1
|
Gu K, Guan Z, Chang Y, Gao B, Ling Y, Song Z, Wan F. Hemodynamic effects of pulsatile unloading of left ventricular assist devices (LVAD) on intraventricular flow and ventricular stress. J Biomech 2020; 103:109425. [DOI: 10.1016/j.jbiomech.2019.109425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 10/08/2019] [Accepted: 10/13/2019] [Indexed: 12/21/2022]
|
2
|
Hirschvogel M, Jagschies L, Maier A, Wildhirt SM, Gee MW. An in silico twin for epicardial augmentation of the failing heart. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3233. [PMID: 31267697 DOI: 10.1002/cnm.3233] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
Advances in ventricular assist device (VAD) technology for the treatment of end-stage congestive heart failure (CHF) are needed to cope with the increasing numbers of patients that cannot be provided with donor hearts for transplantation. We develop and investigate a novel extravascular VAD technology that provides biventricular, epicardial pressure support for the failing heart. This novel VAD concept avoids blood contact that is accompanied with typical complications such as coagulation and infections. To date, in vivo porcine model results with a prototype of the implant exist, further studies to improve the implant's performance and promote its applicability in humans are needed. In this contribution, we present a personalised functional digital twin of the heart, the vascular system, and the novel VAD technology in terms of a calibrated, customized computational model. The calibration procedure is based on patient-specific measurements and is performed by solving an inverse problem. This in silico model is able to (a) confirm in vivo experimental data, (b) predict healthy and pathologic ventricular function, and (c) assess the beneficial impact of the novel VAD concept to a high level of fidelity. The model shows very good agreement with in vivo data and reliably predicts increases in stroke volume and left ventricular pressure with increasing ventricular support. Furthermore, the digital twin allows insight into quantities that are poorly or not at all amenable in any experimental setup. Conclusively, the model's ability to link integral hemodynamic variables to local tissue mechanical deformation makes it a highly valuable tool for the dimensioning of novel VAD technologies and future treatment strategies in heart failure. The presented in silico twin enhances in vivo studies by facilitating the accessibility and increasing the range of quantities of interest. Because of its flexibility in the assessment of design variants and optimization loops, it may substantially contribute to a reduction of the amount of animal experiments in this and similar settings.
Collapse
Affiliation(s)
- Marc Hirschvogel
- Mechanics & High Performance Computing Group, Technische Universität München, Parkring 35, 85748, Garching b. München, Germany
| | - Lasse Jagschies
- Mechanics & High Performance Computing Group, Technische Universität München, Parkring 35, 85748, Garching b. München, Germany
| | - Andreas Maier
- AdjuCor GmbH, Neumarkter Str. 18, 81673, München, Germany
| | | | - Michael W Gee
- Mechanics & High Performance Computing Group, Technische Universität München, Parkring 35, 85748, Garching b. München, Germany
| |
Collapse
|
3
|
Gu K, Zhang Z, Chang Y, Gao B, Wan F. Computational analysis of the hemodynamic characteristics under interaction influence of β-blocker and LVAD. Biomed Eng Online 2018; 17:178. [PMID: 30509276 PMCID: PMC6276231 DOI: 10.1186/s12938-018-0602-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Background Hemodynamic characteristics of the interaction influence among support level and model of LVAD, and coupling β-blocker has not been reported. Methods In this study, the effect of support level and model of LVAD on cardiovascular hemodynamic characteristics is investigated. In addition, the effect of β-blocker on unloading with LVAD is analyzed to elucidate the mechanism of LVAD coupling β-blocker. A multi-scale model from cell level to system level is proposed. Moreover, LVAD coupling β-blocker has been researching to explain the hemodynamics of cardiovascular system. Results Myocardial force was decreased along with the increase of support level of LVAD, and co-pulse mode was the lowest among the three support modes. Additionally, the β-blocker combined with LVAD significantly reduced the left ventricular volume compared with LVAD support without β-blocker. However, the left ventricular pressure under both cases has no significant difference. External work of right ventricular was increased along with the growth of support level of only LVAD. The LVAD under co-pulse mode achieved the lowest right-ventricular EW among the three support modes. Conclusions Co-pulse mode with β-blocker could be an optimal strategy for promoting cardiac structure and function recovery.
