1
|
Bradfield C, Voo L, Bhaduri A, Ramesh KT. Validation of a computational biomechanical mouse brain model for rotational head acceleration. Biomech Model Mechanobiol 2024; 23:1347-1367. [PMID: 38662175 DOI: 10.1007/s10237-024-01843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/17/2024] [Indexed: 04/26/2024]
Abstract
Recent mouse brain injury experiments examine diffuse axonal injury resulting from accelerative head rotations. Evaluating brain deformation during these events would provide valuable information on tissue level thresholds for brain injury, but there are many challenges to imaging the brain's mechanical response during dynamic loading events, such as a blunt head impact. To address this shortcoming, we present an experimentally validated computational biomechanics model of the mouse brain that predicts tissue deformation, given the motion of the mouse head during laboratory experiments. First, we developed a finite element model of the mouse brain that computes tissue strains, given the same head rotations as previously conducted in situ hemicephalic mouse brain experiments. Second, we calibrated the model using a single brain segment, and then validated the model based on the spatial and temporal strain responses of other regions. The result is a computational tool that will provide researchers with the ability to predict brain tissue strains that occur during mouse laboratory experiments, and to link the experiments to the resulting neuropathology, such as diffuse axonal injury.
Collapse
Affiliation(s)
- Connor Bradfield
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723, USA, 11100 Johns Hopkins Road.
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street.
| | - Liming Voo
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723, USA, 11100 Johns Hopkins Road
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
| | - Anindya Bhaduri
- Department of Civil Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
| | - K T Ramesh
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723, USA, 11100 Johns Hopkins Road
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
| |
Collapse
|
2
|
Semple BD, Panagiotopoulou O. Cranial Bone Changes Induced by Mild Traumatic Brain Injuries: A Neglected Player in Concussion Outcomes? Neurotrauma Rep 2023; 4:396-403. [PMID: 37350792 PMCID: PMC10282977 DOI: 10.1089/neur.2023.0025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
Mild traumatic brain injuries (TBIs), particularly when repetitive in nature, are increasingly recognized to have a range of significant negative implications for brain health. Much of the ongoing research in the field is focused on the neurological consequences of these injuries and the relationship between TBIs and long-term neurodegenerative conditions such as chronic traumatic encephalopathy and Alzheimer's disease. However, our understanding of the complex relationship between applied mechanical force at impact, brain pathophysiology, and neurological function remains incomplete. Past research has shown that mild TBIs, even below the threshold that results in cranial fracture, induce changes in cranial bone structure and morphology. These structural and physiological changes likely have implications for the transmission of mechanical force into the underlying brain parenchyma. Here, we review this evidence in the context of the current understanding of bone mechanosensitivity and the consequences of TBIs or concussions. We postulate that heterogeneity of the calvarium, including differing bone thickness attributable to past impacts, age, or individual variability, may be a modulator of outcomes after subsequent TBIs. We advocate for greater consideration of cranial responses to TBI in both experimental and computer modeling of impact biomechanics, and raise the hypothesis that calvarial bone thickness represents a novel biomarker of brain injury vulnerability post-TBI.
Collapse
Affiliation(s)
- Bridgette D. Semple
- Department of Neuroscience, Monash University, Prahran, Victoria, Australia
- Department of Neurology, Alfred Health, Prahran, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria, Australia
| | - Olga Panagiotopoulou
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
3
|
Mechanical threshold for concussion based on computation of axonal strain using a finite element rat brain model. BRAIN MULTIPHYSICS 2021. [DOI: 10.1016/j.brain.2021.100032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
4
|
Zhou R, Li Y, Cavanaugh JM, Zhang L. Investigate the Variations of the Head and Brain Response in a Rodent Head Impact Acceleration Model by Finite Element Modeling. Front Bioeng Biotechnol 2020; 8:172. [PMID: 32258009 PMCID: PMC7093345 DOI: 10.3389/fbioe.2020.00172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/20/2020] [Indexed: 11/13/2022] Open
Abstract
Diffuse axonal injury (DAI) is a severe form of traumatic brain injury and often induced by blunt trauma. The closed head impact acceleration (IA) model is the most widely used rodent DAI model. However, this model results in large variations of injury severity. Recently, the impact device/system was modified to improve the consistency of the impact energy, but variations of the head kinematics and subsequent brain injuries were still observed. This study was aimed to utilize a Finite Element (FE) model of a rat head/body and simulation to investigate the potential biomechanical factors influencing the impact energy transfer to the head. A detailed FE rat head model containing detailed skull and brain anatomy was developed based on the MRI, microCT and atlas data. The model consists of over 722,000 elements, of which 310,000 are in the brain. The white matter structures consisting of highly aligned axonal fibers were simulated with transversely isotropic material. The rat body was modeled to provide a realistic boundary at the spine-medulla junction. Rodent experiments including dynamic cortical deformation, brain-skull displacement, and IA kinematics were simulated to validate the FE model. The model was then applied to simulate the rat IA experiments. Parametric studies were conducted to investigate the effect of the helmet inclination angles (0°-5°) and skull stiffness (varied 20%) on the resulting head kinematics and maximum principal strain in the brain. The inclination angle of the helmet at 5° could vary head linear acceleration by 8-31%. The change in head rotational velocity was inversely related to the change in linear acceleration. Varying skull stiffness resulted in changes in head linear acceleration by 3% but with no effect on rotational velocity. The brain strain in the corpus callosum was only affected by head rotation while the strain in the brainstem was influenced by the combined head kinematics, local skull deformation, and head-neck position. Validated FE models of rat impact head injury can assist in exploring various biomechanical factors influencing the head impact response and internal brain response. Identification of these variables may help explain the variability of injury severity observed among experiments and across different labs.
