1
|
Wagner K, Davidovich-Pinhas M. Dual functionality of diacylglycerols in water-in-oil emulsion gel systems. Colloids Surf B Biointerfaces 2024; 236:113810. [PMID: 38430828 DOI: 10.1016/j.colsurfb.2024.113810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Distearin (DS) can be used as an emulsifier, due to its surface activity derived from the amphiphilic nature of the molecule, moreover, it can also crystallize and form a 3D crystal network that can induce oil gelation. The current research aimed to examine the ability to combine both emulsifying and oil gelation properties to structure and stabilize water-in-oil emulsion gel system. Different water contents and DS concentrations produce emulsion gels with different textural attributes while incorporating up to 30% of water in a 15% wt. DS-based oleogel resulted in stable white gels. Microscopy imaging confirmed the formation of a water-in-oleogel type emulsion gel characterized by DS crystallization in the continuous phase and at the interface through Pickering mechanism. A positive relation was observed between the G' and hardness values and water content, suggesting gel strengthening resulted from interactions between the DS crystals at the interface and the continuous phase, as suggested by the active filler theory. Thermal analysis revealed two broad melting events at the temperature range of 42.2-44.9 °C and 55.9-58.6 °C for emulsion gels with 10-30% water content, suggesting initial melting of β' polymorph and transition to β during melting, which was confirmed by XRD. The results showed that homogenization significantly improved the oil retention of the gels due to increased crystal surface area, while water addition slightly reduced it. Compared with traditional emulsions or oleogels, this water-in-oil gel system demonstrated prolonged stability and enhanced mechanical properties due to the dual functionality of DS at the water/oil interface and bulk.
Collapse
Affiliation(s)
- Karin Wagner
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Maya Davidovich-Pinhas
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
2
|
Ramezani M, Salvia-Trujillo L, Martín-Belloso O. Modulating edible-oleogels physical and functional characteristics by controlling their microstructure. Food Funct 2024; 15:663-675. [PMID: 38108083 DOI: 10.1039/d3fo03491g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The influence of co-oleogelators like lecithin or hydrogenated lecithin together with the addition of dispersed water droplets to modulate the microstructure and thus the physical properties of glyceryl stearate (GS)-corn oil oleogels was investigated by thermal profile, microstructure, hardness, and oil binding capacity (OBC). The addition of β-carotene (βC) was also assessed. With lecithin, crystallization and melting temperatures were reduced, resulting in less-ordered crystal networks with a lower hardness and OBC, while with hydrogenated lecithin, the opposite effect was observed. In the presence of water, oleogels became harder but more brittle. Finally, βC acted as a crystal modifier increasing the hardness and OBC in the presence of lecithin, but decreased these parameters in hydrogenated lecithin-containing and water-filled oleogels. This study provides a better understanding on how the composition of GS-based oleogels can affect their physical properties.
Collapse
Affiliation(s)
- Mohsen Ramezani
- Department of Food Technology, Engineering and Science. University of Lleida, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain.
- Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Laura Salvia-Trujillo
- Department of Food Technology, Engineering and Science. University of Lleida, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain.
- Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Olga Martín-Belloso
- Department of Food Technology, Engineering and Science. University of Lleida, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain.
- Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| |
Collapse
|
3
|
Shu M, Zhou Y, Liu Y, Fan L, Li J. Sucrose Esters and Beeswax Synergize to Improve the Stability and Viscoelasticity of Water-in-Oil Emulsions. Foods 2023; 12:3387. [PMID: 37761096 PMCID: PMC10529963 DOI: 10.3390/foods12183387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
W/O emulsions are commonly used to prepare stable low-fat products, but their poor stability limits widespread applications. In this study, sucrose ester (SE) and beeswax were utilized to prepare an oil dispersion system in rapeseed oil, which was used as the external oil phase to further synergistically construct the W/O emulsion systems. The results show that spherical and fine crystals are formed under the synergistic effect of SE and BW (1.5 SE:0.5 BW). In this state, a dense interfacial crystal layer was easily formed, preventing droplet aggregation, leading to droplet size reduction (1-2 μm) and tight packing, improving viscoelasticity and resistance to deformation, and increasing the recovery rate (52.26%). The long-term stability of W/O emulsions containing up to 60 wt% water was found to be more than 30 days. The increase in the aqueous phase led to droplet aggregation, which increased the viscosity (from 400 Pa·s to 2500 Pa·s), improved the structural strength of the emulsion, and increased the width of the linear viscoelastic region (from 1% strain to 5% strain). These findings provide some technical support for the further development of stable low-fat products.