Collapse
Affiliation(s)
- Kaiyun Gu
- Peking University Third Hospital, Peking University Health Science Center, 49 North Garden Rd, Haidian District, Beijing, 100191, China
| | - Zhe Zhang
- Peking University Third Hospital, Peking University Health Science Center, 49 North Garden Rd, Haidian District, Beijing, 100191, China.
| | - Yu Chang
- College of Life Science & Bio-Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Bin Gao
- College of Life Science & Bio-Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Feng Wan
- Peking University Third Hospital, Peking University Health Science Center, 49 North Garden Rd, Haidian District, Beijing, 100191, China
| |
Collapse
|
4
|
Abstract
Identification of in vivo passive biomechanical properties of healthy human myocardium from regular clinical data is essential for subject-specific modelling of left ventricle (LV). In this work, myocardium was defined by Holzapfel-Ogden constitutive law. Therefore, the objectives of the study were (a) to estimate the ranges of the constitutive parameters for healthy human myocardium using non-invasive routine clinical data, and (b) to investigate the effect of geometry, LV end-diastolic pressure (EDP) and fibre orientations on estimated values. In order to avoid invasive measurements and additional scans, LV cavity volume, measured from routine MRI, and empirical pressure-normalised-volume relation (Klotz-curve) were used as clinical data. Finite element modelling, response surface method and genetic algorithm were used to inversely estimate the constitutive parameters. Due to the ill-posed nature of the inverse optimisation problem, the myocardial properties was extracted by identifying the ranges of the parameters, instead of finding unique values. Additional sensitivity studies were carried out to identify the effect of LV EDP, fibre orientation and geometry on estimated parameters. Although uniqueness of the solution cannot be achieved, the normal ranges of the parameters produced similar mechanical responses within the physiological ranges. These information could be used in future computational studies for designing heart failure treatments. Graphical abstract.
Collapse
|
5
|
In vivo estimation of passive biomechanical properties of human myocardium. Med Biol Eng Comput 2018; 56:1615-1631. [PMID: 29479659 PMCID: PMC6096751 DOI: 10.1007/s11517-017-1768-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 12/13/2017] [Indexed: 11/24/2022]
Abstract
Identification of in vivo passive biomechanical properties of healthy human myocardium from regular clinical data is essential for subject-specific modelling of left ventricle (LV). In this work, myocardium was defined by Holzapfel-Ogden constitutive law. Therefore, the objectives of the study were (a) to estimate the ranges of the constitutive parameters for healthy human myocardium using non-invasive routine clinical data, and (b) to investigate the effect of geometry, LV end-diastolic pressure (EDP) and fibre orientations on estimated values. In order to avoid invasive measurements and additional scans, LV cavity volume, measured from routine MRI, and empirical pressure-normalised-volume relation (Klotz-curve) were used as clinical data. Finite element modelling, response surface method and genetic algorithm were used to inversely estimate the constitutive parameters. Due to the ill-posed nature of the inverse optimisation problem, the myocardial properties was extracted by identifying the ranges of the parameters, instead of finding unique values. Additional sensitivity studies were carried out to identify the effect of LV EDP, fibre orientation and geometry on estimated parameters. Although uniqueness of the solution cannot be achieved, the normal ranges of the parameters produced similar mechanical responses within the physiological ranges. These information could be used in future computational studies for designing heart failure treatments. Graphical abstract ![]()
Collapse
|
6
|
Kim YS, Yuniarti AR, Song KS, Trayanova NA, Shim EB, Lim KM. Computational analysis of the effect of mitral and aortic regurgitation on the function of ventricular assist devices using 3D cardiac electromechanical model. Med Biol Eng Comput 2017; 56:889-898. [PMID: 29080191 PMCID: PMC5906511 DOI: 10.1007/s11517-017-1727-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 04/19/2017] [Indexed: 11/15/2022]
Abstract
Valvular insufficiency affects cardiac responses and the pumping efficacy of left ventricular assist devices (LVADs) when patients undergo LVAD therapy. Knowledge of the effect of valvular regurgitation on the function of LVADs is important when treating heart failure patients. The goal of this study was to examine the effect of valvular regurgitation on the ventricular mechanics of a heart under LVAD treatment and the pumping efficacy of an LVAD using a computational model of the cardiovascular system. For this purpose, a 3D electromechanical model of failing ventricles in a human heart was coupled with a lumped-parameter model of valvular regurgitation and an LVAD-implanted vascular system. We used the computational model to predict cardiac responses with respect to the severity of valvular regurgitation in the presence of LVAD treatment. An LVAD could reduce left ventricle (LV) pressure (up to 34%) and end-diastolic ventricular volume (up to 80%) and maintain cardiac output at the estimated flow rate from the LVAD under the condition of mitral regurgitation (MR); however, the opposite would occur under the condition of aortic regurgitation (AR). Considering these physiological responses, we conclude that AR, and not MR, diminishes the pumping function of LVADs.