Collapse
Affiliation(s)
| | | | | | - Liying Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States
| |
Collapse
|
5
|
Bartsch A, Dama R, Alberts J, Samorezov S, Benzel E, Miele V, Shah A, Humm J, McCrea M, Stemper B. Measuring Blunt Force Head Impacts in Athletes. Mil Med 2020; 185:190-196. [PMID: 32074346 PMCID: PMC7029834 DOI: 10.1093/milmed/usz334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Although concussion continues to be a major source of acute and chronic injuries, concussion injury mechanisms and risk functions are ill-defined. This lack of definition has hindered efforts to develop standardized concussion monitoring, safety testing, and protective countermeasures. To overcome this knowledge gap, we have developed, tested, and deployed a head impact monitoring mouthguard (IMM) system. MATERIALS AND METHODS The IMM system was first calibrated in 731 laboratory tests. Versus reference, Laboratory IMM data fit a linear model, with results close to the ideal linear model of form y = x + 0, R2 = 1. Next, during on-field play involving n = 54 amateur American athletes in football and boxing, there were tens of thousands of events collected by the IMM. A total of 890 true-positive head impacts were confirmed using a combination of signal processing and National Institute of Neurological Disorders and Stroke/National Institutes of Health Common Data Elements methods. RESULTS The median and 99th percentile of peak scalar linear acceleration and peak angular acceleration were 20 and 50 g and 1,700 and 4,600 rad/s2, respectively. No athletes were diagnosed with concussion. CONCLUSIONS While these data are useful for preliminary human tolerance limits, a larger population must be used to quantify real-world dose response as a function of impact magnitude, direction, location, and accumulation. This work is ongoing.
Collapse
Affiliation(s)
- Adam Bartsch
- Prevent Biometrics, 4530 W 77th St, Suite 300, Edina, MN 55435
| | - Rajiv Dama
- Prevent Biometrics, 4530 W 77th St, Suite 300, Edina, MN 55435
| | - Jay Alberts
- Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44190
| | | | - Edward Benzel
- Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44190
| | - Vincent Miele
- University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA 15213
| | - Alok Shah
- Medical College of Wisconsin, Zablocki VA Center, 500 W National Ave, Milwaukee, WI 53295
| | - John Humm
- Medical College of Wisconsin, Zablocki VA Center, 500 W National Ave, Milwaukee, WI 53295
| | - Michael McCrea
- Medical College of Wisconsin, Zablocki VA Center, 500 W National Ave, Milwaukee, WI 53295
| | - Brian Stemper
- Medical College of Wisconsin, Zablocki VA Center, 500 W National Ave, Milwaukee, WI 53295
| |
Collapse
|
6
|
Direct Observation of Low Strain, High Rate Deformation of Cultured Brain Tissue During Primary Blast. Ann Biomed Eng 2019; 48:1196-1206. [DOI: 10.1007/s10439-019-02437-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/08/2019] [Indexed: 10/25/2022]
|
7
|
Abstract
The underlying mechanisms that result in neurophysiological changes and cognitive sequelae in the context of repetitive mild traumatic brain injury (rmTBI) remain poorly understood. Animal models provide a unique opportunity to examine cellular and molecular responses using histological assessment, which can give important insights on the neurophysiological changes associated with the evolution of brain injury. To better understand the potential cumulative effects of multiple concussions, the focus of animal models is shifting from single to repetitive head impacts. With a growing body of literature on this subject, a review and discussion of current findings is valuable to better understand the neuropathology associated with rmTBI, to evaluate the current state of the field, and to guide future research efforts. Despite variability in experimental settings, existing animal models of rmTBI have contributed to our understanding of the underlying mechanisms following repeat concussion. However, how to reconcile the various impact methods remains one of the major challenges in the field today.