Collapse
Affiliation(s)
| | | | | | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.S.); (Y.Z.); (Y.L.)
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.S.); (Y.Z.); (Y.L.)
| |
Collapse
|
4
|
Perța-Crișan S, Ursachi CȘ, Chereji BD, Tolan I, Munteanu FD. Food-Grade Oleogels: Trends in Analysis, Characterization, and Applicability. Gels 2023; 9:gels9050386. [PMID: 37232978 DOI: 10.3390/gels9050386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Currently, a large number of scientific articles can be found in the research literature in the field focusing on the use of oleogels for food formulation to improve their nutritional properties. The present review focuses on the most representative food-grade oleogels, highlighting current trends in terms of the most suitable methods of analysis and characterization, as well as trends in their application as substitutes for saturated and trans fats in foods. For this purpose, the physicochemical properties, structure, and composition of some oleogelators are primarily discussed, along with the adequacy of oleogel incorporation for use in edible products. Analysis and characterization of oleogels by different methods are important in the formulation of innovative foods, and therefore, this review discusses the most recent published results regarding their microstructure, rheological and textural properties, and oxidative stability. Last but not least, issues related to the sensory properties of oleogel-based foods are discussed, highlighting also the consumer acceptability of some of them.
Collapse
Affiliation(s)
- Simona Perța-Crișan
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| | - Claudiu-Ștefan Ursachi
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| | - Bianca-Denisa Chereji
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| | - Iolanda Tolan
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| |
Collapse
|
5
|
da Silva RC, Ferdaus MJ, Foguel A, da Silva TLT. Oleogels as a Fat Substitute in Food: A Current Review. Gels 2023; 9:gels9030180. [PMID: 36975629 PMCID: PMC10048032 DOI: 10.3390/gels9030180] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Fats and oils in food give them flavor and texture while promoting satiety. Despite the recommendation to consume predominantly unsaturated lipid sources, its liquid behavior at room temperature makes many industrial applications impossible. Oleogel is a relatively new technology applied as a total or partial replacement for conventional fats directly related to cardiovascular diseases (CVD) and inflammatory processes. Some of the complications in developing oleogels for the food industry are finding structuring agents Generally Recognized as Safe (GRAS), viable economically, and that do not compromise the oleogel palatability; thus, many studies have shown the different possibilities of applications of oleogel in food products. This review presents applied oleogels in foods and recent proposals to circumvent some disadvantages, as reaching consumer demand for healthier products using an easy-to-use and low-cost material can be intriguing for the food industry.
Collapse
Affiliation(s)
- Roberta Claro da Silva
- Family and Consumer Sciences Department, College of Agriculture and Environmental Sciences (CAES), North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Md. Jannatul Ferdaus
- Family and Consumer Sciences Department, College of Agriculture and Environmental Sciences (CAES), North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Aline Foguel
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | | |
Collapse
|
6
|
Shu M, Fan L, Zhang J, Li J. Research progress of water-in-oil emulsion gelated with internal aqueous phase: gel factors, gel mechanism, application fields, and future direction of development. Crit Rev Food Sci Nutr 2023; 64:6055-6072. [PMID: 36591896 DOI: 10.1080/10408398.2022.2161994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The W/O emulsion is a promising system. Its special structure can keep the sensory properties of fat while reducing the fat content. Improving the stability and physical properties of W/O emulsions is generally oriented toward outer oil-phase modified oil gels and inner water-phase modified inner hydrogels. In this paper, the research progress of internal aqueous gel was reviewed, and some gel factors suitable for internal aqueous gel and the gel mechanism of main gel factors were discussed. The advantages of this internal aqueous gel emulsion system allow its use in the field of fat substitutes and encapsulating substances. Finally, some shortcomings and possible research directions in the future were proposed, which would provide a theoretical basis for the further development of internal water-phase gelled W/O emulsion in the future.
