1
|
Ahmed H, Podder C. Hemodynamical behavior analysis of anemic, diabetic, and healthy blood flow in the carotid artery. Heliyon 2024; 10:e26622. [PMID: 38420368 PMCID: PMC10900792 DOI: 10.1016/j.heliyon.2024.e26622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
The influence of blood rheology on hemodynamic parameters is investigated using Computational Fluid Dynamics on blood flow through the human carotid artery. We performed three-dimensional modeling and simulation to study blood flow through the carotid artery, which is divided into internal and exterior parts with a decreased radius. The blood flow was classified as basic pulsatile to simulate the human heart's rhythmic pulses. For hemodynamic modeling viscosity of the fluid, the Carreau model was utilized with four distinct blood instances: Anemic, diabetic, and two healthy blood types. The boundary conditions with Carreau viscosity were applied using the Ansys Fluent simulator, and the governing equations were solved using the finite volume technique. Different time steps were tested for their impact on wall deformation, strain rate, blood velocity, pressure, wall shear, and skin friction coefficient. The hemodynamical parameters were calculated using many cross-sectional planes along the artery. Finally, the impact of the four types of blood cases listed above was investigated, and we discovered that each blood case has a substantial impact on blood velocity, pressure, wall shear, and strain rate along the artery.
Collapse
Affiliation(s)
- Hashnayne Ahmed
- Department of Mathematics, Faculty of Science & Engineering, University of Barishal, Barishal, 8200, Bangladesh
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Chinmayee Podder
- Department of Mathematics, Faculty of Science & Engineering, University of Barishal, Barishal, 8200, Bangladesh
| |
Collapse
|
2
|
Dinh H, Vinuela F, Szeder V, Khatibi K, Mejia LP, Chien A. Reconstruction of carotid stenosis hemodynamics based on guidewire pressure data and computational modeling. Med Biol Eng Comput 2022; 60:1253-1268. [PMID: 35359199 DOI: 10.1007/s11517-021-02463-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/21/2021] [Indexed: 01/01/2023]
Abstract
A comparative analysis between intravascular guidewire-obtained and computational fluid dynamic (CFD) flow velocity and pressure data using simplified carotid stenosis models was performed. This information was used to evaluate the viability of using guidewire pressure data to provide inlet conditions for CFD flow, and to study the relationship between stenotic length and hemodynamic behavior. Carotid stenosis models differing in diameter and length were prepared and connected to a vascular pulsatile flow simulator. Time-dependent flow velocity and pressure measurements were taken by microcatheter guidewires and compared with CFD data. Guidewire and CFD-generated pressure profiles matched closely in all measurement locations. The guidewire was unable to reliably measure flow velocity at areas associated with higher CFD flow velocities (r = 0.92). CFD results showed that an increased length of stenosis generated expansive regions of elevated wall shear stress (WSS) within and distal to the stenosis. Low WSS was found immediately outside the stenosis outlet. An increase in stenotic length produced higher flow velocities with minimal lengthening of the distal high velocity flow jet due to faster dissipation of translational kinetic energy through turbulence. We found the accuracy of guidewire-obtained velocity measurements is limited to regions unaffected by disturbed flow. WSS and turbulence behavior distal to the stenosis may be important markers to evaluate the severity of atherosclerotic progression as a function of stenotic length.
