1
|
Li X, Liu R, Lv X, Alouk I, Chen S, Li W, Miao S, Wang Y, Xu D. Fat substitute in salad dressing: The role of soybean oil body self-aggregates in enhancing texture and rheological property. Food Res Int 2025; 204:115909. [PMID: 39986763 DOI: 10.1016/j.foodres.2025.115909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
Salad dressing have become a popular condiment in many countries. However, their high fat content may contribute to obesity and related health issues. In this study, mild and extensive purification were used to extract soybean oil body (SOB) with different protein compositions, and further modulated the interfacial charge interactions, thereby producing SOB self-aggregates for fat substitute in salad dressing. Mild purification of SOB increased extrinsic protein content, while extensive purification reduced extrinsic protein content. The mild purification system showed the largest particle size and segregated network structure close to the isoelectric point. However, the extensively purified system exhibited a charge reversal from negative to positive, forming a compact network. Both self-aggregates exhibited shear thinning and elastic properties. Increasing SOB self-aggregate concentration enhanced brightness, electrostatic repulsion and steric hindrance in salad dressing. SOB self-aggregates prepared with extensive purification at pH 5.0, formed a dense network structure that facilitated droplet arrangement, thereby imparting optimal viscoelasticity, enhanced interactions, and thixotropic recovery to salad dressing. This work presents a method based on different protein composition and charge modulation for incorporating oil body as ingredients in spreadable condiments without thickener as label-free products.
Collapse
Affiliation(s)
- Xiaoyu Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Rui Liu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, China
| | - Xin Lv
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Ikram Alouk
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Shuai Chen
- School of Public Health, Wuhan University, 430071, China
| | - Wenlu Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, lreland
| | - Yanbo Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Duoxia Xu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
2
|
Li B, Chen Q, Mu L, Liu S, Xiang F, Yang L, Duan S, Li F, Man-Yau Szeto I. Milk fat globule membrane regulates the physicochemical properties and surface composition of infant formula powders by improving the stability of the emulsion. Food Chem 2024; 440:137522. [PMID: 38128430 DOI: 10.1016/j.foodchem.2023.137522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 12/23/2023]
Abstract
The milk fat globules in infant formula (IF) are encapsulated by a component known as milk fat globule membrane (MFGM). However, it is currently unclear whether the improved emulsion stability of MFGM can have a profound effect on the finished IF. Therefore, this study investigated the effects of MFGM on the particle size, stability, rheology, and microstructure of emulsions prepared by dairy ingredients via wet mixing. Further, IF were processed using such emulsions, the physicochemical properties, surface composition of the powders were examined. The results showed that MFGM reduced the particle size of the emulsion, increased the viscosity, and improved the microstructure of the MFGM. Furthermore, MFGM reduced the moisture content of the powder, increased the glass transition temperature, and reduced the presence of surface fat. In conclusion, the addition of MFGM enhance the finished powder stability by improving the emulsion stability prepared during IF manufacturing.
Collapse
Affiliation(s)
- Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Qingxue Chen
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Longkai Mu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Sibo Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Fangqin Xiang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Liu Yang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Sufang Duan
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot 010110, China; Inner Mongolia Yili Industrial Group, Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing 100070, China
| | - Fang Li
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot 010110, China; Inner Mongolia Yili Industrial Group, Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing 100070, China
| | - Ignatius Man-Yau Szeto
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot 010110, China; National Center of Technology Innovation for Dairy, Hohhot 010110, China.
