1
|
Harland B, Kow CY, Svirskis D. Spinal intradural electrodes: opportunities, challenges and translation to the clinic. Neural Regen Res 2024; 19:503-504. [PMID: 37721274 PMCID: PMC10581576 DOI: 10.4103/1673-5374.380895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/27/2023] [Accepted: 06/09/2023] [Indexed: 09/19/2023] Open
Affiliation(s)
- Bruce Harland
- School of Pharmacy, University of Auckland, Auckland, New Zealand
| | - Chien Yew Kow
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Matter L, Harland B, Raos B, Svirskis D, Asplund M. Generation of direct current electrical fields as regenerative therapy for spinal cord injury: A review. APL Bioeng 2023; 7:031505. [PMID: 37736015 PMCID: PMC10511262 DOI: 10.1063/5.0152669] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Electrical stimulation (ES) shows promise as a therapy to promote recovery and regeneration after spinal cord injury. ES therapy establishes beneficial electric fields (EFs) and has been investigated in numerous studies, which date back nearly a century. In this review, we discuss the various engineering approaches available to generate regenerative EFs through direct current electrical stimulation and very low frequency electrical stimulation. We highlight the electrode-tissue interface, which is important for the appropriate choice of electrode material and stimulator circuitry. We discuss how to best estimate and control the generated field, which is an important measure for comparability of studies. Finally, we assess the methods used in these studies to measure functional recovery after the injury and treatment. This work reviews studies in the field of ES therapy with the goal of supporting decisions regarding best stimulation strategy and recovery assessment for future work.
Collapse
Affiliation(s)
- Lukas Matter
- Author to whom correspondence should be addressed:
| | - Bruce Harland
- School of Pharmacy, The University of Auckland, NZ 1023 Auckland, New Zealand
| | - Brad Raos
- School of Pharmacy, The University of Auckland, NZ 1023 Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, The University of Auckland, NZ 1023 Auckland, New Zealand
| | | |
Collapse
|
3
|
Dura JL, Solanes C, De Andres J, Saiz J. Effect of Lead Position and Polarity on Paresthesia Coverage in Spinal Cord Stimulation Therapy: A Computational Study. Neuromodulation 2022; 25:680-692. [DOI: 10.1016/j.neurom.2021.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/25/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
|
4
|
Chen L, Wang W, Lin Z, Lu Y, Chen H, Li B, Li Z, Xia H, Li L, Zhang T. Conducting molybdenum sulfide/graphene oxide/polyvinyl alcohol nanocomposite hydrogel for repairing spinal cord injury. J Nanobiotechnology 2022; 20:210. [PMID: 35524268 PMCID: PMC9074236 DOI: 10.1186/s12951-022-01396-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
A sort of composite hydrogel with good biocompatibility, suppleness, high conductivity, and anti-inflammatory activity based on polyvinyl alcohol (PVA) and molybdenum sulfide/graphene oxide (MoS2/GO) nanomaterial has been developed for spinal cord injury (SCI) restoration. The developed (MoS2/GO/PVA) hydrogel exhibits excellent mechanical properties, outstanding electronic conductivity, and inflammation attenuation activity. It can promote neural stem cells into neurons differentiation as well as inhibit the astrocytes development in vitro. In addition, the composite hydrogel shows a high anti-inflammatory effect. After implantation of the composite hydrogel in mice, it could activate the endogenous regeneration of the spinal cord and inhibit the activation of glial cells in the injured area, thus resulting in the recovery of locomotor function. Overall, our work provides a new sort of hydrogels for SCI reparation, which shows great promise for improving the dilemma in SCI therapy.
Collapse
Affiliation(s)
- Lingling Chen
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Orthopedic Center, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, Guangdong, China
| | - Wanshun Wang
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Orthopedic Center, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, Guangdong, China.,The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Zefeng Lin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Orthopedic Center, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, Guangdong, China
| | - Yao Lu
- Southern Medical University, 1023 South Shatai Road, Guangzhou, 510515, Guangdong, China.,Department of Orthopedics, Clinical Research Centre, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou, 510282, Guangdong, China
| | - Hu Chen
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Orthopedic Center, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, Guangdong, China.,Southern Medical University, 1023 South Shatai Road, Guangzhou, 510515, Guangdong, China
| | - Binglin Li
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Orthopedic Center, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, Guangdong, China
| | - Zhan Li
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Orthopedic Center, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, Guangdong, China
| | - Hong Xia
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Orthopedic Center, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, Guangdong, China. .,Southern Medical University, 1023 South Shatai Road, Guangzhou, 510515, Guangdong, China.
| | - Lihua Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China.
| | - Tao Zhang
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Orthopedic Center, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, Guangdong, China. .,Southern Medical University, 1023 South Shatai Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
5
|
Arhiptsov K, Marom G. Numerical Models of Spinal Cord Trauma: The Effect of Cerebrospinal Fluid Pressure and Epidural Fat on the Results. J Neurotrauma 2021; 38:2176-2185. [PMID: 33971729 DOI: 10.1089/neu.2021.0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Spinal cord injury (SCI) is commonly caused by traumatic mechanical damage. Although numerical models can help predict the mechanics of SCI without putting the subjects in danger, previous studies did not focus on alternations in cerebrospinal fluid (CSF) pressure and did not account for the presence of epidural fat. This study aims to numerically compare the mechanical behavior of the human spine when subjected to contusion and burst fracture with varying CSF pressure, either normal or elevated pressure that represents intracranial hypertension. An additional aim is to find out how the presence of the fat in the model affects the SCI calculations. CSF and epidural fat were modeled as smoothed-particle hydrodynamics (SPH) and the soft tissues were modeled as hyperelastic. This approach made it possible to account for CSF pressure alteration and its effect on the cord. Validation models resulted in good correlation with previous numerical and experimental studies. The results were able to capture the fluid dynamics of the CSF while demonstrating a considerable change in the stresses of the spinal cord. The comparison of the CSF pressures demonstrated that SCI in patients with elevated pressure and in regions where insufficient epidural fat exists might lead to higher spinal cord stresses. Yet, in regions with enough fat, the fat can absorb energy and counteract the effect of the elevated pressure. These results indicate important aspects that need to be accounted for in future numerical models of SCI while also demonstrating how the injury might be aggravated by preexisting conditions.
