1
|
Mahmood MS, Afzal M, Batool H, Saif A, Aqdas T, Ashraf NM, Saleem M. Screening of Pathogenic Missense Single Nucleotide Variants From LHPP Gene Associated With the Hepatocellular Carcinoma: An In silico Approach. Bioinform Biol Insights 2022; 16:11779322221115547. [PMID: 35966807 PMCID: PMC9373111 DOI: 10.1177/11779322221115547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/11/2022] [Indexed: 11/15/2022] Open
Abstract
LHPP gene encodes a phospholysine phosphohistidine inorganic pyrophosphate phosphatase, which functions as a tumor-suppressor protein. The tumor suppression by this protein has been confirmed in various cancers, including hepatocellular carcinoma (HCC). LHPP downregulation promotes cell growth and proliferation by modulating the PI3K/AKT signaling pathway. This study identifies potentially deleterious missense single nucleotide variants (SNVs) associated with the LHPP gene using multiple computational tools based on different algorithms. A total of 4 destabilizing mutants are identified as L22P, I212T, G227R, and G236R, from the conserved region of the phosphatase. The 3-dimensional (3D) modeling and structural comparison of variants with the native protein reveals significant structural and conformational variations after mutations, suggesting disruption in the function of phospholysine phosphohistidine inorganic pyrophosphate phosphatase. The identified mutations might, therefore, participate in the cause of HCC.
Collapse
Affiliation(s)
- Malik Siddique Mahmood
- School of Biochemistry & Biotechnology, University of the Punjab, Lahore, Pakistan.,Department of Biochemistry, NUR International University, Lahore, Pakistan
| | - Maryam Afzal
- School of Biochemistry & Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Hina Batool
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Amara Saif
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Tahreem Aqdas
- School of Biochemistry & Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Naeem Mahmood Ashraf
- Department of Biochemistry & Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Mahjabeen Saleem
- School of Biochemistry & Biotechnology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
2
|
El Harrar T, Davari MD, Jaeger KE, Schwaneberg U, Gohlke H. Critical assessment of structure-based approaches to improve protein resistance in aqueous ionic liquids by enzyme-wide saturation mutagenesis. Comput Struct Biotechnol J 2022; 20:399-409. [PMID: 35070165 PMCID: PMC8752993 DOI: 10.1016/j.csbj.2021.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Ionic liquids (IL) and aqueous ionic liquids (aIL) are attractive (co-)solvents for green industrial processes involving biocatalysts, but often reduce enzyme activity. Experimental and computational methods are applied to predict favorable substitution sites and, most often, subsequent site-directed surface charge modifications are introduced to enhance enzyme resistance towards aIL. However, almost no studies evaluate the prediction precision with random mutagenesis or the application of simple data-driven filtering processes. Here, we systematically and rigorously evaluated the performance of 22 previously described structure-based approaches to increase enzyme resistance to aIL based on an experimental complete site-saturation mutagenesis library of Bacillus subtilis Lipase A (BsLipA) screened against four aIL. We show that, surprisingly, most of the approaches yield low gain-in-precision (GiP) values, particularly for predicting relevant positions: 14 approaches perform worse than random mutagenesis. Encouragingly, exploiting experimental information on the thermostability of BsLipA or structural weak spots of BsLipA predicted by rigidity theory yields GiP = 3.03 and 2.39 for relevant variants and GiP = 1.61 and 1.41 for relevant positions. Combining five simple-to-compute physicochemical and evolutionary properties substantially increases the precision of predicting relevant variants and positions, yielding GiP = 3.35 and 1.29. Finally, combining these properties with predictions of structural weak spots identified by rigidity theory additionally improves GiP for relevant variants up to 4-fold to ∼10 and sustains or increases GiP for relevant positions, resulting in a prediction precision of ∼90% compared to ∼9% in random mutagenesis. This combination should be applicable to other enzyme systems for guiding protein engineering approaches towards improved aIL resistance.