Collapse
Affiliation(s)
- Wouter S Hoogenboom
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA; Department of Clinical Investigation, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA.
| | - Craig A Branch
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA; Department of Physiology and Biophysics, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA; Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA.
| | - Michael L Lipton
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA; Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA; Departments of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA; The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA.
| |
Collapse
|
8
|
Finan JD. Biomechanical simulation of traumatic brain injury in the rat. Clin Biomech (Bristol, Avon) 2019; 64:114-121. [PMID: 29449041 PMCID: PMC6068009 DOI: 10.1016/j.clinbiomech.2018.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/08/2017] [Accepted: 01/18/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Traumatic brain injury poses an enormous clinical challenge. Rats are the animals most widely used in pre-clinical experiments. Biomechanical simulations of these experiments predict the distribution of mechanical stress and strain across key tissues. It is in theory possible to dramatically increase our understanding of traumatic brain injury pathophysiology by correlating stress and strain with histological and functional injury outcomes. This review summarizes the state of the art in biomechanical simulation of traumatic brain injury in the rat. It also places this body of knowledge in the context of the wider effort to understand traumatic brain injury in rats and in humans. METHODS Peer-reviewed research articles on biomechanical simulation of traumatic brain injury in the rat were reviewed and summarized. FINDINGS When mathematical models of traumatic brain injury in the rat first emerged, they relied on scant data regarding biomechanical properties. The data on relevant biomechanical properties has increased recently. However, experimental models of traumatic brain injury in the rat have also become less homogeneous. New and modified models have emerged that are biomechanically distinct from traditional models. INTERPRETATION Important progress in mathematical modeling and measurement of biomechanical properties has led to credible, predictive simulations of traditional, experimental models of traumatic brain injury in the rat, such as controlled cortical impact. However, recent trends such as the increasing popularity of closed head models and blast models create new biomechanical challenges. Investigators studying rat brain biomechanics must continue to innovate to keep pace with these developments.
Collapse
|
9
|
Yan W, Sossou G, Rajan R. A multi-body dynamics study on a weight-drop test of rat brain injury. Comput Methods Biomech Biomed Engin 2017; 20:602-616. [PMID: 28090780 DOI: 10.1080/10255842.2017.1280733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Traumatic brain injury (TBI), induced by impact of an object with the head, is a major health problem worldwide. Rats are a well-established animal analogue for study of TBI and the weight-drop impact-acceleration (WDIA) method is a well-established model in rats for creating diffuse TBI, the most common form of TBI seen in humans. However, little is known of the biomechanics of the WDIA method and, to address this, we have developed a four-degrees-of-freedom multi-body mass-spring-damper model for the WDIA test in rats. An analytical expression of the maximum skull acceleration, one of the important head injury predictor, was derived and it shows that the maximum skull acceleration is proportional to the impact velocity but independent of the impactor mass. Furthermore, a dimensional analysis disclosed that the maximum force on the brain and maximum relative displacement between brain and skull are also linearly proportional to impact velocity. Additionally, the effects of the impactor mass were examined through a parametric study from the developed multi-body dynamics model. It was found that increasing impactor mass increased these two brain injury predictors.