| |
Collapse
|
3
|
Rahim M, Imran M, Khan FA, Al-Asmari F, Mosa OF, Almalki RS, Zongo E. Omega-3-Enriched and Oxidative Stable Mayonnaise Formulated with Spray-Dried Microcapsules of Chia and Fish Oil Blends. ACS OMEGA 2024; 9:8221-8228. [PMID: 38405494 PMCID: PMC10882700 DOI: 10.1021/acsomega.3c08807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/27/2024]
Abstract
There is a growing demand for nutritious food products that contain specific ingredients, such as long-chain polyunsaturated fatty acids (LCPUFAs). In the case of LCPUFAs, protection against lipid peroxidation is difficult, and microencapsulation emerges as an alternative. The aim of this research work is to develop mayonnaise containing spray-dried microcapsules (SDM). Fortified mayonnaise was developed using various treatments such as (T1) incorporating chia seed oil (CSO), (T2) incorporating fish oil (FO), (T3) incorporating blend of chia and fish oil, (T4) incorporating the SDM of CSO, (T5) incorporating the SDM of FO, and (T6) incorporating the SDM of chia and fish oil blend as well as controls. Thereafter, during the 15-day storage period, the fatty acids (FAs) composition, free fatty acids (FFAs), peroxide value (PV), and sensory properties of fortified mayonnaise were examined every 5 days. The overall results showed that the oxidative stability of mayonnaise formulated with SDM has been improved, and it can be used as a fortifying agent in the processing of many food products. Treatments containing SDM of up to 4% did not differ from the control in sensory analysis. Sensory scores of SDM samples showed a slight decrease in off-flavor scores and were in an acceptable range. Therefore, SDM developed from CSO and FO blends can be recommended for supplementation in different food products for long-time storage.
Collapse
Affiliation(s)
- Muhammad
Abdul Rahim
- Department
of Food Science & Nutrition, Faculty of Medicine and Allied Health
Sciences, Times Institute, Multan 60700, Pakistan
- Department
of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Department
of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Faima Atta Khan
- Department
of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
- University
Institute of Diet & Nutritional Sciences, The University of Lahore, Sargodha Campus, Punjab 40100, Pakistan
| | - Fahad Al-Asmari
- Department
of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia
| | - Osama F. Mosa
- Public
Health Department, Health Sciences College at Lieth, Umm Al-Qura University, Makkah 24231, Saudi Arabia
| | - Riyadh S. Almalki
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Umm AL-Qura University, KSA, Makkah 21421, Saudi Arabia
| | - Eliasse Zongo
- Laboratoire
de Recherche et d’Enseignement en Santé et Biotechnologies
Animales, Université Nazi BONI, Bobo Dioulasso 01 BP 1091, Burkina Faso
| |
Collapse
|
4
|
Liu X, Sun H, Mu T, Gontard N. Exploring the potential of potato products: Puree and cellulose nanofibers, to improve the nutritional value of mayonnaise. Food Chem 2023; 437:137864. [PMID: 39491251 DOI: 10.1016/j.foodchem.2023.137864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
This study aimed to prepare fat-reduced mayonnaise (FRM) using potato puree (PP) and cellulose nanofiber suspension (CNFS, 1.5% w/v) as fat replacer and nutrient supplement, to explore the potential of potato products. Compared with commercial mayonnaise, the texture and rheology of FRMs improved significantly. The optimal formulation of FRM (O-FRM) was selected, and the content of CNFS-PP mixture (the ratio of CNFS and PP was 10:90), corn oil, egg yolk, vinegar, sugar, and salt was 40.0%, 35.0%, 16.0%, 3.5%, 3.0%, and 2.5% (w/w), respectively. O-FRM displayed similar color with commercial full-fat mayonnaise (C-FFM). Its protein and dietary fiber contents were higher than C-FFM and commercial low-fat mayonnaise (C-LFM). Its oil content and energy were lower than C-FFM. Meanwhile, its total acceptability was lower than C-FFM but higher than C-LFM. Overall, CNFS and PP are promising for improving the nutritional quality while maintaining desirable textural and sensorial attributes of mayonnaise.
