1
|
Wang S, Wang Y, Hao L, Chen B, Zhang J, Li X, Cao J, Liu B. BOC targets SMO to regulate the Hedgehog pathway and promote proliferation, migration, and invasion of glioma cells. Brain Res Bull 2024; 216:111037. [PMID: 39084569 DOI: 10.1016/j.brainresbull.2024.111037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
The purpose of this study was to investigate the effects of BOC on glioblastoma cells and its underlying mechanisms. In vitro, BOC-knockdown was performed in glioma cell lines. CCK-8 and Transwell were used to assess the impact of BOC on the viability, invasion, and migration of gliobma cells. RNA-seq technology was employed to analyze the differential gene expression between BOC-knockdown glioma cells and the control group, and qRT-PCR was used to validate the expression of downstream differential genes. SMO-overexpression was performed to investigate the effects of SMO on glioma cells. A BOC-knockdown mouse subcutaneous tumor model was to verify the effects of BOC on mouse tumors. Tissue microarray technology was used to detect the expression of BOC and SMO in samples of normal human brain tissue and glioma tissue. In vitro, BOC-knockdown inhibited the viability, invasion, and migration of glioma cells, as well as downregulated the expression of downstream differential genes SMO, EGFR, HRAS, and MRAS. Conversely, SMO-overexpression upregulated the viability, invasion, and migration abilities of BOC-knockdown cells. In vivo, BOC-knockdown suppressed tumor growth in mice and downregulated the expression of downstream differential genes SMO, EGFR, HRAS, and MRAS. Tissue microarray results showed that both BOC and SMO were highly expressed in glioma tissues. BOC is aberrantly overexpressed in glioma patients and promotes glioma development. Mechanistically, BOC activates the Hedgehog (Hh) and RAS signaling pathways by upregulating the expression of SMO, EGFR, HRAS, and MRAS, thereby facilitating the Proliferation, invasion and migration of glioma cells.
Collapse
Affiliation(s)
- Shichao Wang
- Department of Medical Laboratory, Huhhot First Hospital, Hohhot, Inner Mongolia 010020, China
| | - Yanhai Wang
- Department of Medical Laboratory, Huhhot First Hospital, Hohhot, Inner Mongolia 010020, China
| | - Lingfang Hao
- Department of Medical Laboratory, Huhhot First Hospital, Hohhot, Inner Mongolia 010020, China
| | - Bo Chen
- Department of Medical Laboratory, Huhhot First Hospital, Hohhot, Inner Mongolia 010020, China
| | - Jiawei Zhang
- Department of Medical Laboratory, Huhhot First Hospital, Hohhot, Inner Mongolia 010020, China
| | - Xia Li
- Department of Medical Laboratory, Huhhot First Hospital, Hohhot, Inner Mongolia 010020, China
| | - Junwei Cao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Bin Liu
- Department of Neurology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia 010017, China.
| |
Collapse
|
2
|
Zhang J, Liu Y, Wang C, Vander Kooi CW, Jia J. Phosphatidic acid binding to Patched contributes to the inhibition of Smoothened and Hedgehog signaling in Drosophila wing development. Sci Signal 2023; 16:eadd6834. [PMID: 37847757 PMCID: PMC10661859 DOI: 10.1126/scisignal.add6834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
Hedgehog (Hh) signaling controls growth and patterning during embryonic development and homeostasis in adult tissues. Hh binding to the receptor Patched (Ptc) elicits intracellular signaling by relieving Ptc-mediated inhibition of the transmembrane protein Smoothened (Smo). We uncovered a role for the lipid phosphatidic acid (PA) in the regulation of the Hh pathway in Drosophila melanogaster. Deleting the Ptc C-terminal tail or mutating the predicted PA-binding sites within it prevented Ptc from inhibiting Smo in wing discs and in cultured cells. The C-terminal tail of Ptc directly interacted with PA in vitro, an association that was reduced by Hh, and increased the amount of PA at the plasma membrane in cultured cells. Smo also interacted with PA in vitro through a binding pocket located in the transmembrane region, and mutating residues in this pocket reduced Smo activity in vivo and in cells. By genetically manipulating PA amounts in vivo or treating cultured cells with PA, we demonstrated that PA promoted Smo activation. Our findings suggest that Ptc may sequester PA in the absence of Hh and release it in the presence of Hh, thereby increasing the amount of PA that is locally available to promote Smo activation.