Collapse
Affiliation(s)
- Yoo Seok Kim
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 39253, Republic of South Korea
| | - Ana R Yuniarti
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 39253, Republic of South Korea
| | - Kwang-Soup Song
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of South Korea
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Eun Bo Shim
- Department of Mechanical & Biomedical Engineering, Kangwon National University, Chuncheon, Republic of South Korea
| | - Ki Moo Lim
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 39253, Republic of South Korea.
| |
Collapse
|
7
|
Partial LVAD restores ventricular outputs and normalizes LV but not RV stress distributions in the acutely failing heart in silico. Int J Artif Organs 2016; 39:421-430. [PMID: 27646633 PMCID: PMC5067236 DOI: 10.5301/ijao.5000520] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2016] [Indexed: 12/15/2022]
Abstract
PURPOSE Heart failure is a worldwide epidemic that is unlikely to change as the population ages and life expectancy increases. We sought to detail significant recent improvements to the Dassault Systèmes Living Heart Model (LHM) and use the LHM to compute left ventricular (LV) and right ventricular (RV) myofiber stress distributions under the following 4 conditions: (1) normal cardiac function; (2) acute left heart failure (ALHF); (3) ALHF treated using an LV assist device (LVAD) flow rate of 2 L/min; and (4) ALHF treated using an LVAD flow rate of 4.5 L/min. METHODS AND RESULTS Incorporating improved systolic myocardial material properties in the LHM resulted in its ability to simulate the Frank-Starling law of the heart. We decreased myocardial contractility in the LV myocardium so that LV ejection fraction decreased from 56% to 28%. This caused mean LV end diastolic (ED) stress to increase to 508% of normal, mean LV end systolic (ES) stress to increase to 113% of normal, mean RV ED stress to decrease to 94% of normal and RV ES to increase to 570% of normal. When ALHF in the model was treated with an LVAD flow rate of 4.5 L/min, most stress results normalized. Mean LV ED stress became 85% of normal, mean LV ES stress became 109% of normal and mean RV ED stress became 95% of normal. However, mean RV ES stress improved less dramatically (to 342% of normal values). CONCLUSIONS These simulations strongly suggest that an LVAD is effective in normalizing LV stresses but not RV stresses that become elevated as a result of ALHF.
Collapse
|
8
|
Abstract
The heart pumps blood to maintain circulation and ensure the delivery of oxygenated blood to all the organs of the body. Mechanics play a critical role in governing and regulating heart function under both normal and pathological conditions. Biological processes and mechanical stress are coupled together in regulating myocyte function and extracellular matrix structure thus controlling heart function. Here, we offer a brief introduction to the biomechanics of left ventricular function and then summarize recent progress in the study of the effects of mechanical stress on ventricular wall remodeling and cardiac function as well as the effects of wall mechanical properties on cardiac function in normal and dysfunctional hearts. Various mechanical models to determine wall stress and cardiac function in normal and diseased hearts with both systolic and diastolic dysfunction are discussed. The results of these studies have enhanced our understanding of the biomechanical mechanism in the development and remodeling of normal and dysfunctional hearts. Biomechanics provide a tool to understand the mechanism of left ventricular remodeling in diastolic and systolic dysfunction and guidance in designing and developing new treatments.
Collapse
Affiliation(s)
- Andrew P. Voorhees
- Department of Mechanical Engineering, The University of Texas at San Antonio, Biomedical Engineering Program, UTSA-UTHSCSA
| | - Hai-Chao Han
- Department of Mechanical Engineering, The University of Texas at San Antonio, Biomedical Engineering Program, UTSA-UTHSCSA
| |
Collapse
|