Collapse
Affiliation(s)
- Till El Harrar
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Mehdi D. Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52428 Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- DWI – Leibniz Institute for Interactive Materials e.V., 52074 Aachen, Germany
| | - Holger Gohlke
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Corresponding author at: John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52428 Jülich, Germany.
| |
Collapse
|
3
|
Enhancement of hydrogen peroxide tolerance of lipase LipA from Bacillus subtilis using semi-rational design. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
4
|
Aslam MS, Gull I, Mahmood MS, Iqbal MM, Abbas Z, Tipu I, Ahmed A, Athar MA. High yield expression, characterization, and biological activity of IFNα2-Tα1 fusion protein. Prep Biochem Biotechnol 2019; 50:281-291. [PMID: 31718419 DOI: 10.1080/10826068.2019.1689509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The use of interferon α-2 in combination with thymosin α-1 shows higher anti-cancer effect in comparison when both are used individually because of their synergistic effects. In this study we produced an important human interferon α-2-thymosin α-1 (IFNα2-Tα1) fusion protein with probable pharmaceutical properties coupled to its high-level expression, characterization, and study of its biological activity. The IFNα2-Tα1 fusion gene was constructed by over-lap extension PCR and expressed in Escherichia coli expression system. The expression of IFNα2-Tα1 fusion protein was optimized to higher level and its maximum expression was obtained in modified terrific broth medium when lactose was used as inducer. The fusion protein was refolded into its native biologically active form with maximum yield of 83.14% followed by purification with ∼98% purity and 69% final yield. A band of purified IFNα2-Tα1 fusion protein equal to ∼23 kDa was observed on 12 % SDS-PAGE gel. The integrity of IFNα2-Tα1 fusion protein was confirmed by western blot analysis and secondary structure was assessed by CD spectroscopy. When IFNα2-Tα1 fusion protein was subjected to its biological activity analysis it was observed that it exhibits both IFNα2 & Tα1 activities as well as significantly higher anticancer activity as compared to IFNα-2 alone.
Collapse
Affiliation(s)
| | - Iram Gull
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | | | | | - Zaigham Abbas
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Imran Tipu
- Department of Life Sciences, School of Sciences, University of Management and Technology, Lahore, Pakistan
| | - Aftab Ahmed
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Amin Athar
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
5
|
Mahmood MS, Rasul F, Saleem M, Afroz A, Malik MF, Ashraf NM, Rashid U, Naz S, Zeeshan N. Characterization of recombinant endo-1,4-β-xylanase of Bacillus halodurans C-125 and rational identification of hot spot amino acid residues responsible for enhancing thermostability by an in-silico approach. Mol Biol Rep 2019; 46:3651-3662. [PMID: 31079316 DOI: 10.1007/s11033-019-04751-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022]
Abstract
Increased demand of enzymes for industrial use has led the scientists towards protein engineering techniques. In different protein engineering strategies, rational approach has emerged as the most efficient method utilizing bioinformatics tools to produce enzymes with desired reaction kinetics; physiochemical (temperature, pH, half life, etc) and biological (selectivity, specificity, etc.) characteristics. Xylanase is one of the widely used enzymes in paper and food industry to degrade xylan component present in plant pulp. In this study endo 1,4-β-xylanase (Xyl-11A) from Bacillus halodurans C-125 was cloned in pET-22b (+) vector and expressed in Escherichia coli BL21 (DE3) expression strain. The enzyme had Michaelis constant Km of 1.32 mg ml-1 birchwoodxylan (soluble form) and maximum reaction velocity (Vmax) 73.53 mmol min-1 mg-1 with an optimum temperature of 75 °C and pH 9.0. The thermostability analysis showed that enzyme retained more than 80% of its residual activity when incubated at 75 °C for 2 h. In addition, to increase Xyl-11A thermostability, an in-silico analysis was performedto identify the hot spot amino acid residues. Consensus-based amino acid substitution was applied to evaluate multiple sequence alignment of homologs and identified 20 amino acids positions by following Jensen-Shnnon Divergence method. 3D models of 20 selected mutants were analyzed for conformational transition in protein structures by using NMSim server. Two selected mutants T6K and I17M of Xyl-11A retained 40, 60% residual activity respectively, at 85 °C for 120 min as compared to wild type enzyme which retained 37% initial activity under same conditions, confirming the enhanced thermostability of mutants. The present study showed a good approach for the identification of promising amino acid residues responsible for enhancing the thermostability of enzymes of industrial importance.