Collapse
Affiliation(s)
| | - Gil Marom
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Solanes C, Durá JL, Canós MÁ, De Andrés J, Martí-Bonmatí L, Saiz J. 3D patient-specific spinal cord computational model for SCS management: potential clinical applications. J Neural Eng 2021; 18. [PMID: 33556926 DOI: 10.1088/1741-2552/abe44f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVE Although Spinal Cord Stimulation (SCS) is an established therapy for treating neuropathic chronic pain, in tonic stimulation, postural changes, electrode migration or badly-positioned electrodes can produce annoying stimulation (intercostal neuralgia) in about 35% of the patients. SCS models are used to study the effect of electrical stimulation to better manage the stimulation parameters and electrode position. The goal of this work was to develop a realistic 3D patient-specific spinal cord model from a real patient and develop a future clinical application that would help physicians to optimize paresthesia coverage in SCS therapy. METHODS We developed two 3D patient-specific models from a high-resolution MRI of two patients undergoing SCS treatment. The model consisted of a finite element model of the spinal cord and a sensory myelinated nerve fiber model. The same simulations were performed with a generalized spinal cord model and we compared the results with the clinical data to evaluate the advantages of a patient-specific model. To identify the geometrical parameters that most influence the stimulation predictions, a sensitivity analysis was conducted. We used the patient-specific model to perform a clinical application involving the pre-implantation selection of electrode polarity and study the effect of electrode offset. RESULTS The patient-specific model correlated better with clinical data than the generalized model. Electrode-dura mater distance, dorsal CSF thickness, and CSF diameter are the geometrical parameters that caused significant changes in the stimulation predictions. Electrode polarity could be planned and optimized to stimulate the patient's painful dermatomes. The addition of offset in parallel electrodes would not have been beneficial for one of the patients of this study because they reduce neural activation displacement. CONCLUSIONS This is the first study to relate the activation area model prediction in dorsal columns with the clinical effect on paresthesia coverage. The outcomes show that 3D patient-specific models would help physicians to choose the best stimulation parameters to optimize neural activation and SCS therapy in tonic stimulation.
Collapse
Affiliation(s)
- Carmen Solanes
- Center of research and innovation in bioengineering, Universitat Politècnica de València, Camino de Vera, s/n, Valencia, Valencia, Valencia, 46022, SPAIN
| | - José L Durá
- Center of Reseearch and Innovation in Bioengineering (Ci2b), Universitat Politècnica de València, Camino de Vera, s/n, Valencia, Comunitat Valenciana, 46022, SPAIN
| | - M Ángeles Canós
- Pain Unit, Hospital Universitari i Politècnic La Fe, Avinguda de Fernando Abril Martorell, 106, Valencia, Comunidad Valenciana, 46026, SPAIN
| | - José De Andrés
- Valencia School of Medicine, Consorci Hospital General Universitari de València, Av. de les Tres Creus, 2, Valencia, Comunitat Valenciana, 46014, SPAIN
| | - Luis Martí-Bonmatí
- Department of Medical Imaging, Hospital Universitari i Politecnic La Fe, Avinguda de Fernando Abril Martorell, 106, Valencia, Comunidad Valenciana, 46026, SPAIN
| | - Javier Saiz
- Universitat Politècnica de València, Camino de Vera, s/n, Valencia, 46022, SPAIN
| |
Collapse
|
7
|
Khadka N, Liu X, Zander H, Swami J, Rogers E, Lempka SF, Bikson M. Realistic anatomically detailed open-source spinal cord stimulation (RADO-SCS) model. J Neural Eng 2020; 17:026033. [DOI: 10.1088/1741-2552/ab8344] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
A comprehensive finite element model of surgical treatment for cervical myelopathy. Clin Biomech (Bristol, Avon) 2020; 74:79-86. [PMID: 32145673 DOI: 10.1016/j.clinbiomech.2020.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cervical myelopathy is a common and debilitating chronic spinal cord dysfunction. Treatment includes anterior and/or posterior surgical intervention to decompress the spinal cord and stabilize the spine, but no consensus has been made as to the preferable surgical intervention. The objective of this study was to develop an finite element model of the healthy and myelopathic C2-T1 cervical spine and common anterior and posterior decompression techniques to determine how spinal cord stress and strain is altered in healthy and diseased states. METHODS A finite element model of the C2-T1 cervical spine, spinal cord, pia, dura, cerebral spinal fluid, and neural ligaments was developed and validated against in vivo human displacement data. To model cervical myelopathy, disc herniation and osteophytes were created at the C4-C6 levels. Three common surgical interventions were then incorporated at these levels. FINDINGS The finite element model accurately predicted healthy and myelopathic spinal cord displacement compared to motions observed in vivo. Spinal cord strain increased during extension in the cervical myelopathy finite element model. All surgical techniques affected spinal cord stress and strain. Specifically, adjacent levels had increased stress and strain, especially in the anterior cervical discectomy and fusion case. INTERPRETATIONS This model is the first biomechanically validated, finite element model of the healthy and myelopathic C2-T1 cervical spine and spinal cord which predicts spinal cord displacement, stress, and strain during physiologic motion. Our findings show surgical intervention can cause increased strain in the adjacent levels of the spinal cord which is particularly worse following anterior cervical discectomy and fusion.