Collapse
Affiliation(s)
- Jie Zhang
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Yajuan Liu
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Craig W. Vander Kooi
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jianhang Jia
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
3
|
Mohan M, Mannan A, Singh TG. Therapeutic implication of Sonic Hedgehog as a potential modulator in ischemic injury. Pharmacol Rep 2023:10.1007/s43440-023-00505-0. [PMID: 37347388 DOI: 10.1007/s43440-023-00505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Sonic Hedgehog (SHh) is a homology protein that is involved in the modeling and development of embryonic tissues. As SHh plays both protective and harmful roles in ischemia, any disruption in the transduction and regulation of the SHh signaling pathway causes ischemia to worsen. The SHh signal activation occurs when SHh binds to the receptor complex of Ptc-mediated Smoothened (Smo) (Ptc-smo), which initiates the downstream signaling cascade. This article will shed light on how pharmacological modifications to the SHh signaling pathway transduction mechanism alter ischemic conditions via canonical and non-canonical pathways by activating certain downstream signaling cascades with respect to protein kinase pathways, angiogenic cytokines, inflammatory mediators, oxidative parameters, and apoptotic pathways. The canonical pathway includes direct activation of interleukins (ILs), angiogenic cytokines like hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and hypoxia-inducible factor alpha (HIF-), which modulate ischemia. The non-canonical pathway includes indirect activation of certain pathways like mTOR, PI3K/Akt, MAPK, RhoA/ROCK, Wnt/-catenin, NOTCH, Forkhead box protein (FOXF), Toll-like receptors (TLR), oxidative parameters such as GSH, SOD, and CAT, and some apoptotic parameters such as Bcl2. This review provides comprehensive insights that contribute to our knowledge of how SHh impacts the progression and outcomes of ischemic injuries.
Collapse
Affiliation(s)
- Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
4
|
Jia J, Jiang J. Regulation of Smoothened Trafficking and Abundance in Hedgehog Signaling. Front Cell Dev Biol 2022; 10:847844. [PMID: 35321245 PMCID: PMC8936432 DOI: 10.3389/fcell.2022.847844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/23/2022] [Indexed: 12/02/2022] Open
Abstract
The GPCR-family protein Smoothened (Smo) is essential for Hedgehog (Hh) signal transduction in both insects and vertebrates. The regulation of subcellular localization and abundance of Smo is a critical step in Hh signaling. Recent studies have demonstrated that Smo is subjected to ubiquitination mediated by multiple E3 ubiquitin ligases, leading to Smo endocytosis and subsequent degradation through the proteasome- and lysosome-mediated pathways in Drosophila. Ubiquitination of Smo also promotes its ciliary exit in mammalian cells. Hh inhibits Smo ubiquitination by blocking E3 ligase recruitment and promoting Smo deubiquitination through the ubiquitin-specific protease 8 (USP8) in Drosophila. Inhibition of Smo ubiquitination by Hh promotes Smo cell surface accumulation in Drosophila and ciliary accumulation in mammalian cells. Interestingly, Hh also induces sumoylation of Smo in both Drosophila and mammalian cells, which promotes Smo cell surface/ciliary accumulation. This review focuses on how ubiquitination and sumoylation regulate Smo intracellular trafficking and abundance and how these processes are regulated by Hh.