Collapse
Affiliation(s)
- Xiaowen Liu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| | - Nathalie Gontard
- JRU IATE 1208, INRAE, Montpellier SupAgro, University of Montpellier, CEDEX 02, 34060 Montpellier, France
| |
Collapse
|
5
|
Jia J, Tian L, Song Q, Liu X, Rubert J, Li M, Duan X. Investigation on physicochemical properties, sensory quality and storage stability of mayonnaise prepared from lactic acid fermented egg yolk. Food Chem 2023; 415:135789. [PMID: 36870213 DOI: 10.1016/j.foodchem.2023.135789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
In this research, the physicochemical properties, sensory quality, and storage stability of mayonnaise prepared from egg yolk fermented for different times (0, 3, 6, and 9 h) have been investigated. Compared with control mayonnaise (3.50 μm and 92.88%), mayonnaise prepared from fermented egg yolk possessed significantly lower particle size (3.32-3.41 μm) and higher emulsion stability (97.26-98.72%). Meanwhile, texture, color, and gas chromatography-mass spectrometry (GC-MS) analysis revealed that the fermented egg yolk significantly enhanced the firmness, consistency and cohesiveness, lightness and redness, and flavor profile of mayonnaise. Sensory evaluation showed that mayonnaise with 3 h-fermented egg yolk exhibited the highest sensory scores. And the microscopic and appearance characteristics revealed that fermented egg yolk endowed mayonnaise with a more stable appearance after 30 days of storage. These results indicated that lactic acid fermentation of egg yolk is a feasible way to improve consumer acceptability and shelf life of mayonnaise.
Collapse
Affiliation(s)
- Jie Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | | | - Qi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Josep Rubert
- Food Quality and Design Group, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Xiang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
6
|
Rajasekaran B, Singh A, Ponnusamy A, Patil U, Zhang B, Hong H, Benjakul S. Ultrasound treated fish myofibrillar protein: Physicochemical properties and its stabilizing effect on shrimp oil-in-water emulsion. ULTRASONICS SONOCHEMISTRY 2023; 98:106513. [PMID: 37429184 PMCID: PMC10336788 DOI: 10.1016/j.ultsonch.2023.106513] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/21/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023]
Abstract
Effects of ultrasonication at different amplitudes (40% and 60%) and time (5, 10, and 15 min) on the physicochemical and emulsifying properties of the fish myofibrillar protein (FMP) were investigated. Solubility, surface hydrophobicity, and emulsifying properties were augmented when FMP was subjected to ultrasonication at 40% amplitude for 15 min (p < 0.05). Protein pattern study revealed that augmenting amplitude and duration of ultrasound treatment reduced band intensity of myosin heavy chain. Ultrasound treatment facilitated the adsorption of FMP on oil droplets as indicated by the increases in both adsorbed and interfacial protein contents (p < 0.05). Ultrasound-treated FMP (UFMP) sample showed the alteration in chemical bonds as depicted by Fourier transform infrared (FTIR) spectra. Ultrasound treatment altered the β-sheet and random coil of FMP. During storage for 30 days at 30 °C, UFMP stabilized shrimp oil (SO)-in-water emulsion had higher turbidity but lower d32, d43, and polydispersity index than emulsion stabilized by untreated FMP (p < 0.05). Furthermore, emulsion stabilized by UFMP had lower flocculation and coalescence indices (p < 0.05). Microstructure observation revealed smaller droplet sizes and higher stability of droplets in emulsion stabilized by UFMP. Confocal laser scanning microscopic images demonstrated a monodisperse emulsion stabilized by UFMP. This coincided with higher viscosity and modulus values (G' and G″ ). Emulsion stabilized by UFMP exhibited viscous, shear-thinning, and non-Newtonian behavior and no phase separation occurred during storage. Therefore, ultrasonication was proven to be a potential method for enhancing the emulsifying properties of FMP and improving the stability of SO-in-water emulsion during prolonged storage.
