for each) did not found to be associated with cognition in MS and evidence regarding the possible role of interferon-gamma (IFN-γ), total antioxidant capacity (TAC), and malondialdehyde (MDA) is not definitive. DISCUSSION The review findings suggest a complex association between oxidative stress and inflammation with cognitive outcomes in MS. Diversity in study designs, participant characteristics, and assessment methods makes the findings of this study inconclusive and highlights the need for future research.
Collapse
Affiliation(s)
- Sara Daneshvar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Farinush Moradi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehrab Rahmani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Pouya Golshaniniya
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Negin Frounchi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sina Seifimansour
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sarvin Sanaie
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Amirreza Naseri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Evidence-Based Medicine, Iranian EBM Center: A Joanna Briggs Institute Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Jian J, Wei J. Ferroptosis: A New Pathway in the Interaction between Gut Microbiota and Multiple Sclerosis. FRONT BIOSCI-LANDMRK 2025; 30:26265. [PMID: 39862079 DOI: 10.31083/fbl26265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 01/27/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS. Concurrently, the gut microbiota, known to affect systemic immunity and neurological health, emerges as an important regulator of iron homeostasis and inflammatory responses, thereby influencing ferroptotic pathways. This review investigates how gut microbiota dysbiosis and ferroptosis impact MS, emphasizing their potential as therapeutic targets. Through an integrated examination of mechanistic pathways and clinical evidence, we discuss how targeting these interactions could lead to novel interventions that not only modulate disease progression but also offer personalized treatment strategies based on gut microbiota profiling. This synthesis aims at deepening insights into the microbial contributions to ferroptosis and their implications in MS, setting the stage for future research and therapeutic exploration.
Collapse
Affiliation(s)
- Junjie Jian
- The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
- Department of Neurology, Yichang Central People's Hospital, 443003 Yichang, Hubei, China
| | - Jun Wei
- The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
- Department of Neurology, Yichang Central People's Hospital, 443003 Yichang, Hubei, China
| |
Collapse
|
5
|
Sigutova V, Xiang W, Regensburger M, Winner B, Prots I. Alpha-synuclein fine-tunes neuronal response to pro-inflammatory cytokines. Brain Behav Immun 2024; 122:216-230. [PMID: 39128571 DOI: 10.1016/j.bbi.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024] Open
Abstract
Pro-inflammatory cytokines are emerging as neuroinflammatory mediators in Parkinson's disease (PD) due to their ability to act through neuronal cytokine receptors. Critical questions persist regarding the role of cytokines in neuronal dysfunction and their contribution to PD pathology. Specifically, the potential synergy of the hallmark PD protein alpha-synuclein (α-syn) with cytokines is of interest. We therefore investigated the direct impact of pro-inflammatory cytokines on neurons and hypothesized that α-syn pathology exacerbates cytokine-induced neuronal deficits in PD. iPSC-derived cortical neurons (CNs) from healthy controls and patients with α-syn gene locus duplication (SNCA dupl) were stimulated with IL-17A, TNF-α, IFN-γ, or a combination thereof. For rescue experiments, CNs were pre-treated with α-syn anti-oligomerisation compound NPT100-18A prior to IL-17A stimulation. Cytokine receptor expression, microtubule cytoskeleton, axonal transport and neuronal activity were assessed. SNCA dupl CNs displayed an increased IL-17A receptor expression and impaired IL-17A-mediated cytokine receptor regulation. Cytokines exacerbated the altered distribution of tubulin post-translational modifications in SNCA dupl neurites, with SNCA dupl-specific IL-17A effects. Tau pathology in SNCA dupl CNs was also aggravated by IL-17A and cytokine mix. Cytokines slowed down mitochondrial axonal transport, with IL-17A-mediated retrograde slowing in SNCA dupl only. The pre-treatment of SNCA dupl CNs with NPT100-18A prevented the IL-17A-induced functional impairments in axonal transport and neural activity. Our work elucidates the detrimental effects of pro-inflammatory cytokines, particularly IL-17A, on human neuronal structure and function in the context of α-syn pathology, suggesting that cytokine-mediated inflammation represents a second hit to neurons in PD which is amenable to disease modifying therapies that are currently in clinical trials.