Collapse
Affiliation(s)
- Jianhang Jia
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jin Jiang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
5
|
Kotulak-Chrząszcz A, Kmieć Z, Wierzbicki PM. Sonic Hedgehog signaling pathway in gynecological and genitourinary cancer (Review). Int J Mol Med 2021; 47:106. [PMID: 33907821 PMCID: PMC8057295 DOI: 10.3892/ijmm.2021.4939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/10/2021] [Indexed: 01/07/2023] Open
Abstract
Cancers of the urinary tract, as well as those of the female and male reproductive systems, account for a large percentage of malignancies worldwide. Mortality is frequently affected by late diagnosis or therapeutic difficulties. The Sonic Hedgehog (SHH) pathway is an evolutionary conserved molecular cascade, which is mainly associated with the development of the central nervous system in fetal life. The present review aimed to provide an in‑depth summary of the SHH signaling pathway, including the characterization of its major components, the mechanism of its upstream regulation and non‑canonical activation, as well as its interactions with other cellular pathways. In addition, the three possible mechanisms of the cellular SHH cascade in cancer tissue are discussed. The aim of the present review was to summarize significant findings with regards to the expression of the SHH pathway components in kidney, bladder, ovarian, cervical and prostate cancer. Reports associated with common deficits and de‑regulations of the SHH pathway were summarized, despite the differences in molecular and histological patterns among these malignancies. However, currently, neither are SHH pathway elements included in panels of prognostic/therapeutic molecular patterns in any of the discussed cancers, nor have the drugs targeting SMO or GLIs been approved for therapy. The findings of the present review may support future studies on the treatment of and/or molecular targets for gynecological and genitourinary cancers.
Collapse
Affiliation(s)
| | | | - Piotr M. Wierzbicki
- Correspondence to: Dr Piotr M. Wierzbicki, Department of Histology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80211 Gdansk, Poland, E-mail:
| |
Collapse
|
6
|
Jiang W, Yao X, Shan Z, Li W, Gao Y, Zhang Q. E3 ligase Herc4 regulates Hedgehog signalling through promoting Smoothened degradation. J Mol Cell Biol 2020; 11:791-803. [PMID: 30925584 PMCID: PMC7261483 DOI: 10.1093/jmcb/mjz024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/24/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022] Open
Abstract
Hedgehog (Hh) signalling plays conserved roles in controlling embryonic development; its dysregulation causes many diseases including cancers. The G protein-coupled receptor Smoothened (Smo) is the key signal transducer of the Hh pathway, whose posttranslational regulation has been shown to be critical for its accumulation and activation. Ubiquitination has been reported an essential posttranslational regulation of Smo. Here, we identify a novel E3 ligase of Smo, Herc4, which binds to Smo, and regulates Hh signalling by controlling Smo ubiquitination and degradation. Interestingly, our data suggest that Herc4-mediated Smo degradation is regulated by Hh in PKA-primed phosphorylation-dependent and independent manners.
Collapse
Affiliation(s)
- Weirong Jiang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Xia Yao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Zhaoliang Shan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Wenting Li
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Yuxue Gao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Qing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Zhou Z, Yao X, Pang S, Chen P, Jiang W, Shan Z, Zhang Q. The deubiquitinase UCHL5/UCH37 positively regulates Hedgehog signaling by deubiquitinating Smoothened. J Mol Cell Biol 2019; 10:243-257. [PMID: 28992318 DOI: 10.1093/jmcb/mjx036] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 08/21/2017] [Indexed: 01/20/2023] Open
Abstract
The Hedgehog (Hh) signaling pathway plays important roles in developmental processes including pattern formation and tissue homeostasis. The seven-pass transmembrane receptor Smoothened (Smo) is the pivotal transducer in the pathway; it, and thus the pathway overall, is regulated by ubiquitin-mediated degradation, which occurs in the absence of Hh. In the presence of Hh, the ubiquitination levels of Smo are decreased, but the molecular basis for this outcome is not well understood. Here, we identify the deubiquitinase UCHL5 as a positive regulator of the Hh pathway. We provide both genetic and biochemical evidence that UCHL5 interacts with and deubiquitinates Smo, increasing stability and promoting accumulation at the cell membrane. Strikingly, we find that Hh enhances the interaction between UCHL5 and Smo, thereby stabilizing Smo. We also find that proteasome subunit RPN13, an activator of UCHL5, could enhance the effect of UCHL5 on Smo protein level. More importantly, we find that the mammalian counterpart of UCHL5, UCH37, plays the same role in the regulation of Hh signaling by modulating hSmo ubiquitination and stability. Our findings thus identify UCHL5/UCH37 as a critical regulator of Hh signaling and potential therapeutic target for cancers.