Collapse
Affiliation(s)
- Wenyi Yan
- a Department of Mechanical & Aerospace Engineering , Monash University , Clayton , Australia
| | - Germain Sossou
- b École Nationale Supérieure de Mécanique et d'Aérotechnique , Futuroscope Chasseneuil Cedex , France
| | - Ramesh Rajan
- c Department of Physiology , Monash University , Clayton , Australia
| |
Collapse
|
10
|
Allitt BJ, Iva P, Yan EB, Rajan R. Hypo-excitation across all cortical laminae defines intermediate stages of cortical neuronal dysfunction in diffuse traumatic brain injury. Neuroscience 2016; 334:290-308. [PMID: 27530700 DOI: 10.1016/j.neuroscience.2016.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/06/2016] [Accepted: 08/08/2016] [Indexed: 01/18/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality world-wide and can result in persistent cognitive, sensory and behavioral dysfunction. Understanding the time course of TBI-induced pathology is essential to effective treatment outcomes. We induced TBI in rats using an impact acceleration method and tested for sensorimotor skill and sensory sensitivity behaviors for two weeks to find persistently poor outcomes post-injury. At two weeks post-injury we made high resolution extracellular recordings from barrel cortex neurons, to simple and complex whisker deflections. We found that the supragranular suppression of neural firing (compared to normal) previously seen in the immediate post-TBI aftermath had spread to include suppression of input and infragranular layers at two weeks post-injury; thus, there was suppression of whisker-driven firing rates in all cortical layers to both stimulus types. Further, there were abnormalities in temporal response patterns such that in layers 3-5 there was a temporal broadening of response patterns in response to both whisker deflection stimulus types and in L2 a narrowing of temporal patterns in response to the complex stimulus. Thus, at two weeks post-TBI, supragranular hypo-excitation has evolved to include deep cortical layers likely as a function of progressive atrophy and neurodegeneration. These results are consistent with the hypothesis that TBI alters the delicate excitatory/inhibitory balance in cortex and likely contributes to temporal broadening of responses and restricts the ability to code for complex sensory stimuli.
Collapse
Affiliation(s)
- Benjamin J Allitt
- Department of Physiology, Monash University, Clayton, VIC, Australia.
| | - Pippa Iva
- Department of Physiology, Monash University, Clayton, VIC, Australia.
| | - Edwin B Yan
- Department of Physiology, Monash University, Clayton, VIC, Australia.
| | - Ramesh Rajan
- Department of Physiology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
11
|
Tse KM, Tan LB, Yang B, Tan VBC, Lee HP. Effect of helmet liner systems and impact directions on severity of head injuries sustained in ballistic impacts: a finite element (FE) study. Med Biol Eng Comput 2016; 55:641-662. [PMID: 27411935 DOI: 10.1007/s11517-016-1536-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
Abstract
The current study aims to investigate the effectiveness of two different designs of helmet interior cushion, (Helmet 1: strap-netting; Helmet 2: Oregon Aero foam-padding), and the effect of the impact directions on the helmeted head during ballistic impact. Series of ballistic impact simulations (frontal, lateral, rear, and top) of a full-metal-jacketed bullet were performed on a validated finite element head model equipped with the two helmets, to assess the severity of head injuries sustained in ballistic impacts using both head kinematics and biomechanical metrics. Benchmarking with experimental ventricular and intracranial pressures showed that there is good agreement between the simulations and experiments. In terms of extracranial injuries, top impact had the highest skull stress, still without fracturing the skull. In regard to intracranial injuries, both the lateral and rear impacts generally gave the highest principal strains as well as highest shear strains, which exceed the injury thresholds. Off-cushion impacts were found to be at higher risk of intracranial injuries. The study also showed that the Oregon Aero foam pads helped to reduce impact forces. It also suggested that more padding inserts of smaller size may offer better protection. This provides some insights on future's helmet design against ballistic threats.
Collapse
Affiliation(s)
- Kwong Ming Tse
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore. .,Department of Mechanical Engineering, University of Melbourne, Parkville Campus, Melbourne, VIC, 3010, Australia.
| | - Long Bin Tan
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Bin Yang
- College of Automobile and Traffic Engineering, Nanjing Forestry University, 159 LongPan Rd, Nanjing, 210037, People's Republic of China
| | - Vincent Beng Chye Tan
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Heow Pueh Lee
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore. .,National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, 215123, Jiang Su, People's Republic of China.
| |
Collapse
|
12
|
Stemper BD, Shah AS, Budde MD, Olsen CM, Glavaski-Joksimovic A, Kurpad SN, McCrea M, Pintar FA. Behavioral Outcomes Differ between Rotational Acceleration and Blast Mechanisms of Mild Traumatic Brain Injury. Front Neurol 2016; 7:31. [PMID: 27014184 PMCID: PMC4789366 DOI: 10.3389/fneur.2016.00031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/29/2016] [Indexed: 11/20/2022] Open
Abstract
Mild traumatic brain injury (mTBI) can result from a number of mechanisms, including blunt impact, head rotational acceleration, exposure to blast, and penetration of projectiles. Mechanism is likely to influence the type, severity, and chronicity of outcomes. The objective of this study was to determine differences in the severity and time course of behavioral outcomes following blast and rotational mTBI. The Medical College of Wisconsin (MCW) Rotational Injury model and a shock tube model of primary blast injury were used to induce mTBI in rats and behavioral assessments were conducted within the first week, as well as 30 and 60 days following injury. Acute recovery time demonstrated similar increases over protocol-matched shams, indicating acute injury severity equivalence between the two mechanisms. Post-injury behavior in the elevated plus maze demonstrated differing trends, with rotationally injured rats acutely demonstrating greater activity, whereas blast-injured rats had decreased activity that developed at chronic time points. Similarly, blast-injured rats demonstrated trends associated with cognitive deficits that were not apparent following rotational injuries. These findings demonstrate that rotational and blast injury result in behavioral changes with different qualitative and temporal manifestations. Whereas rotational injury was characterized by a rapidly emerging phenotype consistent with behavioral disinhibition, blast injury was associated with emotional and cognitive differences that were not evident acutely, but developed later, with an anxiety-like phenotype still present in injured animals at our most chronic measurements.