Collapse
Affiliation(s)
- Malik Siddique Mahmood
- Institute of Biochemistry and Biotechnology, University of the Punjab, P. O Box No, 54590, Lahore, Pakistan
| | - Faiz Rasul
- Department of Biochemistry and Molecular Biology, University of Science and Technology, Hefei, China
| | - Mahjabeen Saleem
- Institute of Biochemistry and Biotechnology, University of the Punjab, P. O Box No, 54590, Lahore, Pakistan
| | - Amber Afroz
- Department of Biochemistry and Biotechnology, University of Gujrat, P. O Box No. 50700, Gujrat, Pakistan
| | - Muhammad Faheem Malik
- Department of Biochemistry and Biotechnology, University of Gujrat, P. O Box No. 50700, Gujrat, Pakistan
| | - Naeem Mehmood Ashraf
- Department of Biochemistry and Biotechnology, University of Gujrat, P. O Box No. 50700, Gujrat, Pakistan
| | - Umar Rashid
- Department of Biochemistry and Biotechnology, University of Gujrat, P. O Box No. 50700, Gujrat, Pakistan
| | - Shumaila Naz
- Department of Biosciences, University of Gujrat, Gujrat, Pakistan
| | - Nadia Zeeshan
- Department of Biochemistry and Biotechnology, University of Gujrat, P. O Box No. 50700, Gujrat, Pakistan.
| |
Collapse
|
6
|
Identification of Effective Dimeric Gramicidin-D Peptide as Antimicrobial Therapeutics over Drug Resistance: In-Silico Approach. Interdiscip Sci 2018; 11:575-583. [PMID: 30182355 DOI: 10.1007/s12539-018-0304-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/25/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022]
Abstract
Discovering and developing the antimicrobial peptides are recently focused on pharmaceutical firm, since they serve as complementary to antibiotics in prevailing over drug resistance by eliciting the disruption of microbial membrane. Still, there are lots of challenges to bring up the structurally stable and functionally efficient antimicrobial peptides. It is well known that gramicidin D is the prominent antimicrobial peptide that exists as g-AB, g-BC, and g-AC. This study analyzes the structural stability and the functional activity of hetero-dimeric double-stranded gramicidin-D peptides, thereby demonstrating its potent antimicrobial activity against antibiotic-resistant micro-organisms. To investigate the structural stability and functionality of gramicidin D, we performed static and dynamic analysis. Initially, we observed a maximum number of intermolecular interactions and membrane penetration in g-AB as compared to g-BC and g-AC. To substantiate further, the geometrical and thermodynamic parameters revealed the retention of maximum stability in g-AB than g-AC and g-BC. Thus, the conformational free energy and the binding free energy showed the variation among gramicidin-D peptides for the prediction of increased stability and functionality. In conclusion, g-AB peptide has definitely demonstrated adequate structural stability and functionality and this work will need to be considered in peptide-based drug discovery.
Collapse
|
7
|
Senthilkumar B, Meshach Paul D, Srinivasan E, Rajasekaran R. Structural Stability Among Hybrid Antimicrobial Peptide Cecropin A(1–8)–Magainin 2(1–12) and Its Analogues: A Computational Approach. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1240-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Goomber S, Chopra N, Kaur Bedi G, Kaur J. Comparative analysis of point mutations on protein COOH terminal near surface and its hydrophobic core provide insights on thermostability of Bacillus Lipase LipJ. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Effects of point mutations on the thermostability of B. subtilis lipase: investigating nonadditivity. J Comput Aided Mol Des 2016; 30:899-916. [DOI: 10.1007/s10822-016-9978-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/22/2016] [Indexed: 11/26/2022]
|