Collapse
Affiliation(s)
- Bharathipriya Rajasekaran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Arunachalasivamani Ponnusamy
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Umesh Patil
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Bin Zhang
- College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
7
|
Patil U, Gulzar S, Ma L, Zhang B, Benjakul S. Pickering Emulsion Stabilized by Fish Myofibrillar Proteins Modified with Tannic Acid, as Influenced by Different Drying Methods. Foods 2023; 12:foods12071556. [PMID: 37048376 PMCID: PMC10094371 DOI: 10.3390/foods12071556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
A novel food-grade, particles-based Pickering emulsion (PE) was prepared from a marine source. Yellow stripe trevally is an under-utilized species. The use of its muscle protein as solid food-grade particles for the preparation of a Pickering emulsion can be a potential means of obtaining the natural nutritive emulsifier/stabilizer. Fish myofibrillar proteins (FMP) were modified with tannic acid (TA) at varying concentrations (0.125, 0.25, and 0.5%) followed by freeze-drying (FD) or spray-drying (SD). Physicochemical characteristics and emulsifying properties of obtained FMP-TA complexed particles were assessed for structural changes and oil-in-water emulsion stabilization. The addition of TA caused a reduction in surface hydrophobicity and total sulfhydryl content values for either FD-FMP or SD-FMP. Conversely, disulfide bond content was significantly increased, particularly when TA at 0.5% was used (p < 0.05). FTIR, spectrofluorometer, and the protein pattern also confirmed the cross-linking between FMP and TA. SD-FMP modified with 0.5% TA (SD-FMP-0.5TA) rendered the highest emulsifying stability index but had a lowered emulsifying activity index (p < 0.05). Confocal microscopic images, droplet size, and rheological properties revealed that a SD-FMP-0.5TA-stabilized emulsion had higher stability after 45 days of storage than an FD-FMP-0.5TA-stabilized emulsion. Therefore, the SD-FMP-0.5TA complex could be used as a potential food-grade stabilizer/emulsifier for PE with enhanced emulsifying properties.
Collapse
Affiliation(s)
- Umesh Patil
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Saqib Gulzar
- Department of Food Technology, Engineering and Science, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Lukai Ma
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
8
|
Rapid screening of mayonnaise quality using computer vision and machine learning. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01814-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
BREDIKHIN SA, MARTEKHA AN, ANDREEV VN. Research of the rheological properties of mayonnaise with adding pumpkin and rice oils to replace sunflower oil. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.67722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
10
|
BREDIKHIN SA, ANDREEV VN, MARTEKHA AN, TOROPTSEV VV. Research of rheological characteristics of mayonnaise with different varieties of honey added. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.118722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
11
|
Wijayanti I, Prodpran T, Sookchoo P, Nirmal N, Zhang B, Balange A, Benjakul S. Textural, rheological and sensorial properties of mayonnaise fortified with
Asian
sea bass bio‐calcium. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ima Wijayanti
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro‐Industry Prince of Songkla University Hat Yai Thailand
- Department of Fishery Products Technology, Faculty of Fisheries and Marine Science Universitas Diponegoro Semarang Indonesia
| | - Thummanoon Prodpran
- Center of Excellence in Materials and Packaging Innovation, Faculty of Agro‐Industry Prince of Songkla University Hat Yai Thailand
| | - Pornsatit Sookchoo
- Center of Excellence in Materials and Packaging Innovation, Faculty of Agro‐Industry Prince of Songkla University Hat Yai Thailand
| | - Nilesh Nirmal
- Institute of Nutrition Mahidol University Nakhon Pathom Thailand
| | - Bin Zhang