Collapse
Affiliation(s)
- Zizhang Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China.,Collaborative Innovation Center of Genetics and Development, Shanghai, China
| | - Xia Yao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China.,Collaborative Innovation Center of Genetics and Development, Shanghai, China
| | - Shu Pang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China.,Collaborative Innovation Center of Genetics and Development, Shanghai, China
| | - Ping Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China.,Collaborative Innovation Center of Genetics and Development, Shanghai, China
| | - Weirong Jiang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China.,Collaborative Innovation Center of Genetics and Development, Shanghai, China
| | - Zhaoliang Shan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China.,Collaborative Innovation Center of Genetics and Development, Shanghai, China
| | - Qing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China.,Collaborative Innovation Center of Genetics and Development, Shanghai, China
| |
Collapse
|
8
|
Role of Sonic Hedgehog Signaling Pathway in Intervertebral Disc Formation and Maintenance. ACTA ACUST UNITED AC 2018; 4:173-179. [PMID: 30687592 DOI: 10.1007/s40610-018-0107-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
a Purpose of Review The intervertebral discs (IVD) are an essential component of the spine. Degeneration of the discs, commonly due to age or injury, is a leading cause of chronic lower back pain. Despite its high prevalence, there is no effective treatment for disc disease due to limited understanding of disc at the cellular and molecular level. b Recent Findings Recent research has demonstrated the importance of the intracellular developmental pathway sonic hedgehog (Shh) during the formation and postnatal maintenance of the IVD. Recent studies corroborate that the down-regulation of SHH expression is associated with pathological changes in the IVDs and demonstrate the reactivation of the hedgehog pathway as a promising avenue for rescuing health disc structure and function. c Summary Understanding the role of developmental signaling pathways that regulate disc formation and maintenance may help develop strategies to recapitulate the same mechanism for disc treatment and hence improve the quality and longevity of patient lives.
Collapse
|
9
|
Cong P, Yi C, Wang XY. Expression of Smo in pancreatic cancer CD44 +CD24 +cells and construction of a lentiviral expression vector to silence Smo. Oncol Lett 2018; 16:4855-4862. [PMID: 30250551 PMCID: PMC6144425 DOI: 10.3892/ol.2018.9315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/25/2017] [Indexed: 12/14/2022] Open
Abstract
The present study focused on the roles of members of the Hedgehog (Hh) signaling pathway in the maintenance of malignant biological characteristics, such as tumorigenesis, similar to that of pancreatic tumor cells. Cluster of differentiation (CD)44+CD24+/CD44−CD24− cells were isolated from three different pancreatic cancer cell lines by flow cytometry. Among the three pancreatic cancer cell lines, the SW1990 cell line exhibited the highest percentage of CD44+CD24+ cells, which accounted for 39.9% of the total. The expression of members of the Hh signaling pathway in CD44+CD24+/CD44−CD24− cells was detected using reverse transcription-polymerase chain reaction and western blot analysis. The results demonstrated that members of the Hh signaling pathway were differentially expressed in CD44+CD24+ cells compared with CD44−CD24−, normal pancreatic duct cells and unsorted SW1990 cells. In addition, lentiviral expression vectors expressing Smoothened (Smo) small interfering RNA (siRNA) were constructed. Following transfection with the lentiviral expression vectors, Smo expression was markedly reduced in CD44+CD24+ cells. The present study represents a preliminary investigation into the biological characteristics of CD44+CD24+ pancreatic cancer cells.