Collapse
|
9
|
Holland MT, Seaman SC, Woodroffe RW, Fredericks DC, Kovach CK, Gibson-Corley KN, Gillies GT, Howard MA. In Vivo Testing of a Prototype Intradural Spinal Cord Stimulator in a Porcine Model. World Neurosurg 2020; 137:e634-e641. [PMID: 32112934 DOI: 10.1016/j.wneu.2020.02.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Chronic midline low back pain is the number one reason for disability in the United States despite the prolific use of medical and surgical interventions. Notwithstanding the widespread use of epidural spinal cord stimulators (SCSs), there remains a large portion of the population with inadequate pain control thought to be because of the limited volume of stimulated neural tissue. Intradural SCSs represent an underexplored alternative strategy with the potential to improve selectivity, power efficiency, and efficacy. We studied and carried out development of an intradural form of an SCS. Herein we present the findings of in vivo testing of a prototype intradural SCS in a porcine model. METHODS Six female juvenile pigs underwent surgical investigation. One control animal underwent a laminectomy only, whereas the 5 other animals had implantation of an intradural SCS prototype. One of the prototypes was fully wired to enable acute stimulation and concurrent electromyographic recordings. All animals underwent terminal surgery 3 months postimplantation, with harvesting of the spinal column. Imaging (microcomputed tomography scan) and histopathologic examinations were subsequently performed. RESULTS All animals survived implantation without evidence of neurologic deficits or infection. Postmortem imaging and histopathologic examination of the spinal column revealed no evidence of spinal cord damage, cerebrospinal fluid fistula formation, abnormal bony overgrowth, or dural defect. Viable dura was present between the intra- and extradural plates of the device. Electromyographic recordings revealed evoked motor units from the stimulator. CONCLUSIONS Chronically implanted intradural device in the porcine model demonstrated safety and feasibility for translation into humans.
Collapse
Affiliation(s)
- Marshall T Holland
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Scott C Seaman
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Royce W Woodroffe
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Douglas C Fredericks
- Department of Orthopedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Christopher K Kovach
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | | | - George T Gillies
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA.
| |
Collapse
|
10
|
Khadka N, Truong DQ, Williams P, Martin JH, Bikson M. The Quasi-uniform assumption for Spinal Cord Stimulation translational research. J Neurosci Methods 2019; 328:108446. [PMID: 31589892 DOI: 10.1016/j.jneumeth.2019.108446] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Quasi-uniform assumption is a general theory that postulates local electric field predicts neuronal activation. Computational current flow model of spinal cord stimulation (SCS) of humans and animal models inform how the quasi-uniform assumption can support scaling neuromodulation dose between humans and translational animal. NEW METHOD Here we developed finite element models of cat and rat SCS, and brain slice, alongside SCS models. Boundary conditions related to species specific electrode dimensions applied, and electric fields per unit current (mA) predicted. RESULTS Clinically and across animal, electric fields change abruptly over small distance compared to the neuronal morphology, such that each neuron is exposed to multiple electric fields. Per unit current, electric fields generally decrease with body mass, but not necessarily and proportionally across tissues. Peak electric field in dorsal column rat and cat were ∼17x and ∼1x of clinical values, for scaled electrodes and equal current. Within the spinal cord, the electric field for rat, cat, and human decreased to 50% of peak value caudo-rostrally (C5-C6) at 0.48 mm, 3.2 mm, and 8 mm, and mediolaterally at 0.14 mm, 2.3 mm, and 3.1 mm. Because these space constants are different, electric field across species cannot be matched without selecting a region of interest (ROI). COMPARISON WITH EXISTING METHOD This is the first computational model to support scaling neuromodulation dose between humans and translational animal. CONCLUSIONS Inter-species reproduction of the electric field profile across the entire surface of neuron populations is intractable. Approximating quasi-uniform electric field in a ROI is a rational step to translational scaling.
Collapse
Affiliation(s)
- Niranjan Khadka
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| | - Dennis Q Truong
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Preston Williams
- Department of Molecular, Cellular, and Biomedical Sciences, City University of NY School of Medicine, New York, NY, 10031, USA
| | - John H Martin
- CUNY Graduate Center, New York, NY, 10031, USA; Department of Molecular, Cellular, and Biomedical Sciences, City University of NY School of Medicine, New York, NY, 10031, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| |
Collapse
|
11
|
Capogrosso M, Gandar J, Greiner N, Moraud EM, Wenger N, Shkorbatova P, Musienko P, Minev I, Lacour S, Courtine G. Advantages of soft subdural implants for the delivery of electrochemical neuromodulation therapies to the spinal cord. J Neural Eng 2019; 15:026024. [PMID: 29339580 DOI: 10.1088/1741-2552/aaa87a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE We recently developed soft neural interfaces enabling the delivery of electrical and chemical stimulation to the spinal cord. These stimulations restored locomotion in animal models of paralysis. Soft interfaces can be placed either below or above the dura mater. Theoretically, the subdural location combines many advantages, including increased selectivity of electrical stimulation, lower stimulation thresholds, and targeted chemical stimulation through local drug delivery. However, these advantages have not been documented, nor have their functional impact been studied in silico or in a relevant animal model of neurological disorders using a multimodal neural interface. APPROACH We characterized the recruitment properties of subdural interfaces using a realistic computational model of the rat spinal cord that included explicit representation of the spinal roots. We then validated and complemented computer simulations with electrophysiological experiments in rats. We additionally performed behavioral experiments in rats that received a lateral spinal cord hemisection and were implanted with a soft interface. MAIN RESULTS In silico and in vivo experiments showed that the subdural location decreased stimulation thresholds compared to the epidural location while retaining high specificity. This feature reduces power consumption and risks of long-term damage in the tissues, thus increasing the clinical safety profile of this approach. The hemisection induced a transient paralysis of the leg ipsilateral to the injury. During this period, the delivery of electrical stimulation restricted to the injured side combined with local chemical modulation enabled coordinated locomotor movements of the paralyzed leg without affecting the non-impaired leg in all tested rats. Electrode properties remained stable over time, while anatomical examinations revealed excellent bio-integration properties. SIGNIFICANCE Soft neural interfaces inserted subdurally provide the opportunity to deliver electrical and chemical neuromodulation therapies using a single, bio-compatible and mechanically compliant device that effectively alleviates locomotor deficits after spinal cord injury.