Collapse
Affiliation(s)
- Veronika Sigutova
- Department of Stem Cell Biology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany; Dental Clinic 1, Department of Operative Dentistry and Periodontology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany; Department of Molecular Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany; Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Iryna Prots
- Department of Stem Cell Biology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany; Dental Clinic 1, Department of Operative Dentistry and Periodontology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
6
|
Langlois J, Lange S, Ebeling M, Macnair W, Schmucki R, Li C, DeGeer J, Sudharshan TJJ, Yong VW, Shen YA, Harp C, Collin L, Keaney J. Fenebrutinib, a Bruton's tyrosine kinase inhibitor, blocks distinct human microglial signaling pathways. J Neuroinflammation 2024; 21:276. [PMID: 39465429 PMCID: PMC11514909 DOI: 10.1186/s12974-024-03267-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Bruton's tyrosine kinase (BTK) is an intracellular signaling enzyme that regulates B-lymphocyte and myeloid cell functions. Due to its involvement in both innate and adaptive immune compartments, BTK inhibitors have emerged as a therapeutic option in autoimmune disorders such as multiple sclerosis (MS). Brain-penetrant, small-molecule BTK inhibitors may also address compartmentalized neuroinflammation, which is proposed to underlie MS disease progression. BTK is expressed by microglia, which are the resident innate immune cells of the brain; however, the precise roles of microglial BTK and impact of BTK inhibitors on microglial functions are still being elucidated. Research on the effects of BTK inhibitors has been limited to rodent disease models. This is the first study reporting effects in human microglia. METHODS Here we characterize the pharmacological and functional properties of fenebrutinib, a potent, highly selective, noncovalent, reversible, brain-penetrant BTK inhibitor, in human microglia and complex human brain cell systems, including brain organoids. RESULTS We find that fenebrutinib blocks the deleterious effects of microglial Fc gamma receptor (FcγR) activation, including cytokine and chemokine release, microglial clustering and neurite damage in diverse human brain cell systems. Gene expression analyses identified pathways linked to inflammation, matrix metalloproteinase production and cholesterol metabolism that were modulated by fenebrutinib treatment. In contrast, fenebrutinib had no significant impact on human microglial pathways linked to Toll-like receptor 4 (TLR4) and NACHT, LRR and PYD domains-containing protein 3 (NLRP3) signaling or myelin phagocytosis. CONCLUSIONS Our study enhances the understanding of BTK functions in human microglial signaling that are relevant to MS pathogenesis and suggests that fenebrutinib could attenuate detrimental microglial activity associated with FcγR activation in people with MS.
Collapse
Affiliation(s)
- Julie Langlois
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Simona Lange
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Martin Ebeling
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Will Macnair
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Roland Schmucki
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Cenxiao Li
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
| | - Jonathan DeGeer
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Tania J J Sudharshan
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
| | - Yun-An Shen
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | | | - Ludovic Collin
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - James Keaney
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|
7
|
Woodfin S, Hall S, Ramerth A, Chapple B, Fausnacht D, Moore W, Alkhalidy H, Liu D. Potential Application of Plant-Derived Compounds in Multiple Sclerosis Management. Nutrients 2024; 16:2996. [PMID: 39275311 PMCID: PMC11397714 DOI: 10.3390/nu16172996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by inflammation, demyelination, and neurodegeneration, resulting in significant disability and reduced quality of life. Current therapeutic strategies primarily target immune dysregulation, but limitations in efficacy and tolerability highlight the need for alternative treatments. Plant-derived compounds, including alkaloids, phenylpropanoids, and terpenoids, have demonstrated anti-inflammatory effects in both preclinical and clinical studies. By modulating immune responses and promoting neuroregeneration, these compounds offer potential as novel adjunctive therapies for MS. This review provides insights into the molecular and cellular basis of MS pathogenesis, emphasizing the role of inflammation in disease progression. It critically evaluates emerging evidence supporting the use of plant-derived compounds to attenuate inflammation and MS symptomology. In addition, we provide a comprehensive source of information detailing the known mechanisms of action and assessing the clinical potential of plant-derived compounds in the context of MS pathogenesis, with a focus on their anti-inflammatory and neuroprotective properties.