Collapse
Affiliation(s)
- Brian D. Stemper
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alok S. Shah
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Matthew D. Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher M. Olsen
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Shekar N. Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Frank A. Pintar
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| |
Collapse
|
13
|
Post A, Karton C, Blaine Hoshizaki T, Gilchrist MD, Bailes J. Evaluation of the protective capacity of baseball helmets for concussive impacts. Comput Methods Biomech Biomed Engin 2015; 19:366-75. [DOI: 10.1080/10255842.2015.1029921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Post A, Blaine Hoshizaki T. Rotational Acceleration, Brain Tissue Strain, and the Relationship to Concussion. J Biomech Eng 2015; 137:1926227. [DOI: 10.1115/1.4028983] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Indexed: 11/08/2022]
Abstract
The mechanisms of concussion have been investigated by many researchers using a variety of methods. However, there remains much debate over the relationships between head kinematics from an impact and concussion. This review presents the links between research conducted in different disciplines to better understand the relationship between linear and rotational acceleration and brain strains that have been postulated as the root cause of concussion. These concepts are important when assigning performance variables for helmet development, car design, and protective innovation research.
Collapse
Affiliation(s)
- Andrew Post
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, 200 Lees, Room A106, Ottawa, ON K1S 5S9, Canada e-mail:
| | - T. Blaine Hoshizaki
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, 200 Lees, Room A106, Ottawa, ON K1S 5S9, Canada
| |
Collapse
|
15
|
Predicting changes in cortical electrophysiological function after in vitro traumatic brain injury. Biomech Model Mechanobiol 2015; 14:1033-44. [PMID: 25628144 DOI: 10.1007/s10237-015-0652-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/14/2015] [Indexed: 01/09/2023]
Abstract
Finite element (FE) models of traumatic brain injury (TBI) are capable of predicting injury-induced brain tissue deformation. However, current FE models are not equipped to predict the biological consequences of tissue deformation, which requires the determination of tolerance criteria relating the effects of mechanical stimuli to biologically relevant functional responses. To address this deficiency, we present functional tolerance criteria for the cortex for alterations in neuronal network electrophysiological function in response to controlled mechanical stimuli. Organotypic cortical slice cultures were mechanically injured via equibiaxial stretch with a well-characterized in vitro model of TBI at tissue strains and strain rates relevant to TBI (up to Lagrangian strain of 0.59 and strain rates up to 29 [Formula: see text]. At 4-6 days post-injury, electrophysiological function was assessed simultaneously throughout the cortex using microelectrode arrays. Electrophysiological parameters associated with unstimulated spontaneous network activity (neural event rate, duration, and magnitude), stimulated evoked responses (the maximum response [Formula: see text], the stimulus current necessary for a half-maximal response [Formula: see text], and the electrophysiological parameter [Formula: see text] that is representative of firing uniformity), and evoked paired-pulse ratios at varying interstimulus intervals were quantified for each cortical slice culture. Nonlinear regression was performed between mechanical injury parameters as independent variables (tissue strain and strain rate) and each electrophysiological parameter as output. Parsimonious best-fit equations were determined from a large pool of candidate equations with tenfold cross-validation. Changes in electrophysiological parameters were dependent on strain and strain rate in a complex manner. Compared to the hippocampus, the cortex was less spontaneously active, less excitable, and less prone to significant changes in electrophysiological function in response to controlled deformation (strain or strain rate). Our study provides functional data that can be incorporated into FE models to improve their predictive capabilities of the in vivo consequences of TBI.