Collapse
Affiliation(s)
- Marco Capogrosso
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland. Department of Medicine, Platform of Translational Neuroscience, University of Fribourg, Fribourg, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nagel SJ, Frizon L, Maiti T, Machado AG, Gillies GT, Helland L, Woodroffe RW, Howard MA, Wilson S. Contemporary Approaches to Preventing and Treating Infections of Novel Intrathecal Neurostimulation Devices. World Neurosurg 2019; 128:e397-e408. [DOI: 10.1016/j.wneu.2019.04.165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 02/04/2023]
|
13
|
Anderson DJ, Kipke DR, Nagel SJ, Lempka SF, Machado AG, Holland MT, Gillies GT, Howard MA, Wilson S. Intradural Spinal Cord Stimulation: Performance Modeling of a New Modality. Front Neurosci 2019; 13:253. [PMID: 30941012 PMCID: PMC6434968 DOI: 10.3389/fnins.2019.00253] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 03/04/2019] [Indexed: 12/23/2022] Open
Abstract
Introduction: Intradural spinal cord stimulation (SCS) may offer significant therapeutic benefits for those with intractable axial and extremity pain, visceral pain, spasticity, autonomic dysfunction and related disorders. A novel intradural electrical stimulation device, limited by the boundaries of the thecal sac, CSF and spinal cord was developed to test this hypothesis. In order to optimize device function, we have explored finite element modeling (FEM). Methods: COMSOL®Multiphysics Electrical Currents was used to solve for fields and currents over a geometric model of a spinal cord segment. Cathodic and anodic currents are applied to the center and tips of the T-cross component of the electrode array to shape the stimulation field and constrain charge-balanced cathodic pulses to the target area. Results: Currents from the electrode sites can move the effective stimulation zone horizontally across the cord by a linear step method, which can be diversified considerably to gain greater depth of penetration relative to standard epidural SCS. It is also possible to prevent spread of the target area with no off-target action potential. Conclusion: Finite element modeling of a T-shaped intradural spinal cord stimulator predicts significant gains in field depth and current shaping that are beyond the reach of epidural stimulators. Future studies with in vivo models will investigate how this approach should first be tested in humans.
Collapse
Affiliation(s)
- David J Anderson
- NeuroNexus Technologies, Ann Arbor, MI, United States.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Daryl R Kipke
- NeuroNexus Technologies, Ann Arbor, MI, United States
| | - Sean J Nagel
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, United States
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Andre G Machado
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, United States
| | - Marshall T Holland
- Department of Neurosurgery, University of Iowa Hospitals & Clinics, Iowa City, IA, United States
| | - George T Gillies
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, United States
| | - Mathew A Howard
- Department of Neurosurgery, University of Iowa Hospitals & Clinics, Iowa City, IA, United States
| | - Saul Wilson
- Department of Neurosurgery, University of Iowa Hospitals & Clinics, Iowa City, IA, United States
| |
Collapse
|
14
|
Durá JL, Solanes C, De Andrés J, Saiz J. Computational Study of the Effect of Electrode Polarity on Neural Activation Related to Paresthesia Coverage in Spinal Cord Stimulation Therapy. Neuromodulation 2018; 22:269-279. [PMID: 30586207 DOI: 10.1111/ner.12909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Using computer simulation, we investigated the effect of electrode polarity on neural activation in spinal cord stimulation and propose a new strategy to maximize the activating area in the dorsal column (DC) and, thus, paresthesia coverage in clinical practice. MATERIALS AND METHODS A new three-dimensional spinal cord model at the T10 vertebral level was developed to simulate neural activation induced by the electric field distribution produced by different typical four-contact electrode polarities in single- and dual-lead stimulation. Our approach consisted of the combination of a finite element model of the spinal cord developed in COMSOL Multiphysics and a nerve fiber model implemented in MATLAB. Five evaluation parameters were evaluated, namely, the recruitment ratio, the perception and discomfort thresholds, and the activating area and depth. The results were compared quantitatively. RESULTS The dual-guarded cathode presents the maximum activating area and depth in single- and dual-lead stimulation. However, the lowest value of the ratio between the perception threshold in DC and the perception threshold in the dorsal root (DR) is achieved when the guarded cathode is programmed. Although the two versions of bipolar polarity (namely bipolar 1 and bipolar 2) produce higher activating area and depth than the guarded cathode, they are suitable for producing DR stimulation. Similarly, dual-lead stimulation is likely to activate DR fibers because the electrodes are closer to these fibers. CONCLUSIONS The results suggest that the activating area in the DC is maximized by using the dual-guarded cathode both in single- and dual-lead stimulation modes. However, DC nerve fibers are preferentially stimulated when the guarded cathode is used. According to these results, the new electrode programming strategy that we propose for clinical practice first uses the dual-guarded cathode, but, if the DR nerve fibers are activated, it then uses guarded cathode polarity.