Collapse
Affiliation(s)
- Huy Dinh
- Physics and Biology in Medicine Graduate Program, Division of Interventional Neuroradiology, Department of Radiological Sciences, Ronald Reagan UCLA Medical Center, David Geffen UCLA School of Medicine, Los Angeles, USA
| | - Fernando Vinuela
- Physics and Biology in Medicine Graduate Program, Division of Interventional Neuroradiology, Department of Radiological Sciences, Ronald Reagan UCLA Medical Center, David Geffen UCLA School of Medicine, Los Angeles, USA
| | - Viktor Szeder
- Physics and Biology in Medicine Graduate Program, Division of Interventional Neuroradiology, Department of Radiological Sciences, Ronald Reagan UCLA Medical Center, David Geffen UCLA School of Medicine, Los Angeles, USA
| | - Kasra Khatibi
- Physics and Biology in Medicine Graduate Program, Division of Interventional Neuroradiology, Department of Radiological Sciences, Ronald Reagan UCLA Medical Center, David Geffen UCLA School of Medicine, Los Angeles, USA
| | - Lucido Ponce Mejia
- Physics and Biology in Medicine Graduate Program, Division of Interventional Neuroradiology, Department of Radiological Sciences, Ronald Reagan UCLA Medical Center, David Geffen UCLA School of Medicine, Los Angeles, USA
| | - Aichi Chien
- Physics and Biology in Medicine Graduate Program, Division of Interventional Neuroradiology, Department of Radiological Sciences, Ronald Reagan UCLA Medical Center, David Geffen UCLA School of Medicine, Los Angeles, USA.
| |
Collapse
|
3
|
Geometry and Flow Properties Affect the Phase Shift between Pressure and Shear Stress Waves in Blood Vessels. FLUIDS 2021. [DOI: 10.3390/fluids6110378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The phase shift between pressure and wall shear stress (WSS) has been associated with vascular diseases such as atherosclerosis and aneurysms. The present study aims to understand the effects of geometry and flow properties on the phase shift under the stiff wall assumption, using an immersed-boundary-lattice-Boltzmann method. For pulsatile flow in a straight pipe, the phase shift is known to increase with the Womersley number, but is independent of the flow speed (or the Reynolds number). For a complex geometry, such as a curved pipe, however, we find that the phase shift develops a strong dependence on the geometry and Reynolds number. We observed that the phase shift at the inner bend of the curved vessel and in the aneurysm dome is larger than that in a straight pipe. Moreover, the geometry affects the connection between the phase shift and other WSS-related metrics, such as time-averaged WSS (TAWSS). For straight and curved blood vessels, the phase shift behaves qualitatively similarly to and can thus be represented by the TAWSS, which is a widely used hemodynamic index. However, these observables significantly differ in other geometries, such as in aneurysms. In such cases, one needs to consider the phase shift as an independent quantity that may carry additional valuable information compared to well-established metrics.
Collapse
|
4
|
Ghorbanniahassankiadeh A, Marks DS, LaDisa JF. Correlation of Computational Instantaneous Wave-Free Ratio With Fractional Flow Reserve for Intermediate Multivessel Coronary Disease. J Biomech Eng 2021; 143:051011. [PMID: 33454732 DOI: 10.1115/1.4049746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Indexed: 01/14/2023]
Abstract
This study computationally assesses the accuracy of an instantaneous wave-free ratio (iFR) threshold range compared to standard modalities such as fractional flow reserve (FFR) and coronary flow reserve (CFR) for multiple intermediate lesions near the left main (LM) coronary bifurcation. iFR is an adenosine-independent index encouraged for assessment of coronary artery disease (CAD), but different thresholds are debated. This becomes particularly challenging in cases of multivessel disease when sensitivity to downstream lesions is unclear. Idealized LM coronary arteries with 34 different intermediate stenoses were created and categorized (Medina) as single and multiple lesion groups. Computational fluid dynamics modeling was performed with physiologic boundary conditions using an open-source software (simvascular1) to solve the time-dependent Navier-Stokes equations. A strong linear relationship between iFR and FFR was observed among studied models, indicating computational iFR values of 0.92 and 0.93 are statistically equivalent to an FFR of 0.80 in single and multiple lesion groups, respectively. At the clinical FFR value (i.e., 0.8), a triple-lesion group had smaller CFR compared to the single and double lesion groups (e.g., triple = 3.077 versus single = 3.133 and double = 3.132). In general, the effect of additional intermediate downstream lesions (minimum lumen area > 3 mm2) was not statistically significant for iFR and CFR. A computational iFR of 0.92 best predicts an FFR of 0.80 and may be recommended as threshold criteria for computational assessment of LM stenosis following additional validation using patient-specific models.