Collapse
Affiliation(s)
- Mingjun Shu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiaxiang Zhang
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Jinan, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Airoldi R, da Silva TLT, Ract JNR, Foguel A, Colleran HL, Ibrahim SA, da Silva RC. Potential use of carnauba wax oleogel to replace saturated fat in ice cream. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Rafaela Airoldi
- Agri‐Food Industry, Food & Nutrition Department, “Luiz de Queiroz” College of Agriculture (ESALQ) University of São Paulo Piracicaba Brazil
| | | | - Juliana Neves Rodrigues Ract
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences University of Sao Paulo Brazil
| | - Aline Foguel
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences University of Sao Paulo Brazil
| | - Heather L. Colleran
- Family and Consumer Sciences Department, College of Agriculture and Environmental Sciences (CAES) North Carolina A&T State University Greensboro North Carolina USA
| | - Salam A. Ibrahim
- Family and Consumer Sciences Department, College of Agriculture and Environmental Sciences (CAES) North Carolina A&T State University Greensboro North Carolina USA
| | - Roberta Claro da Silva
- Family and Consumer Sciences Department, College of Agriculture and Environmental Sciences (CAES) North Carolina A&T State University Greensboro North Carolina USA
| |
Collapse
|
8
|
Tirgarian B, Yadegari H, Bagheri A, Neshagaran E, Mardani M, Farmani J. Reduced-fat chocolate spreads developed by water-in-oleogel emulsions. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Yang S, Saleh AS, Yang Q, Cui X, Duan Y, Xiao Z. Effect of the water and oleogelator content on characteristics and stability of BC-loaded oleogel-based emulsion. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Silva TJ, Barrera‐Arellano D, Badan Ribeiro AP. The impact of fatty acid profile on the physicochemical properties of commercial margarines in Brazil. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thaís Jordânia Silva
- Department of Food Technology, School of Food Engineering, University of Campinas (UNICAMP) Cidade Universitária Zeferino Vaz Campinas Brazil
| | - Daniel Barrera‐Arellano
- Department of Food Technology, School of Food Engineering, University of Campinas (UNICAMP) Cidade Universitária Zeferino Vaz Campinas Brazil
| | - Ana Paula Badan Ribeiro
- Department of Food Technology, School of Food Engineering, University of Campinas (UNICAMP) Cidade Universitária Zeferino Vaz Campinas Brazil
| |
Collapse
|
11
|
Habibi A, Kasapis S, Truong T. Effect of hydrogel particle size embedded into oleogels on the physico-functional properties of hydrogel-in-oleogel (bigels). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Jordânia Silva T, Ramírez-Carrasco P, Romero-Hasler P, Soto-Bustamante E, Barrera-Arellano D, Robert P, Giménez B. Soybean oil organogelled emulsions as oral delivery systems of hydroxytyrosol and hydroxytyrosol alkyl esters. Food Chem 2022; 379:132182. [DOI: 10.1016/j.foodchem.2022.132182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/27/2022]
|
13
|
da Silva TLT, Danthine S. High-intensity Ultrasound as a Tool to Form Water in Oleogels Emulsions Structured by Lipids Oleogelators. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09728-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Su C, Li Y, Zhu J, Gao Y, Li Q, Du S, Yu X. Effect of flaxseed gum on the brittleness of oleogels based on candelilla wax. RSC Adv 2022; 12:30734-30741. [PMID: 36349152 PMCID: PMC9606731 DOI: 10.1039/d2ra04341f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to decrease the brittleness of flaxseed oleogels based on candelilla wax (CLW) in combination with flaxseed gum (FG). Effects of flaxseed gum concentrations (0–0.4%) on the characteristics of flaxseed oleogels including oil binding capacity, textural, thermal, and rheological properties, and crystal polymorphisms were investigated. Higher concentrations (≥0.2%) of FG significantly decreased the textural parameters (e.g., hardness, fracturability) of oleogels (p < 0.05), suggesting that FG could decrease brittleness. Rheological results indicated that all flaxseed oleogels exhibited solid-like characteristics because the elastic modulus was larger than the viscous modulus. The elastic modulus of flaxseed oleogels presented a maximum value at 0.1% gum concentration. Any increase in gum concentration beyond this concentration decreased the elastic modulus. Increasing FG concentration up to 0.4% decreased the enthalpy of flaxseed oleogels during the melting process. The β′-polymorphic form is an orthorhombic perpendicular (O⊥) subcell structure. Similar β′ crystal forms were observed among flaxseed oleogels, indicating that FG did not affect them negatively. The study showed that the physical properties of flaxseed oleogels based on CLW could be significantly changed by FG addition. These results provided a deeper comprehension of the novel system, which should be considered a new way to obtain healthy fats with better plasticity for food applications. Oleogels using candelilla wax as a gelling agent and flaxseed gum as a structural modifier: preparation and characterization.![]()