Collapse
Affiliation(s)
- Jose L Durá
- Center of Research and Innovation in Bioengineering, Universitat Politècnica de València, Valencia, Spain
| | - Carmen Solanes
- Center of Research and Innovation in Bioengineering, Universitat Politècnica de València, Valencia, Spain
| | - Jose De Andrés
- Anesthesia, Critical Care, and Multidisciplinary Pain Management Department, General University Hospital, Valencia, Spain
- Anesthesia Unit- Surgical Specialties Department, Valencia University Medical School, Valencia, Spain
| | - Javier Saiz
- Center of Research and Innovation in Bioengineering, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
15
|
Zaer H, Rasmussen MM, Zepke F, Bodin C, Domurath B, Kutzenberger J. Effect of spinal anterior root stimulation and sacral deafferentation on bladder and sexual dysfunction in spinal cord injury. Acta Neurochir (Wien) 2018; 160:1377-1384. [PMID: 29744665 DOI: 10.1007/s00701-018-3557-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/03/2018] [Indexed: 10/16/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) is a highly devastating injury with a variety of complications; among them are neurogenic bladder, bowel, and sexual dysfunction. We aimed to evaluate the effect of sacral anterior root stimulation with sacral deafferentation (SARS-SDAF) on neurogenic bladder and sexual dysfunction in a large well-defined spinal cord injury cohort. METHODS In the manner of cross-sectional study, subjects undergone SARS-SDAF between September 1986 and July 2011 answered a questionnaire concerning conditions before and after surgery in the department of Neuro-Urology, Bad Wildungen, Germany. RESULTS In total 287 of 587 subjects were analyzed. Median age was 49 years (range 19-80), median time from SCI to surgery was 10 years (range 0-49), and from surgery to follow-up 13 years (range 1-25). Of the analyzed subjects, 100% of both gender used SARS for bladder emptying. On the visual analogue scale (VAS) ranging from 0 to 10 (best), satisfaction with SARS-SDAF was 10 concerning bladder emptying, however 5 and 8 regarding sexual performance, for female and male users, respectively. Baseline and follow-up comparison showed a decline in self-intermittent catheterization (p < 0.0001), partial catheterization by attendant (p = 0.0125), complete catheterization and suprapubic catheterization (p < 0.0001), transurethral catheterization (p < 0.0011), and fewer cases of involuntary urine leakage (p < 0.0001). CONCLUSIONS The SARS-SDAF is a beneficial multi-potential treatment method with simultaneous positive effect on multi-organ dysfunction among SCI subjects.
Collapse
|
16
|
Reddy CG, Miller JW, Abode-Iyamah KO, Safayi S, Wilson S, Dalm BD, Fredericks DC, Gillies GT, Howard MA, Brennan TJ. Ovine model of neuropathic pain for assessing mechanisms of spinal cord stimulation therapy via dorsal horn recordings, von Frey filaments, and gait analysis. J Pain Res 2018; 11:1147-1162. [PMID: 29942150 PMCID: PMC6007193 DOI: 10.2147/jpr.s139843] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background It is becoming increasingly important to understand the mechanisms of spinal cord stimulation (SCS) in alleviating neuropathic pain as novel stimulation paradigms arise. Purpose Additionally, the small anatomic scale of current SCS animal models is a barrier to more translational research. Methods Using chronic constriction injury (CCI) of the common peroneal nerve (CPN) in sheep (ovine), we have created a chronic model of neuropathic pain that avoids motor deficits present in prior large animal models. This large animal model has allowed us to implant clinical grade SCS hardware, which enables both acute and chronic testing using von Frey filament thresholds and gait analysis. Furthermore, the larger anatomic scale of the sheep allows for simultaneous single-unit recordings from the dorsal horn and SCS with minimal electrical artifact. Results Detectable tactile hypersensitivity occurred 21 days after nerve injury, with preliminary indications that chronic SCS may reverse it in the painful limb. Gait analysis revealed no hoof drop in the CCI model. Single neurons were identified and discriminated in the dorsal horn, and their activity was modulated via SCS. Unlike previous large animal models that employed a complete transection of the nerve, no motor deficit was observed in the sheep with CCI. Conclusion To our knowledge, this is the first reported large animal model of chronic neuropathic pain which facilitates the study of both acute and chronic SCS using complementary behavioral and electrophysiologic measures. As demonstrated by our successful establishment of these techniques, an ovine model of neuropathic pain is suitable for testing the mechanisms of SCS.