Collapse
Affiliation(s)
- Arash Ghorbanniahassankiadeh
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, 8701 W Watertown Plank Road, Milwaukee, WI 53226
| | - David S Marks
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226
| | - John F LaDisa
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, 8701 W Watertown Plank Road, Milwaukee, WI 53226; Department of Physiology, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226; Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226
| |
Collapse
|
5
|
Sharzehee M, Seddighi Y, Sprague EA, Finol EA, Han HC. A Hemodynamic Comparison of Myocardial Bridging and Coronary Atherosclerotic Stenosis: A Computational Model With Experimental Evaluation. J Biomech Eng 2021; 143:031013. [PMID: 33269788 DOI: 10.1115/1.4049221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Indexed: 11/08/2022]
Abstract
Myocardial bridging (MB) and coronary atherosclerotic stenosis can impair coronary blood flow and may cause myocardial ischemia or even heart attack. It remains unclear how MB and stenosis are similar or different regarding their impacts on coronary hemodynamics. The purpose of this study was to compare the hemodynamic effects of coronary stenosis and MB using experimental and computational fluid dynamics (CFD) approaches. For CFD modeling, three MB patients with different levels of lumen obstruction, mild, moderate, and severe were selected. Patient-specific left anterior descending (LAD) coronary artery models were reconstructed from biplane angiograms. For each MB patient, the virtually healthy and stenotic models were also simulated for comparison. In addition, an in vitro flow-loop was developed, and the pressure drop was measured for comparison. The CFD simulations results demonstrated that the difference between MB and stenosis increased with increasing MB/stenosis severity and flowrate. Experimental results showed that increasing the MB length (by 140%) only had significant impact on the pressure drop in the severe MB (39% increase at the exercise), but increasing the stenosis length dramatically increased the pressure drop in both moderate and severe stenoses at all flow rates (31% and 93% increase at the exercise, respectively). Both CFD and experimental results confirmed that the MB had a higher maximum and a lower mean pressure drop in comparison with the stenosis, regardless of the degree of lumen obstruction. A better understanding of MB and atherosclerotic stenosis may improve the therapeutic strategies in coronary disease patients and prevent acute coronary syndromes.
Collapse
Affiliation(s)
- Mohammadali Sharzehee
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249
| | - Yasamin Seddighi
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249
| | - Eugene A Sprague
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229
| | - Ender A Finol
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249
| | - Hai-Chao Han
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249
| |
Collapse
|
6
|
Ahmadpour-B M, Nooraeen A, Tafazzoli-Shadpour M, Taghizadeh H. Contribution of atherosclerotic plaque location and severity to the near-wall hemodynamics of the carotid bifurcation: an experimental study and FSI modeling. Biomech Model Mechanobiol 2021; 20:1069-1085. [PMID: 33609192 DOI: 10.1007/s10237-021-01431-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/03/2021] [Indexed: 01/22/2023]
Abstract
Atherosclerosis is initiated by endothelial injury that is related to abnormal values of hemodynamic parameters such as wall shear stress (WSS), oscillatory shear index (OSI) and stress phase angle (SPA), which are more common in arterial bifurcations due to the complex structure. An experimental model of human carotid bifurcation with accurate geometrical and mechanical features was set up, and using realistic pulsatile flow rates, the inlet and outlet pressure pulses were measured for normal and stenosed models with 40% and 80% severities at common carotid (CCA), internal carotid (ICA) and external carotid (ECA) arteries. Based on the obtained experimental data, fluid-structure models were developed to obtain WSS, OSI, and SPA and evaluate pathological consequences at different locations. Mild severity had minor impact, however, inducing severe 80% stenosis in each branch led to considerable localized changes of hemodynamic parameters both in the stenosis site and other locations. This included sharp increases in WSS values accompanied by very low values close to zero before and after the peaks. Severe stenosis not only caused significant changes in the local artery, but also in other branches. OSI and SPA were less sensitive to stenosis, although high peaks were observed on bifurcation site for the stenosis at ECA. The interconnection of arteries at carotid bifurcation results in altered pressure/flow patterns in all branches when a stenosis is applied in any site. Such effect confirms pathological findings that atherosclerotic plaques are observed simultaneously in different carotid branches, although with different degrees of plaque growth and severity.