Collapse
|
16
|
Sullivan S, Eucker SA, Gabrieli D, Bradfield C, Coats B, Maltese MR, Lee J, Smith C, Margulies SS. White matter tract-oriented deformation predicts traumatic axonal brain injury and reveals rotational direction-specific vulnerabilities. Biomech Model Mechanobiol 2014; 14:877-96. [PMID: 25547650 DOI: 10.1007/s10237-014-0643-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/13/2014] [Indexed: 01/23/2023]
Abstract
A systematic correlation between finite element models (FEMs) and histopathology is needed to define deformation thresholds associated with traumatic brain injury (TBI). In this study, a FEM of a transected piglet brain was used to reverse engineer the range of optimal shear moduli for infant (5 days old, 553-658 Pa) and 4-week-old toddler piglet brain (692-811 Pa) from comparisons with measured in situ tissue strains. The more mature brain modulus was found to have significant strain and strain rate dependencies not observed with the infant brain. Age-appropriate FEMs were then used to simulate experimental TBI in infant (n=36) and preadolescent (n=17) piglets undergoing a range of rotational head loads. The experimental animals were evaluated for the presence of clinically significant traumatic axonal injury (TAI), which was then correlated with FEM-calculated measures of overall and white matter tract-oriented tissue deformations, and used to identify the metric with the highest sensitivity and specificity for detecting TAI. The best predictors of TAI were the tract-oriented strain (6-7%), strain rate (38-40 s(-1), and strain times strain rate (1.3-1.8 s(-1) values exceeded by 90% of the brain. These tract-oriented strain and strain rate thresholds for TAI were comparable to those found in isolated axonal stretch studies. Furthermore, we proposed that the higher degree of agreement between tissue distortion aligned with white matter tracts and TAI may be the underlying mechanism responsible for more severe TAI after horizontal and sagittal head rotations in our porcine model of nonimpact TAI than coronal plane rotations.
Collapse
Affiliation(s)
- Sarah Sullivan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Johnstone VP, Shultz SR, Yan EB, O'Brien TJ, Rajan R. The acute phase of mild traumatic brain injury is characterized by a distance-dependent neuronal hypoactivity. J Neurotrauma 2014; 31:1881-95. [PMID: 24927383 PMCID: PMC4224042 DOI: 10.1089/neu.2014.3343] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The consequences of mild traumatic brain injury (TBI) on neuronal functionality are only now being elucidated. We have now examined the changes in sensory encoding in the whisker-recipient barrel cortex and the brain tissue damage in the acute phase (24 h) after induction of TBI (n=9), with sham controls receiving surgery only (n=5). Injury was induced using the lateral fluid percussion injury method, which causes a mixture of focal and diffuse brain injury. Both population and single cell neuronal responses evoked by both simple and complex whisker stimuli revealed a suppression of activity that decreased with distance from the locus of injury both within a hemisphere and across hemispheres, with a greater extent of hypoactivity in ipsilateral barrel cortex compared with contralateral cortex. This was coupled with an increase in spontaneous output in Layer 5a, but only ipsilateral to the injury site. There was also disruption of axonal integrity in various regions in the ipsilateral but not contralateral hemisphere. These results complement our previous findings after mild diffuse-only TBI induced by the weight-drop impact acceleration method where, in the same acute post-injury phase, we found a similar depth-dependent hypoactivity in sensory cortex. This suggests a common sequelae of events in both diffuse TBI and mixed focal/diffuse TBI in the immediate post-injury period that then evolve over time to produce different long-term functional outcomes.