Collapse
Affiliation(s)
- Chandan G Reddy
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - John W Miller
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Kingsley O Abode-Iyamah
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sina Safayi
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
| | - Saul Wilson
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Brian D Dalm
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Douglas C Fredericks
- Department of Orthopedics and Rehabilitation, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - George T Gillies
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Timothy J Brennan
- Department of Anesthesia, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
17
|
Fernandes SR, Salvador R, Wenger C, de Carvalho M, Miranda PC. Transcutaneous spinal direct current stimulation of the lumbar and sacral spinal cord: a modelling study. J Neural Eng 2018; 15:036008. [PMID: 29386408 DOI: 10.1088/1741-2552/aaac38] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Our aim was to perform a computational study of the electric field (E-field) generated by transcutaneous spinal direct current stimulation (tsDCS) applied over the thoracic, lumbar and sacral spinal cord, in order to assess possible neuromodulatory effects on spinal cord circuitry related with lower limb functions. APPROACH A realistic volume conductor model of the human body consisting of 14 tissues was obtained from available databases. Rubber pad electrodes with a metallic connector and a conductive gel layer were modelled. The finite element (FE) method was used to calculate the E-field when a current of 2.5 mA was passed between two electrodes. The main characteristics of the E-field distributions in the spinal grey matter (spinal-GM) and spinal white matter (spinal-WM) were compared for seven montages, with the anode placed either over T10, T8 or L2 spinous processes (s.p.), and the cathode placed over right deltoid (rD), umbilicus (U) and right iliac crest (rIC) areas or T8 s.p. Anisotropic conductivity of spinal-WM and of a group of dorsal muscles near the vertebral column was considered. MAIN RESULTS The average E-field magnitude was predicted to be above 0.15 V m-1 in spinal cord regions located between the electrodes. L2-T8 and T8-rIC montages resulted in the highest E-field magnitudes in lumbar and sacral spinal segments (>0.30 V m-1). E-field longitudinal component is 3 to 6 times higher than the ventral-dorsal and right-left components in both the spinal-GM and WM. Anatomical features such as CSF narrowing due to vertebrae bony edges or disks intrusions in the spinal canal correlate with local maxima positions. SIGNIFICANCE Computational modelling studies can provide detailed information regarding the electric field in the spinal cord during tsDCS. They are important to guide the design of clinical tsDCS protocols that optimize stimulation of application-specific spinal targets.
Collapse
Affiliation(s)
- Sofia R Fernandes
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal. Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
18
|
Nagel SJ, Reddy CG, Frizon LA, Chardon MK, Holland M, Machado AG, Gillies GT, Howard MA, Wilson S. Spinal dura mater: biophysical characteristics relevant to medical device development. J Med Eng Technol 2018; 42:128-139. [PMID: 29569970 PMCID: PMC7053539 DOI: 10.1080/03091902.2018.1435745] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Understanding the relevant biophysical properties of the spinal dura mater is essential to the design of medical devices that will directly interact with this membrane or influence the contents of the intradural space. We searched the literature and reviewed the pertinent characteristics for the design, construction, testing, and imaging of novel devices intended to perforate, integrate, adhere or reside within or outside of the spinal dura mater. The spinal dura mater is a thin tubular membrane composed of collagen and elastin fibres that varies in circumference along its length. Its mechanical properties have been well-described, with the longitudinal tensile strength exceeding the transverse strength. Data on the bioelectric, biomagnetic, optical and thermal characteristics of the spinal dura are limited and sometimes taken to be similar to those of water. While various modalities are available to visualise the spinal dura, magnetic resonance remains the best modality to segment its structure. The reaction of the spinal dura to imposition of a foreign body or other manipulations of it may compromise its biomechanical and immune-protective benefits. Therefore, dural sealants and replacements are of particular clinical, research and commercial interest. In conclusion, existing devices that are in clinical use for spinal cord stimulation, intrathecal access or intradural implantation largely adhere to traditional designs and their attendant limitations. However, if future devices are built with an understanding of the dura's properties incorporated more fully into the designs, there is potential for improved performance.
Collapse
Affiliation(s)
- Sean J. Nagel
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - Chandan G. Reddy
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Leonardo A. Frizon
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - Matthieu K. Chardon
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marshall Holland
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Andre G. Machado
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - George T. Gillies
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - Matthew A. Howard
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Saul Wilson
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
19
|
Nagel SJ, Reddy CG, Frizon LA, Holland MT, Machado AG, Gillies GT, Howard MA. Intrathecal Therapeutics: Device Design, Access Methods, and Complication Mitigation. Neuromodulation 2017; 21:625-640. [DOI: 10.1111/ner.12693] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/26/2017] [Accepted: 07/29/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Sean J. Nagel
- Center for Neurological Restoration; Cleveland Clinic; Cleveland OH USA
| | - Chandan G. Reddy
- Department of Neurosurgery; University of Iowa Hospitals and Clinics; Iowa City IA USA
| | | | - Marshall T. Holland
- Department of Neurosurgery; University of Iowa Hospitals and Clinics; Iowa City IA USA
| | - Andre G. Machado
- Center for Neurological Restoration; Cleveland Clinic; Cleveland OH USA
| | - George T. Gillies
- Department of Mechanical and Aerospace Engineering; University of Virginia; Charlottesville VA USA
| | - Matthew A. Howard
- Department of Neurosurgery; University of Iowa Hospitals and Clinics; Iowa City IA USA
| |
Collapse
|
20
|
Wilson S, Abode-Iyamah KO, Miller JW, Reddy CG, Safayi S, Fredericks DC, Jeffery ND, DeVries-Watson NA, Shivapour SK, Viljoen S, Dalm BD, Gibson-Corley KN, Johnson MD, Gillies GT, Howard MA. An ovine model of spinal cord injury. J Spinal Cord Med 2017; 40:346-360. [PMID: 27759502 PMCID: PMC5472023 DOI: 10.1080/10790268.2016.1222475] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE To develop a large animal model of spinal cord injury (SCI), for use in translational studies of spinal cord stimulation (SCS) in the treatment of spasticity. We seek to establish thresholds for the SCS parameters associated with reduction of post-SCI spasticity in the pelvic limbs, with implications for patients. STUDY DESIGN The weight-drop method was used to create a moderate SCI in adult sheep, leading to mild spasticity in the pelvic limbs. Electrodes for electromyography (EMG) and an epidural spinal cord stimulator were then implanted. Behavioral and electrophysiological data were taken during treadmill ambulation in six animals, and in one animal with and without SCS at 0.1, 0.3, 0.5, and 0.9 V. SETTING All surgical procedures were carried out at the University of Iowa. The gait measurements were made at Iowa State University. MATERIAL AND METHODS Nine adult female sheep were used in these institutionally approved protocols. Six of them were trained in treadmill ambulation prior to SCI surgeries, and underwent gait analysis pre- and post-SCI. Stretch reflex and H-reflex measurements were also made in conscious animals. RESULTS Gait analysis revealed repeatable quantitative differences in 20% of the key kinematic parameters of the sheep, pre- and post-SCI. Hock joint angular velocity increased toward the normal pre-injury baseline in the animal with SCS at 0.9 V. CONCLUSION The ovine model is workable as a large animal surrogate suitable for translational studies of novel SCS therapies aimed at relieving spasticity in patients with SCI.