Collapse
Affiliation(s)
- Peng Cong
- Department of Laparoscopic and Liver Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Chao Yi
- Department of Hepato-Pancreato-Biliary Surgery, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - Xi-Yan Wang
- Department of Hepato-Pancreato-Biliary Surgery, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| |
Collapse
|
10
|
Jiang K, Liu Y, Zhang J, Jia J. An intracellular activation of Smoothened that is independent of Hedgehog stimulation in Drosophila. J Cell Sci 2018; 131:jcs211367. [PMID: 29142103 PMCID: PMC5818065 DOI: 10.1242/jcs.211367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/13/2017] [Indexed: 01/09/2023] Open
Abstract
Smoothened (Smo), a GPCR family protein, plays a critical role in the reception and transduction of Hedgehog (Hh) signal. Smo is phosphorylated and activated on the cell surface; however, it is unknown whether Smo can be intracellularly activated. Here, we demonstrate that inactivation of the ESCRT-III causes dramatic accumulation of Smo in the ESCRT-III/MVB compartment, and subsequent activation of Hh signaling. In contrast, inactivation of ESCRTs 0-II induces mild Smo accumulation in the ESCRT-III/MVB compartment. We provide evidence that Kurtz (Krz), the Drosophila β-arrestin2, acts in parallel with the ESCRTs 0-II pathway to sort Smo to the multivesicular bodies and lysosome-mediated degradation. Additionally, upon inactivation of ESCRT-III, all active and inactive forms of Smo are accumulated. Endogenous Smo accumulated upon ESCRT-III inactivation is highly activated, which is induced by phosphorylation but not sumoylation. Taken together, our findings demonstrate a model for intracellular activation of Smo, raising the possibility for tissue overgrowth caused by an excessive amount, rather than mutation of Smo.
Collapse
Affiliation(s)
- Kai Jiang
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Yajuan Liu
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jie Zhang
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jianhang Jia
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
11
|
SUMO regulates the activity of Smoothened and Costal-2 in Drosophila Hedgehog signaling. Sci Rep 2017; 7:42749. [PMID: 28195188 PMCID: PMC5307382 DOI: 10.1038/srep42749] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/17/2017] [Indexed: 12/21/2022] Open
Abstract
In Hedgehog (Hh) signaling, the GPCR-family protein Smoothened (Smo) acts as a signal transducer that is regulated by phosphorylation and ubiquitination, which ultimately change the cell surface accumulation of Smo. However, it is not clear whether Smo is regulated by other post-translational modifications, such as sumoylation. Here, we demonstrate that knockdown of the small ubiquitin-related modifier (SUMO) pathway components Ubc9 (a SUMO-conjugating enzyme E2), PIAS (a SUMO-protein ligase E3), and Smt3 (the SUMO isoform in Drosophila) by RNAi prevents Smo accumulation and alters Smo activity in the wing. We further show that Hh-induced-sumoylation stabilizes Smo, whereas desumoylation by Ulp1 destabilizes Smo in a phosphorylation independent manner. Mechanistically, we discover that excessive Krz, the Drosophila β-arrestin 2, inhibits Smo sumoylation and prevents Smo accumulation through Krz regulatory domain. Krz likely facilitates the interaction between Smo and Ulp1 because knockdown of Krz by RNAi attenuates Smo-Ulp1 interaction. Finally, we provide evidence that Cos2 is also sumoylated, which counteracts its inhibitory role on Smo accumulation in the wing. Taken together, we have uncovered a novel mechanism for Smo activation by sumoylation that is regulated by Hh and Smo interacting proteins.
Collapse
|