Collapse
Affiliation(s)
- Mahyar Ahmadpour-B
- Cardiovascular Engineering Lab, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ahmad Nooraeen
- Tissue Mechanics Lab, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Mohammad Tafazzoli-Shadpour
- Cardiovascular Engineering Lab, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Hadi Taghizadeh
- Tissue Mechanics Lab, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran.
| |
Collapse
|
7
|
Guan Q, Sun D, Zhao M, Liu Y, Yu S, Zhang J, Li R, Sun K, Sun X, Bie X. The biomechanical characteristics of human vestibular aqueduct: a numerical-based model construction and simulation. Comput Methods Biomech Biomed Engin 2020; 24:905-912. [PMID: 33305605 DOI: 10.1080/10255842.2020.1858284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Vestibular aqueduct is a precise structure embedded in the temporal bone and plays a key role in the physiological function of inner ear by maintaining the endolymphatic circulation and buffering the impact from intracranial pressure. Although the alterations on the morphology or volume of vestibular aqueduct result in variety of diseases, the approaches of evaluating the condition of vestibular aqueduct are still unsatisfing because the pathological sections utilized for the 3D construction model most likely undergoes morphological changes. In this study, the vestibular aqueduct images obtained by CT scanning were processed by finite element method to construct the 3D model. To assess if this numerical model reflects the actual biomechanical properties of vestibular aqueduct, the fluid-solid coupling calculation was applied to simulate the endolymphatic flow in the vestibular aqueduct. By measuring the dynamics of endolymphatic flow, and the pressure and displacement on round membrane under external pressure, we found the numerical 3D model recapitulated the biomechanical characteristics of the real vestibular aqueduct. In summary, our approach of 3D model construction for vestibular aqueduct will provide a powerful method for the research of vestibular aqueduct-related diseases.
Collapse
Affiliation(s)
- Qingjie Guan
- Department of Otolaryngology-Head and Neck Surgery, the 2nd Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Dong Sun
- Department of Otolaryngology-Head and Neck Surgery, the 2nd Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Ming Zhao
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Yingxi Liu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Shen Yu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Jianing Zhang
- Department of Otorhinolaryngology, Xiamen Humanity Hospital, Xiamen, Fujian Province, China
| | - Rui Li
- Department of Otorhinolaryngology, the Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Kaili Sun
- Department of Otolaryngology-Head and Neck Surgery, the 2nd Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xiuzhen Sun
- Department of Otolaryngology-Head and Neck Surgery, the 2nd Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xu Bie
- Department of Otolaryngology-Head and Neck Surgery, the 2nd Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
8
|
Hirschhorn M, Tchantchaleishvili V, Stevens R, Rossano J, Throckmorton A. Fluid–structure interaction modeling in cardiovascular medicine – A systematic review 2017–2019. Med Eng Phys 2020; 78:1-13. [DOI: 10.1016/j.medengphy.2020.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 01/18/2020] [Accepted: 01/26/2020] [Indexed: 01/06/2023]
|
9
|
Sharzehee M, Chang Y, Song JP, Han HC. Hemodynamic effects of myocardial bridging in patients with hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 2019; 317:H1282-H1291. [PMID: 31674812 DOI: 10.1152/ajpheart.00466.