Collapse
Affiliation(s)
| | - Sandy R. Shultz
- Department of Medicine, The Royal Melbourne Hospital, The Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Edwin B. Yan
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Terence J. O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Ramesh Rajan
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
18
|
Stemper BD, Shah AS, Pintar FA, McCrea M, Kurpad SN, Glavaski-Joksimovic A, Olsen C, Budde MD. Head rotational acceleration characteristics influence behavioral and diffusion tensor imaging outcomes following concussion. Ann Biomed Eng 2014; 43:1071-88. [PMID: 25344352 DOI: 10.1007/s10439-014-1171-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/17/2014] [Indexed: 11/28/2022]
Abstract
A majority of traumatic brain injuries (TBI) in motor vehicle crashes and sporting environments are mild and caused by high-rate acceleration of the head. For injuries caused by rotational acceleration, both magnitude and duration of the acceleration pulse were shown to influence injury outcomes. This study incorporated a unique rodent model of rotational acceleration-induced mild TBI (mTBI) to quantify independent effects of magnitude and duration on behavioral and neuroimaging outcomes. Ninety-two Sprague-Dawley rats were exposed to head rotational acceleration at peak magnitudes of 214 or 350 krad/s(2) and acceleration pulse durations of 1.6 or 3.4 ms in a full factorial design. Rats underwent a series of behavioral tests including the Composite Neuroscore (CN), Elevated Plus Maze (EPM), and Morris Water Maze (MWM). Ex vivo diffusion tensor imaging (DTI) of the fixed brains was conducted to assess the effects of rotational injury on brain microstructure as revealed by the parameter fractional anisotropy (FA). While the injury did not cause significant locomotor or cognitive deficits measured with the CN and MWM, respectively, a main effect of duration was consistently observed for the EPM. Increased duration caused significantly greater activity and exploratory behaviors measured as open arm time and number of arm changes. DTI demonstrated significant effects of both magnitude and duration, with the FA of the amygdala related to both the magnitude and duration. Increased duration also caused FA changes at the interface of gray and white matter. Collectively, the findings demonstrate that the consequences of rotational acceleration mTBI were more closely associated with duration of the rotational acceleration impulse, which is often neglected as an independent factor, and highlight the need for animal models of TBI with strong biomechanical foundations to associate behavioral outcomes with brain microstructure.
Collapse
Affiliation(s)
- Brian D Stemper
- Department of Neurosurgery, Medical College of Wisconsin, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA,
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Functional tolerance to mechanical deformation developed from organotypic hippocampal slice cultures. Biomech Model Mechanobiol 2014; 14:561-75. [PMID: 25236799 DOI: 10.1007/s10237-014-0622-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 09/06/2014] [Indexed: 12/17/2022]
Abstract
In this study, we measured changes in electrophysiological activity after mechanical deformation of living organotypic hippocampal brain slice cultures at tissue strains and strain rates relevant to traumatic brain injury (TBI). Electrophysiological activity was measured throughout the hippocampus with a 60-electrode microelectrode array. Electrophysiological parameters associated with unstimulated spontaneous activity (neural event firing rate, duration, and magnitude), stimulated evoked responses (the maximum response [Formula: see text], the stimulus current necessary for a half-maximal response [Formula: see text], and the electrophysiological parameter m that is representative of firing uniformity), and paired-pulse responses (paired-pulse ratio at varying interstimulus intervals) were quantified for each hippocampal region (CA1, CA3, and DG). We present functional tolerance criteria for the hippocampus in the form of mathematical relationships between the input tissue-level injury parameters (strain and strain rate) and altered neuronal network function. Most changes in electrophysiology were dependent on strain and strain rate in a complex fashion, independent of hippocampal anatomy, with the notable exception of [Formula: see text]. Until it becomes possible to directly measure brain tissue deformation in vivo, finite element (FE) models will be necessary to simulate and predict the in vivo consequences of TBI. One application of our study is to provide functional relationships that can be incorporated into these FE models to enhance their biofidelity of accident and collision reconstructions by predicting biological outcomes in addition to mechanical responses.
Collapse
|
20
|
Using anesthetics and analgesics in experimental traumatic brain injury. Lab Anim (NY) 2014; 42:286-91. [PMID: 23877609 DOI: 10.1038/laban.257] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/25/2013] [Indexed: 01/06/2023]
Abstract
Valid modeling of traumatic brain injury (TBI) requires accurate replication of both the mechanical forces that cause the primary injury and the conditions that lead to secondary injuries observed in human patients. The use of animals in TBI research is justified by the lack of in vitro or computer models that can sufficiently replicate the complex pathological processes involved. Measures to reduce nociception and distress must be implemented, but the administration of anesthetics and analgesics can influence TBI outcomes, threatening the validity of the research. In this review, the authors present evidence for the interference of anesthetics and analgesics in the natural course of brain injury in animal models of TBI. They suggest that drugs should be selected for or excluded from experimental TBI protocols on the basis of IACUC-approved experimental objectives in order to protect animal welfare and preserve the validity of TBI models.