Collapse
Affiliation(s)
- Caihong Su
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, P. R. China
| | - Yancai Li
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, P. R. China
| | - Jiabin Zhu
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, P. R. China
| | - Yuan Gao
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, P. R. China
| | - Qi Li
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, P. R. China
| | - Shuangkui Du
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, P. R. China
| | - Xiuzhu Yu
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, P. R. China
| |
Collapse
|
15
|
Liao Z, Guo S, Lu M, Xiao J, Cao Y, Lan Y. Tailoring Water-Induced Multi-Component (Ceramide and Lecithin) Oleogels: Influence of Solute Added in Water. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09702-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Hong X, Zhao Q, Liu Y, Li J. Recent advances on food-grade water-in-oil emulsions: Instability mechanism, fabrication, characterization, application, and research trends. Crit Rev Food Sci Nutr 2021; 63:1406-1436. [PMID: 34387517 DOI: 10.1080/10408398.2021.1964063] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to their promising application prospects, water-in-oil (W/O) emulsions have aroused continuous attention in recent years. However, long-term stability of W/O emulsions remains a particularly challenging problem in colloid science. With the increasing demand of consumers for natural, green, and healthy foods, the heavy reliance on chemically synthesized surfactants to achieve long-term stability has become the key technical defect restricting the application of W/O emulsions in food. To design and manufacture W/O emulsions with long-term stability and clean label, a comprehensive understanding of the fundamentals of the W/O emulsion system is required. This review aims to demystify the field of W/O emulsions and update its current research progress. We first provide a summary on the essential basic knowledge regarding the instability mechanisms, including physical and chemical instability in W/O emulsions. Then, the formulation of the W/O emulsion system is introduced, particularly focusing on the use of natural stabilizers. Besides, the characterization and application of W/O emulsions are also discussed. Finally, we propose promising research trends, including (1) developing W/O high internal phase emulsions (HIPEs) as fat mimetic and substitute, (2) promising formulation routine for long-term stable double emulsions, and (3) searching for novel plant-derived stabilizers of W/O emulsions.
Collapse
Affiliation(s)
- Xin Hong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Qiaoli Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
17
|
Silva TJ, Barrera-Arellano D, Ribeiro APB. Oleogel-based emulsions: Concepts, structuring agents, and applications in food. J Food Sci 2021; 86:2785-2801. [PMID: 34160057 DOI: 10.1111/1750-3841.15788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/23/2021] [Accepted: 05/02/2021] [Indexed: 01/03/2023]
Abstract
This review discusses the application of oleogel technology in emulsified systems. In these systems of mimetic fats, water-in-oil or oil-in-water emulsions can be obtained, but, here, we cover emulsions with an oil continuous phase in detail. Depending on the percentage of water added to the oleogels, systems with different textures and rheological properties can be developed. These properties are affected by the characteristics and concentration of the added components and emulsion preparation methods. In addition, some gelators exhibit interfacial properties, resulting in more stable emulsions than those of conventional emulsions. Oleogel-based emulsion are differentiated by continuous and dispersed phases and the structuring/emulsification components. Crucially, these emulsions could be applied by the food industry for preparing, for example, meat products and margarines, as well as by the cosmetics industry. We present the different processes of emulsion elaboration, the main gelators used, the influence of the water content on the structuring of water-in-oleogel emulsions, and the structuring mechanisms (Pickering, network, and combined Pickering and network stabilization). Finally, we highlight the applications of these systems as alternatives for reducing processed food lipid content and saturated fat levels.