Collapse
Affiliation(s)
- Saul Wilson
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA,Correspondence to: Saul Wilson, Assistant Professor, Department of Neurosurgery, University of Iowa Hospitals and Clinics, 200 Hawkins Road, Iowa City, IA 52242-1086, USA.
| | | | - John W. Miller
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Chandan G. Reddy
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Sina Safayi
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
| | - Douglas C. Fredericks
- Department of Orthopedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Nicholas D. Jeffery
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
| | - Nicole A. DeVries-Watson
- Department of Orthopedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Sara K. Shivapour
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
| | - Stephanus Viljoen
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Brian D. Dalm
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Katherine N. Gibson-Corley
- Division of Comparative Pathology, Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - George T. Gillies
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - Matthew A. Howard
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
21
|
Nagel SJ, Wilson S, Johnson MD, Machado A, Frizon L, Chardon MK, Reddy CG, Gillies GT, Howard MA. Spinal Cord Stimulation for Spasticity: Historical Approaches, Current Status, and Future Directions. Neuromodulation 2017; 20:307-321. [PMID: 28370802 DOI: 10.1111/ner.12591] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/08/2016] [Accepted: 01/03/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Millions of people worldwide suffer with spasticity related to irreversible damage to the brain or spinal cord. Typical antecedent events include stroke, traumatic brain injury, and spinal cord injury, although insidious onset is also common. Regardless of the cause, the resulting spasticity leads to years of disability and reduced quality of life. Many treatments are available to manage spasticity; yet each is fraught with drawbacks including incomplete response, high cost, limited duration, dose-limiting side effects, and periodic maintenance. Spinal cord stimulation (SCS), a once promising therapy for spasticity, has largely been relegated to permanent experimental status. METHODS In this review, our goal is to document and critique the history and assess the development of SCS as a treatment of lower limb spasticity. By incorporating recent discoveries with the insights gained from the early pioneers in this field, we intend to lay the groundwork needed to propose testable hypotheses for future studies. RESULTS SCS has been tested in over 25 different conditions since a potentially beneficial effect was first reported in 1973. However, the lack of a fully formed understanding of the pathophysiology of spasticity, archaic study methodology, and the early technological limitations of implantable hardware limit the validity of many studies. SCS offers a measure of control for spasticity that cannot be duplicated with other interventions. CONCLUSIONS With improved energy-source miniaturization, tailored control algorithms, novel implant design, and a clearer picture of the pathophysiology of spasticity, we are poised to reintroduce and test SCS in this population.
Collapse
Affiliation(s)
- Sean J Nagel
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - Saul Wilson
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Michael D Johnson
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andre Machado
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - Leonardo Frizon
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - Matthieu K Chardon
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chandan G Reddy
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - George T Gillies
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
22
|
A spectral element method with adaptive segmentation for accurately simulating extracellular electrical stimulation of neurons. Med Biol Eng Comput 2016; 55:823-831. [PMID: 27541303 DOI: 10.1007/s11517-016-1558-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/30/2016] [Indexed: 10/21/2022]
Abstract
The capacity to quickly and accurately simulate extracellular stimulation of neurons is essential to the design of next-generation neural prostheses. Existing platforms for simulating neurons are largely based on finite-difference techniques; due to the complex geometries involved, the more powerful spectral or differential quadrature techniques cannot be applied directly. This paper presents a mathematical basis for the application of a spectral element method to the problem of simulating the extracellular stimulation of retinal neurons, which is readily extensible to neural fibers of any kind. The activating function formalism is extended to arbitrary neuron geometries, and a segmentation method to guarantee an appropriate choice of collocation points is presented. Differential quadrature may then be applied to efficiently solve the resulting cable equations. The capacity for this model to simulate action potentials propagating through branching structures and to predict minimum extracellular stimulation thresholds for individual neurons is demonstrated. The presented model is validated against published values for extracellular stimulation threshold and conduction velocity for realistic physiological parameter values. This model suggests that convoluted axon geometries are more readily activated by extracellular stimulation than linear axon geometries, which may have ramifications for the design of neural prostheses.