- College of Food and Pharmacy Zhejiang Ocean University Zhoushan People's Republic of China
| | - Amjad Balange
- Department of Postharvest Technology Indian Council of Agricultural Research‐Central Institute of Fisheries Education Mumbai India
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro‐Industry Prince of Songkla University Hat Yai Thailand
| |
Collapse
|
12
|
Yu X, Zhao Y, Sun M, Liu L, Li X, Zhang X, Sun Y, Bora AFM, Li C, Leng Y, Jiang S. Effects of egg yolk lecithin/milk fat globule membrane material ratio on the structure and stability of oil-in-water emulsions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
13
|
Rajasekaran B, Singh A, Zhang B, Hong H, Benjakul S. Changes in emulsifying and physical properties of shrimp oil/soybean oil‐in‐water emulsion stabilized by fish myofibrillar protein during the storage. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202200068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bharathipriya Rajasekaran
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University
| | - Bin Zhang
- College of Food Science and Pharmacy Zhejiang Ocean University
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University
| |
Collapse
|
14
|
Ferreira SM, Santos L. From by-product to functional ingredient: Incorporation of avocado peel extract as an antioxidant and antibacterial agent. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
El-Waseif M, Saed B, Fahmy H, Sabry A, Shaaban H, Abdelgawad M, Amin A, Farouk A. Mayonnaise Enriched with Flaxseed Oil: Omega-3 Fatty Acids Content, Sensory Quality and Stability during the Storage. Foods 2022; 11:foods11152288. [PMID: 35954055 PMCID: PMC9368308 DOI: 10.3390/foods11152288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to produce healthy mayonnaise with a protective effect against cardiovascular diseases, containing omega-3 fatty acids (FA), using flaxseed oil (FXO), which includes a high percentage of alpha-linolenic acid (ALA, C18:3n-3). The mayonnaise was prepared by replacing soybean oil with FXO at 20, 30, and 40% levels. The effect on the organoleptic, physical, and chemical quality was studied compared to a control, prepared only with soybean oil (70%). The oxidative and microbial stability during 12 weeks of storage at 25 and 7 °C was also evaluated. The results showed that the use of FXO in mayonnaise (20, 30, and 40%) led to an increase in TUFA (from 79.37 (control) to 82.48, 85.49, and 87.66%, respectively), particularly in PUFAn-3, due to the rise of ALA (from 6.5 to 18.38, 24.02 and 37.87%, respectively) and a decrease in TSFA (from 20.63 to 17.52, 14.51 and 12.34%, respectively). The panelists did not perceive significant differences in the sensory characteristics of the “new” mayonnaise. A decrease in the oxidation rates of the “new” mayonnaise during the storage period was observed. A significant effect on microbial growth was not reported, although the permissible limits were not exceeded after 12 weeks of storage, even at 25 °C.
Collapse
Affiliation(s)
- Mohammed El-Waseif
- Food Science and Technology Department, Faculty of Agricultural, Al-Azhar University, Cairo 11651, Egypt; (M.E.-W.); (B.S.); (H.F.); (A.S.)
| | - Badr Saed
- Food Science and Technology Department, Faculty of Agricultural, Al-Azhar University, Cairo 11651, Egypt; (M.E.-W.); (B.S.); (H.F.); (A.S.)
| | - Hany Fahmy
- Food Science and Technology Department, Faculty of Agricultural, Al-Azhar University, Cairo 11651, Egypt; (M.E.-W.); (B.S.); (H.F.); (A.S.)
| | - Ahmed Sabry
- Food Science and Technology Department, Faculty of Agricultural, Al-Azhar University, Cairo 11651, Egypt; (M.E.-W.); (B.S.); (H.F.); (A.S.)
| | - Hamdy Shaaban
- Flavour and Aroma Chemistry Department, National Research Center, Cairo 12622, Egypt;
| | - Mohamed Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
- Correspondence: (M.A.); (A.F.); Tel.: +966-595435214 (M.A.); +20-1092327777 (A.F.)
| | - Ali Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Amr Farouk
- Flavour and Aroma Chemistry Department, National Research Center, Cairo 12622, Egypt;
- Correspondence: (M.A.); (A.F.); Tel.: +966-595435214 (M.A.); +20-1092327777 (A.F.)