Collapse
Affiliation(s)
- Thais J Silva
- Laboratory of Oils and Fats, Department of Food Technology, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Daniel Barrera-Arellano
- Laboratory of Oils and Fats, Department of Food Technology, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Ana Paula B Ribeiro
- Laboratory of Oils and Fats, Department of Food Technology, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
18
|
Oral Sensitivity to Flowability and Food Neophobia Drive Food Preferences and Choice. FOODS (BASEL, SWITZERLAND) 2021; 10:foods10051024. [PMID: 34066774 PMCID: PMC8150315 DOI: 10.3390/foods10051024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/13/2021] [Accepted: 05/05/2021] [Indexed: 12/02/2022]
Abstract
The study aimed to investigate the role of sensitivity to flowability on food liking and choice, the relationship between sensitivity to flowability and food neophobia, and its role in food liking. Five chocolate creams were prepared with different levels of flowability, and rheological measurements were performed to characterise them. One hundred seventy-six subjects filled in the Food Neophobia Scale and a food choice questionnaire (FCq). The FCq was developed to evaluate preferences within a pair of food items similar in flavour but different in texture. Secondly, the subjects evaluated their liking for creams (labelled affective magnitude (LAM) scale) and the flowability intensity (generalised labelled magnitude (gLM) scale). The subjects were clustered into three groups of sensitivity and two groups of choice preference. The effect of individual flowability sensitivity on food choice was investigated. Finally, the subjects were clustered into two groups according to their food neophobia level. The sensitivity to flowability significantly affected the liking of chocolate creams and the solid food choice. The liking of chocolate creams was also affected by the individual level of neophobia (p = 0.01), which, in turn, was not correlated to flowability sensitivity. These results confirm that texture sensitivity and food neophobia affect what a person likes and drives what a person chooses to eat.
Collapse
|
19
|
Wijarnprecha K, de Vries A, Sonwai S, Rousseau D. Water-in-Oleogel Emulsions—From Structure Design to Functionality. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.566445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of water-in-oleogel (W/Og) emulsions is highlighted, with focus placed on the key properties dictating the structuring ability of both the continuous oleogelled and dispersed phases present. The gelling ability of oleogelators is distinguished by the formation of crystalline structures, polymeric strands, or tubules. Once a dispersed aqueous phase is introduced, droplet stabilization may occur via oleogelator adsorption onto the surface of the dispersed droplets, the formation of a continuous gel network, or a combination of both. Surface-active species (added or endogenous) are also required for effective W/Og aqueous phase dispersion and stabilization. Processing conditions, namely temperature-time-shear regimes, are also discussed given their important role on dispersed droplet and oleogel network formation. The effects of many factors on W/Og emulsion formation, rheology, and stability remain virtually unknown, particularly the role of dispersed droplet size, gelation, and clustering as well as the applicability of the active filler concept to foods. This review explores some of these factors and briefly mentions possible applications of W/Og emulsions.
Collapse
|
20
|
Qi W, Li T, Zhang Z, Wu T. Preparation and characterization of oleogel-in-water pickering emulsions stabilized by cellulose nanocrystals. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106206] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Organogels in low-fat and high-fat margarine: A study of physical properties and shelf life. Food Res Int 2020; 140:110036. [PMID: 33648262 DOI: 10.1016/j.foodres.2020.110036] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 11/21/2022]
Abstract
This study aimed to investigate the effect of the addition of organogels in low-fat and high-fat margarines during storage. Margarine formulations were made using water: oil ratios of 65:35 and 40:60 (w/w), and a lipid phase composed of organogel made with soybean oil, candelilla wax, fully hydrogenated palm oil, and mononoacylglycerols. The thermal stability, particle size, consistency, peroxide index, oil exudation, and microstructure of the margarines were evaluated for six months of storage. All margarines showed thermal stability at 35 °C, with no physical destabilization during the period studied. Both low-fat and high-fat margarines presented similar particle size distribution, with d3.3 around units of 5 μm. The peroxide index of the margarines ranged from 1.27 to 5.97 meq O2/Kg after six months of storage. High-fat margarines showed greater hardness and lower spreadability. The amount of water added to the formulations affected the stability, particle size, and texture of the margarines. It was possible to produce margarines with different fat contents and greater health appeal. The margarines with 60% and 35% fat exhibited 12.00 and 8.03% SFA; 32.63 and 18.20% PUFA; and 14.37 and 8.20% MUFA, respectively.