Collapse
|
23
|
Safayi S, Miller JW, Wilson S, Shivapour SK, Oelfke TF, Ford AL, Klarmann Staudt A, Abode-Iyamah K, Reddy CG, Jeffery ND, Fredericks DC, Gillies GT, Howard III MA. Treadmill measures of ambulation rates in ovine models of spinal cord injury and neuropathic pain. J Med Eng Technol 2016; 40:72-9. [DOI: 10.3109/03091902.2015.1132786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Greenebaum B. Calculated spinal cord electric fields and current densities for possible neurite regrowth from quasi-DC electrical stimulation. Bioelectromagnetics 2015; 36:564-75. [DOI: 10.1002/bem.21940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 10/08/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Ben Greenebaum
- Department of Physics; University of Wisconsin-Parkside; Kenosha Wisconsin
| |
Collapse
|
25
|
Kinematic analysis of the gait of adult sheep during treadmill locomotion: Parameter values, allowable total error, and potential for use in evaluating spinal cord injury. J Neurol Sci 2015; 358:107-12. [DOI: 10.1016/j.jns.2015.08.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/14/2015] [Accepted: 08/19/2015] [Indexed: 11/23/2022]
|
26
|
Howell B, Lad SP, Grill WM. Evaluation of intradural stimulation efficiency and selectivity in a computational model of spinal cord stimulation. PLoS One 2014; 9:e114938. [PMID: 25536035 PMCID: PMC4275184 DOI: 10.1371/journal.pone.0114938] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 11/16/2014] [Indexed: 11/23/2022] Open
Abstract
Spinal cord stimulation (SCS) is an alternative or adjunct therapy to treat chronic pain, a prevalent and clinically challenging condition. Although SCS has substantial clinical success, the therapy is still prone to failures, including lead breakage, lead migration, and poor pain relief. The goal of this study was to develop a computational model of SCS and use the model to compare activation of neural elements during intradural and extradural electrode placement. We constructed five patient-specific models of SCS. Stimulation thresholds predicted by the model were compared to stimulation thresholds measured intraoperatively, and we used these models to quantify the efficiency and selectivity of intradural and extradural SCS. Intradural placement dramatically increased stimulation efficiency and reduced the power required to stimulate the dorsal columns by more than 90%. Intradural placement also increased selectivity, allowing activation of a greater proportion of dorsal column fibers before spread of activation to dorsal root fibers, as well as more selective activation of individual dermatomes at different lateral deviations from the midline. Further, the results suggest that current electrode designs used for extradural SCS are not optimal for intradural SCS, and a novel azimuthal tripolar design increased stimulation selectivity, even beyond that achieved with an intradural paddle array. Increased stimulation efficiency is expected to increase the battery life of implantable pulse generators, increase the recharge interval of rechargeable implantable pulse generators, and potentially reduce stimulator volume. The greater selectivity of intradural stimulation may improve the success rate of SCS by mitigating the sensitivity of pain relief to malpositioning of the electrode. The outcome of this effort is a better quantitative understanding of how intradural electrode placement can potentially increase the selectivity and efficiency of SCS, which, in turn, provides predictions that can be tested in future clinical studies assessing the potential therapeutic benefits of intradural SCS.
Collapse
Affiliation(s)
- Bryan Howell
- Duke University, Department of Biomedical Engineering, Durham, NC, United States of America
| | - Shivanand P. Lad
- Duke University, Department of Surgery, Durham, NC, United States of America
| | - Warren M. Grill
- Duke University, Department of Biomedical Engineering, Durham, NC, United States of America
- Duke University, Department of Electrical and Computer Engineering, Durham, NC, United States of America
- Duke University, Department of Neurobiology, Durham, NC, United States of America
- Duke University, Department of Surgery, Durham, NC, United States of America
- * E-mail:
| |
Collapse
|
27
|
Grosland NM, Gillies GT, Shurig R, Stoner K, Viljoen S, Dalm BD, Oya H, Fredericks DC, Gibson-Corley K, Reddy C, Wilson S, Howard MA. Finite-Element Study of the Performance Characteristics of an Intradural Spinal Cord Stimulator. J Med Device 2014. [DOI: 10.1115/1.4028421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have used finite-element (FE) modeling to investigate the mechanical compliance, positional stability and contact pressures associated with a novel type of spinal cord stimulator that is placed directly on the pial surface of the spinal cord in order to more selectively activate neural structures for relief of intractable pain. The properties used in the model are those of the actual prototype devices employed in recent in vitro and chronic in vivo tests. The agreement between predictions and experimental observations serves to validate our FE approach, which can now be used to further optimize the device's design and performance.
Collapse
Affiliation(s)
- Nicole M. Grosland
- Department of Biomedical Engineering, The University of Iowa, 1420 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242 e-mail:
| | - George T. Gillies
- Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer's Way, Charlottesville, VA 22904 e-mail:
| | - Robert Shurig
- Evergreen Medical Technologies, Inc., 1350 Energy Lane, Suite 100, St. Paul, MN 55108 e-mail:
| | - Kirsten Stoner
- Department of Biomedical Engineering, 1402 Seamans Center for the Engineering Arts and Sciences, The University of Iowa, Iowa City, IA 52242 e-mail:
| | - Stephanus Viljoen
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, 1849 John Papajohn Pavilion, Iowa City, IA 52242 e-mail:
| | - Brian D. Dalm
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, 1849 John Papajohn Pavilion, Iowa City, IA 52242 e-mail:
| | - Hiroyuki Oya
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, 1849 John Papajohn Pavilion, Iowa City, IA 52242 e-mail:
| | - Douglas C. Fredericks
- Department of Orthopaedics and Rehabilitation, University of Iowa Hospitals and Clinics, 200 Hawkins Dr, Iowa City, IA 52242 e-mail:
| | - Katherine Gibson-Corley
- Department of Pathology, University of Iowa Hospitals and Clinics, 1167 Medical Laboratories, Iowa City, IA 52242 e-mail:
| | - Chandan Reddy
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, 1849 John Papajohn Pavilion, Iowa City, IA 52242 e-mail:
| | - Saul Wilson
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, 1849 John Papajohn Pavilion, Iowa City, IA 52242 e-mail:
| | - Matthew A. Howard
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, 1849 John Papajohn Pavilion, Iowa City, IA 52242 e-mail:
| |
Collapse
|