Collapse
Affiliation(s)
- Seth Woodfin
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Sierra Hall
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Alexis Ramerth
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Brooke Chapple
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Dane Fausnacht
- Department of Biology, School of Sciences and Agriculture, Ferrum College, Ferrum, VA 24088, USA
| | - William Moore
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Hana Alkhalidy
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
8
|
Lis M, Niedziela N, Adamczyk-Zostawa J, Wierzbicki K, Czuba Z, Zalejska-Fiolka J, Bartman W, Świętek A, Adamczyk-Sowa M. Can Vitamin D Supplementation Improve Inflammation in Relapsing-Remitting Multiple Sclerosis Patients? Biomedicines 2024; 12:1580. [PMID: 39062153 PMCID: PMC11274703 DOI: 10.3390/biomedicines12071580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Studies indicate that vitamin D (VitD) may reduce inflammation in multiple sclerosis (MS). The aim of the study was to assess the effect of supplementation with different doses of VitD on inflammation in relapsing-remitting MS (RRMS) patients. (2) Methods: The effect of 6-month supplementation with different doses of oral VitD (2000 IU/day) in a high-dose group (HD, n = 23) and a low-dose group (15,960 IU/month) (LD, n = 29) on selected markers of inflammation was assessed in 52 RRMS patients. (3) Results: Females constituted the majority of participants (63.46%). The median age [years] was 39.5 [34.5-49.8] and 47 [40.0-55.0] in the HD and LD groups, respectively. Significant differences were observed in age (p = 0.028), body weight (p = 0.014) and height (p = 0.001) between the study groups. Considering the BMI, statistically significant differences were not found (p = 0.496). The median 25(OH)D concentration [ng/mL] increased from 23.023 [15.578-25.76] in the HD group and 28.318 [20.644-32.232] in the LD group to 29.819 [24.937-38.064] and 30.837 [25.382-36.789], respectively (p < 0.01), and the increase was significantly higher in the HD group (p = 0.01). Hypovitaminosis D was found in most patients (71.2%) initially, and serum VitD levels were still <30.0 ng/mL in 46.2% of the participants at the follow-up. A significant increase in the levels of IL-4, IL-6, IL-17A, IL-22, IL-23 and TNF -α [pg/mL] and a decrease in IL-10 levels were reported during the study (p < 0.01). A significant positive correlation was observed between 25(OH)D serum levels and sCD40L (R = 0.33; p < 0.05) and TNF-α (R = 0.28; p < 0.05), and a significant negative correlation was reported between 25(OH)D and IL-23 (R = -0.32; p < 0.01) at the beginning of the study. (4) Conclusions: In RRMS patients, the doses of VitD were probably too low to induce beneficial effects on inflammation. Further studies are warranted to determine the effect of VitD supplementation on inflammatory markers in MS patients.
Collapse
Affiliation(s)
- Martyna Lis
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (M.A.-S.)
| | - Natalia Niedziela
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (M.A.-S.)
| | - Jowita Adamczyk-Zostawa
- Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Krzysztof Wierzbicki
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (M.A.-S.)
| | - Zenon Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Jolanta Zalejska-Fiolka
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Wojciech Bartman
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (M.A.-S.)
| | - Agata Świętek
- Silesia LabMed Research and Implementation Center, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland;
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (M.A.-S.)