Collapse
|
21
|
Mao H, Elkin BS, Genthikatti VV, Morrison B, Yang KH. Why is CA3 more vulnerable than CA1 in experimental models of controlled cortical impact-induced brain injury? J Neurotrauma 2013; 30:1521-30. [PMID: 23557208 DOI: 10.1089/neu.2012.2520] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One interesting finding of controlled cortical impact (CCI) experiments is that the CA3 region of the hippocampus, which is positioned further from the impact than the CA1 region, is reported as being more injured. The current literature has suggested a positive correlation between brain tissue stretch and neuronal cell loss. However, it is counterintuitive to assume that CA3 is stretched more during CCI injury. Recent mechanical studies of the brain have reported on a level of spatial heterogeneity not previously appreciated-the finding that CA1 was significantly stiffer than all other regions tested and that CA3 was one of the most compliant. We hypothesized that mechanical heterogeneity of anatomical structures could underlie the proposed heterogeneous mechanical response and hence the pattern of cell death. As such, we developed a three-dimensional finite element (FE) rat brain model representing detailed hippocampal structures and simulated various CCI experiments. Four groups of material properties based on recent experiments were tested. In group 1, hyperelastic material properties were assigned to various hippocampal structures, with CA3 more compliant than CA1. In group 2, linear viscoelastic material properties were assigned to hippocampal structures, with CA3 more compliant than CA1. In group 3, the hippocampus was represented by homogenous linear viscoelastic material properties. In group 4, a homogeneous nonlinear hippocampus was adopted. Simulation results demonstrated that for CCI with a 5-mm diameter, flat shape impactor, CA3 experienced increased tensile strains over a larger area and to a greater magnitude than did CA1 for group 1, which best explained why CA3 is more sensitive to CCI injury. However, for groups 2-4, the total volume with high strain (>30%) in CA3 was smaller than that in CA1. The FE rat brain model, with detailed hippocampal structures presented here, will help to engineer desired experimental neurotrauma models by virtually characterizing brain biomechanics before testing.
Collapse
Affiliation(s)
- Haojie Mao
- Biomedical Engineering Department, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
22
|
The influence of the specimen shape and loading conditions on the parameter identification of a viscoelastic brain model. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:460413. [PMID: 23935700 PMCID: PMC3722855 DOI: 10.1155/2013/460413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/01/2013] [Accepted: 06/17/2013] [Indexed: 11/17/2022]
Abstract
The mechanical properties of brain under various loadings have been reported in the literature over the past 50 years. Step-and-hold tests have often been employed to characterize viscoelastic and nonlinear behavior of brain under high-rate shear deformation; however, the identification of brain material parameters is typically performed by neglecting the initial strain ramp and/or by assuming a uniform strain distribution in the brain samples. Using finite element (FE) simulations of shear tests, this study shows that these simplifications have a significant effect on the identified material properties in the case of cylindrical human brain specimens. Material models optimized using only the stress relaxation curve under predict the shear force during the strain ramp, mainly due to lower values of their instantaneous shear moduli. Similarly, material models optimized using an analytical approach, which assumes a uniform strain distribution, under predict peak shear forces in FE simulations. Reducing the specimen height showed to improve the model prediction, but no improvements were observed for cubic samples with heights similar to cylindrical samples. Models optimized using FE simulations show the closest response to the test data, so a FE-based optimization approach is recommended in future parameter identification studies of brain.
Collapse
|
23
|
Johnstone VPA, Yan EB, Alwis DS, Rajan R. Cortical hypoexcitation defines neuronal responses in the immediate aftermath of traumatic brain injury. PLoS One 2013; 8:e63454. [PMID: 23667624 PMCID: PMC3646737 DOI: 10.1371/journal.pone.0063454] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 04/03/2013] [Indexed: 11/19/2022] Open
Abstract
Traumatic brain injury (TBI) from a blow to the head is often associated with complex patterns of brain abnormalities that accompany deficits in cognitive and motor function. Previously we reported that a long-term consequence of TBI, induced with a closed-head injury method modelling human car and sporting accidents, is neuronal hyper-excitation in the rat sensory barrel cortex that receives tactile input from the face whiskers. Hyper-excitation occurred only in supra-granular layers and was stronger to complex than simple stimuli. We now examine changes in the immediate aftermath of TBI induced with same injury method. At 24 hours post-trauma significant sensorimotor deficits were observed and characterisation of the cortical population neuronal responses at that time revealed a depth-dependent suppression of neuronal responses, with reduced responses from supragranular layers through to input layer IV, but not in infragranular layers. In addition, increased spontaneous firing rate was recorded in cortical layers IV and V. We postulate that this early post-injury suppression of cortical processing of sensory input accounts for immediate post-trauma sensory morbidity and sets into train events that resolve into long-term cortical hyper-excitability in upper sensory cortex layers that may account for long-term sensory hyper-sensitivity in humans with TBI.
Collapse
Affiliation(s)
| | | | | | - Ramesh Rajan
- Department of Physiology, Monash University, Monash, VIC, Australia
- * E-mail:
| |
Collapse
|