Collapse
|
22
|
Guo S, Lv M, Chen Y, Hou T, Zhang Y, Huang Z, Cao Y, Rogers M, Lan Y. Engineering water-induced ceramide/lecithin oleogels: understanding the influence of water added upon pre- and post-nucleation. Food Funct 2020; 11:2048-2057. [PMID: 32159192 DOI: 10.1039/c9fo02540e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A mixture of ceramide (CER) and lecithin (LEC) at specific ratios was capable of forming oleogels in sunflower oil triggered by adding a trace amount of water. It was noted that the addition of water at different temperatures (TW) resulted in different gelation behaviors and microstructures. To better illuminate the assembly mechanism at different TW, samples with water added at different TW (20 °C, 45 °C, 70 °C and 95 °C) were prepared. The viscoelastic properties, microstructures, and the crystal packing of these samples were investigated. It was observed that all samples prepared at TW of 20 °C and 95 °C formed gels, while most samples prepared at TW of 45 °C and 70 °C were too weak to form gels. Gels prepared at 95 °C were stronger but more fragile in texture compared to gels produced at 20 °C. The crystal morphology of gels drastically changed with TW. Spindle-shaped crystals were observed in gels prepared at low TW (20 °C), while gels prepared at high TW (95 °C) exhibited a network with packed oil droplets stabilized by lamellar shells together with fibrillar crystals in the bulk phase. X-ray diffractograms showed a different reflection peak (d-spacing of 14.5 Å) in gel prepared at 20 °C, compared to the d-spacing in oleogels with a single gelator (13.14 Å and 15.33 Å, respectively, for CER and LEC). Gel prepared at 95 °C showed two long-spacing characteristic peaks, which correspond to the characteristic peaks of CER gel (∼13 Å) and LEC gel (∼12 Å). Fourier transform infrared spectroscopy results indicated that the different gelation behaviors at different TW were mainly caused by vibrational changes in the amide bond of CER. Our hypothesized assembly mechanism can be concluded as: increasing TW resulted in the conversion of CER and LEC crystallization from co-assembly (TW = 20 °C) to self-sorting by individual gelators (TW = 95 °C). In this study, novel water-induced oleogels were produced by manipulating TW, and such information further assists the rational design of lipid-based healthy fat products.
Collapse
Affiliation(s)
- Shenglan Guo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P.R. China
| | - Muwen Lv
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P.R. China
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P.R. China
| | - Tao Hou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China. and Research and Development Centre, Infinitus (China) Company Ltd., Guangzhou, Guangdong 510623, P.R. China
| | - Yumeng Zhang
- Monte Vista Christian School, Watsonville, CA 95076, USA
| | - Zhaohuai Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P.R. China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P.R. China
| | - Michael Rogers
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
23
|
Soleimanian Y, Goli SAH, Shirvani A, Elmizadeh A, Marangoni AG. Wax‐based delivery systems: Preparation, characterization, and food applications. Compr Rev Food Sci Food Saf 2020; 19:2994-3030. [DOI: 10.1111/1541-4337.12614] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/01/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Yasamin Soleimanian
- Department of Food Science and Technology, College of Agriculture Isfahan University of Technology Isfahan Iran
| | - Sayed Amir Hossein Goli
- Department of Food Science and Technology, College of Agriculture Isfahan University of Technology Isfahan Iran
| | - Atefe Shirvani
- Department of Food Science and Technology, College of Agriculture Isfahan University of Technology Isfahan Iran
| | - Ameneh Elmizadeh
- Department of Food Science and Technology, College of Agriculture Isfahan University of Technology Isfahan Iran
| | | |
Collapse
|
24
|
da Silva TLT, Arellano DB, Martini S. Use of High‐Intensity Ultrasound to Change the Physical Properties of Oleogels and Emulsion Gels. J AM OIL CHEM SOC 2019. [DOI: 10.1002/aocs.12215] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Thais Lomonaco Teodoro da Silva
- Department of Food Technology, Faculty of Food EngineeringUniversity of Campinas (Unicamp) PO Box 6121, Cidade Universitária Zeferino Vaz, Campinas‐SP, 13083‐862 Brazil
| | - Daniel Barrera Arellano
- Department of Food Technology, Faculty of Food EngineeringUniversity of Campinas (Unicamp) PO Box 6121, Cidade Universitária Zeferino Vaz, Campinas‐SP, 13083‐862 Brazil
| | - Silvana Martini
- Department of Nutrition, Dietetics and Food ScienceUtah State University Logan UT, 84322 USA
| |
Collapse
|