| |
Collapse
|
16
|
Rajasekaran B, Singh A, Nagarajan M, Benjakul S. Effect of chitooligosaccharide and α-tocopherol on physical properties and oxidative stability of shrimp oil-in-water emulsion stabilized by bovine serum albumin-chitosan complex. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Mohammed NK, Ragavan H, Ahmad NH, Hussin ASM. Egg-free low-fat mayonnaise from virgin coconut oil. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2022-1-76-85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Mayonnaise is a widely consumed product all over the world. Nowadays, the number of vegetarians, egg allergy cases, and heart diseases are increasing. This makes manufacturers develop alternatives. The research objective was to select the optimal concentration of emulsifiers for egg-free mayonnaise made from virgin coconut oil.
Study objects and methods. We produced 20 egg-free mayonnaise samples with different amounts of emulsifiers. We also determined physicochemical properties of the samples, as well as performed proximate and statistical analyses.
Results and discussion. The response surface methodology made it possible to define such parameters as viscosity, stability, and firmness as affected by the following concentrations: cashew nut protein isolates – 5–15%, xanthan gum – 0–1%, and modified starch – 0–0.5%. The optimal values of emulsifiers were obtained as follows: cashew nut protein isolates – 13 g, xanthan gum – 1.0 g, and modified starch – 0.4 g. The optimized mayonnaise had the following parameters: viscosity – 120.2 mPa·s, stability – 98.7%, and firmness – 25 g. The study revealed no significant differences (P > 0.05) between the actual and predicted data, which confirmed the efficiency of the suggested models.
Conclusion. The obtained low-fat egg-free mayonnaise was relatively similar to the traditional commercial products. However, virgin coconut oil should be emulsified with a combination of cashew nut protein isolates, modified starch, and xanthan gum.
Collapse
|
18
|
Abdel-Haleem AMH, Omran AA, Hassan HE. Value addition of broken pulse proteins as emulsifying agents. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Aliyari MA, Rezaei K. Improving the Biological Value of Olive and Soybean Oil Blends with Olive Leaf Extract Obtained by Ultrasound-Assisted Extraction towards the Preparation of a Sauce Product. Life (Basel) 2021; 11:life11090974. [PMID: 34575123 PMCID: PMC8471335 DOI: 10.3390/life11090974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 01/18/2023] Open
Abstract
French sauce from different blends of soybean and olive oils was prepared and the oxidative stability of the optimum sauce sample, enriched with various amounts of olive leaf polyphenolic extract (OLE) (obtained via ultrasound-assisted extraction), was investigated over 90 days of storage. The microbiological and sensory properties of the samples containing the optimum amounts of OLE, as a substitution for synthetic preservatives, were studied. According to the results, the addition of olive oil at higher levels (75% and 100%) could affect the physicochemical properties of the sauce as compared to the control sample. It was also found that the addition of olive oil (up to 50%) would not significantly impact the sauce properties. Regarding the OLE enrichment in the samples, it was found that high levels of OLE could improve the oxidative stability of the samples. It was also found that OLE could be used as a preservative instead of commercial ones. Overall, this study suggests the potential use of olive oil and olive leaf extract in the preparation of French sauce to boost its nutritional value and its stability.
Collapse
|
20
|
Raikos V, Hayes H, Ni H. Aquafaba from commercially canned chickpeas as potential egg replacer for the development of vegan mayonnaise: recipe optimisation and storage stability. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Vassilios Raikos
- Rowett Institute University of Aberdeen Foresterhill, Aberdeen AB25 2ZD Scotland, UK
| | - Helen Hayes
- Rowett Institute University of Aberdeen Foresterhill, Aberdeen AB25 2ZD Scotland, UK
| | - He Ni
- Guangdong Provincial Key Lab of Biotechnology for Plant Development School of Life Sciences South China Normal University Guangzhou 510631 China
| |
Collapse
|