| |
Collapse
|
9
|
Habean ML, Kaiser KE, Williams JL. Orchestrating Stress Responses in Multiple Sclerosis: A Role for Astrocytic IFNγ Signaling. Int J Mol Sci 2024; 25:7524. [PMID: 39062765 PMCID: PMC11276796 DOI: 10.3390/ijms25147524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease that is characterized by the infiltration of peripheral immune cells into the central nervous system (CNS), secretion of inflammatory factors, demyelination, and axonal degeneration. Inflammatory mediators such as cytokines alter cellular function and activate resident CNS cells, including astrocytes. Notably, interferon (IFN)γ is a prominent pleiotropic cytokine involved in MS that contributes to disease pathogenesis. Astrocytes are dynamic cells that respond to changes in the cellular microenvironment and are highly responsive to many cytokines, including IFNγ. Throughout the course of MS, intrinsic cell stress is initiated in response to inflammation, which can impact the pathology. It is known that cell stress is pronounced during MS; however, the specific mechanisms relating IFNγ signaling to cell stress responses in astrocytes are still under investigation. This review will highlight the current literature regarding the impact of IFNγ signaling alone and in combination with other immune mediators on astrocyte synthesis of free oxygen radicals and cell death, and cover what is understood regarding astrocytic mitochondrial dysfunction and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Maria L. Habean
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195, USA
| | - Kaitlin E. Kaiser
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195, USA
| | - Jessica L. Williams
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195, USA
| |
Collapse
|
10
|
Arneth B. Current Knowledge about Nonclassical Monocytes in Patients with Multiple Sclerosis, a Systematic Review. Int J Mol Sci 2024; 25:7372. [PMID: 39000478 PMCID: PMC11242477 DOI: 10.3390/ijms25137372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Monocytes play a critical role in the initiation and progression of multiple sclerosis (MS). Recent research indicates the importance of considering the roles of monocytes in the management of MS and the development of effective interventions. This systematic review examined published research on the roles of nonclassical monocytes in MS and how they influence disease management. Reputable databases, such as PubMed, EMBASE, Cochrane, and Google Scholar, were searched for relevant studies on the influence of monocytes on MS. The search focused on studies on humans and patients with experimental autoimmune encephalomyelitis (EAE) published between 2014 and 2024 to provide insights into the study topic. Fourteen articles that examined the role of monocytes in MS were identified; the findings reported in these articles revealed that nonclassical monocytes could act as MS biomarkers, aid in the development of therapeutic interventions, reveal disease pathology, and improve approaches for monitoring disease progression. This review provides support for the consideration of monocytes when researching effective diagnostics, therapeutic interventions, and procedures for managing MS pathophysiology. These findings may guide future research aimed at gaining further insights into the role of monocytes in MS.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Hospital of the Universities of Giessen and Marburg, UKGM, Philipps University Marburg, Baldingerst 1, 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Hospital of the Universities of Giessen and Marburg, UKGM, Justus Liebig University Giessen, Feulgenstr 12, 35392 Giessen, Germany
| |
Collapse
|
11
|
Shadab A, Abbasi-Kolli M, Yazdanpanah E, Esmaeili SA, Baharlou R, Yousefi B, Haghmorad D. Exploring the immune-modulating properties of boswellic acid in experimental autoimmune encephalomyelitis. APMIS 2024; 132:452-464. [PMID: 38563150 DOI: 10.1111/apm.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Multiple sclerosis (MS) is a condition where the central nervous system loses its myelin coating due to autoimmune inflammation. The experimental autoimmune encephalomyelitis (EAE) simulates some aspects of human MS. Boswellic acids are natural compounds derived from frankincense extract, known for their anti-inflammatory properties. The purpose of this research was to investigate therapeutic potential of boswellic acids. Mice were divided into three groups: low-dose (LD), high-dose (HD), and control groups (CTRL). Following EAE induction, the mice received daily doses of boswellic acid for 25 days. Brain tissue damage, clinical symptoms, and levels of TGF-β, IFN-γ, and IL-17 cytokines in cell cultured supernatant of lymphocytes were assessed. Gene expression of transcription factors in brain was measured using real-time PCR. The levels of brain demyelination were significantly lower in the treatment groups compared to the CTRL group. Boswellic acid reduced the severity and duration of EAE symptoms. Furthermore, boswellic acid decreased the amounts of IFN-γ and IL-17, also the expression of T-bet and ROR-γt in brain. On the contrary, it increased the levels of TGF-β and the expression FoxP3 and GATA3. Our findings suggest that boswellic acids possess therapeutic potential for EAE by modulating the immune response and reducing inflammation.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Triterpenes/pharmacology
- Triterpenes/therapeutic use
- Mice
- Female
- Mice, Inbred C57BL
- Brain/drug effects
- Brain/pathology
- Brain/metabolism
- Brain/immunology
- Cytokines/metabolism
- Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta/genetics
- Immunomodulating Agents/pharmacology
- Immunomodulating Agents/therapeutic use
- Interleukin-17/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
Collapse
Affiliation(s)
- Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Deputy of Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Esmaeil Yazdanpanah
- Immunology Research Center, and Department of Immunology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, and Department of Immunology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rasoul Baharlou
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|