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Myocardial bridging (MB) is linked to angina and myocardial ischemia and may lead to sudden cardiac death in patients with hypertrophic cardiomyopathy (HCM). However, it remains unclear how MB affect the coronary blood flow in HCM patients. The aim of this study was to assess the effects of MB on coronary hemodynamics in HCM patients. Fifteen patients with MB (7 HCM and 8 non-HCM controls) in their left anterior descending (LAD) coronary artery were chosen. Transient computational fluid dynamics (CFD) simulations were conducted in anatomically realistic models of diseased (with MB) and virtually healthy (without MB) LAD from these patients, reconstructed from biplane angiograms. Our CFD simulation results demonstrated that dynamic compression of MB led to diastolic flow disturbances and could significantly reduce the coronary flow in HCM patients as compared with non-HCM group (P < 0.01). The pressure drop coefficient was remarkably higher (P < 0.05) in HCM patients. The flow rate change is strongly correlated with both upstream Reynolds number and MB compression ratio, while the MB length has less impact on coronary flow. The hemodynamic results and clinical outcomes revealed that HCM patients with an MB compression ratio higher than 65% required a surgical intervention. In conclusion, the transient MB compression can significantly alter the diastolic flow pattern and wall shear stress distribution in HCM patients. HCM patients with severe MB may need a surgical intervention.NEW & NOTEWORTHY In this study, the hemodynamic significance of myocardial bridging (MB) in patients with hypertrophic cardiomyopathy (HCM) was investigated to provide valuable information for surgical decision-making. Our results illustrated that the transient MB compression led to complex flow patterns, which can significantly alter the diastolic flow and wall shear stress distribution. The hemodynamic results and clinical outcomes demonstrated that patients with HCM and an MB compression ratio higher than 65% required a surgical intervention.
Collapse
Affiliation(s)
- Mohammadali Sharzehee
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, Texas
| | - Yuan Chang
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, China
| | - Jiang-Ping Song
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, China
| | - Hai-Chao Han
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
10
|
Mei CC, Zhang J, Jing HX. Fluid mechanics of Windkessel effect. Med Biol Eng Comput 2018; 56:1357-1366. [PMID: 29308546 DOI: 10.1007/s11517-017-1775-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
We describe a mechanistic model of Windkessel phenomenon based on the linear dynamics of fluid-structure interactions. The phenomenon has its origin in an old-fashioned fire-fighting equipment where an air chamber serves to transform the intermittent influx from a pump to a more steady stream out of the hose. A similar mechanism exists in the cardiovascular system where blood injected intermittantly from the heart becomes rather smooth after passing through an elastic aorta. In existing haeodynamics literature, this mechanism is explained on the basis of electric circuit analogy with empirical impedances. We present a mechanistic theory based on the principles of fluid/structure interactions. Using a simple one-dimensional model, wave motion in the elastic aorta is coupled to the viscous flow in the rigid peripheral artery. Explicit formulas are derived that exhibit the role of material properties such as the blood density, viscosity, wall elasticity, and radii and lengths of the vessels. The current two-element model in haemodynamics is shown to be the limit of short aorta and low injection frequency and the impedance coefficients are derived theoretically. Numerical results for different aorta lengths and radii are discussed to demonstrate their effects on the time variations of blood pressure, wall shear stress, and discharge. Graphical Abstract A mechanistic analysis of Windkessel Effect is described which confirms theoretically the well-known feature that intermittent influx becomes continuous outflow. The theory depends only on the density and viscosity of the blood, the elasticity and dimensions of the vessel. Empirical impedence parameters are avoided.
Collapse
Affiliation(s)
- C C Mei
- Department of Civil and Environmental Engineering, Massacheusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - J Zhang
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - H X Jing
- Institute of Water Resources and Hydro-electric Engineering, Xi'an University of Technology, Xi'an, 710048, China
| |
Collapse
|