1
|
Glans A, Wilén J, Lindgren L, Björkman-Burtscher IM, Hansson B. Health effects related to exposure of static magnetic fields and acoustic noise-comparison between MR and CT radiographers. Eur Radiol 2022; 32:7896-7909. [PMID: 35674823 PMCID: PMC9668766 DOI: 10.1007/s00330-022-08843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES We explored the prevalence of health complaints subjectively associated with static magnetic field (SMF) and acoustic noise exposure among MR radiographers in Sweden, using CT radiographers as a control group. Additionally, we explored radiographers' use of strategies to mitigate adverse health effects. METHODS A cross-sectional survey was sent to all hospitals with MR units in Sweden. MR and/or CT personnel reported prevalence and attribution of symptoms (vertigo/dizziness, nausea, metallic taste, illusion of movement, ringing sensations/tinnitus, headache, unusual drowsiness/tiredness, forgetfulness, difficulties concentrating, and difficulties sleeping) within the last year. We used logistic regression to test associations between sex, age, stress, SMF strength, working hours, and symptom prevalence. Data regarding hearing function, work-environmental noise, and strategies to mitigate adverse symptoms were also analysed. RESULTS In total, 529 out of 546 respondents from 86 hospitals were eligible for participation. A ≥ 20 working hours/week/modality cut-off rendered 342 participants grouped into CT (n = 75), MR (n = 121), or mixed personnel (n = 146). No significant differences in symptom prevalence were seen between groups. Working at ≥ 3T increased SMF-associated symptoms as compared with working at ≤ 1.5T (OR: 2.03, CI95: 1.05-3.93). Stress was a significant confounder. Work-related noise was rated as more troublesome by CT than MR personnel (p < 0.01). MR personnel tended to use more strategies to mitigate adverse symptoms. CONCLUSION No significant differences in symptom prevalence were seen between MR and CT radiographers. However, working at 3T increased the risk of SMF symptoms, and stress increased adverse health effects. Noise nuisance was considered more problematic by CT than MR personnel. KEY POINTS • No significant differences in symptom prevalence were seen between MR and CT radiographers. • Working at ≥ 3 T doubled the odds of experiencing SMF symptoms (vertigo/dizziness, nausea, metallic taste, and/or illusion of movement) as compared to working exclusively at ≤ 1.5 T. • Work-related acoustic noise was less well mitigated and was rated as more troublesome by CT personnel than by MR personnel.
Collapse
Affiliation(s)
- Anton Glans
- Department of Nursing, Umeå University, Umeå, Sweden.
- Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden.
| | - Jonna Wilén
- Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden
| | | | - Isabella M Björkman-Burtscher
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Radiology, Sahlgrenska University Hospital, Västra Götalands Region, Gothenburg, Sweden
| | - Boel Hansson
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
- Department of Diagnostic Radiology, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Rathebe PC. Subjective symptoms of SMFs and RF energy, and risk perception among staff working with MR scanners within two public hospitals in South Africa. Electromagn Biol Med 2022; 41:152-162. [PMID: 35139718 DOI: 10.1080/15368378.2022.2031212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This study assessed subjective symptoms associated with exposure to static magnetic fields (SMFs) and radiofrequency (RF) energy, and perceived safety risk of scanners among magnetic resonance (MR) staff working in the 1.5 and 3 T MRI units. A questionnaire survey was completed by 77 clinical imaging staff working in two hospitals (A and B) in the Mangaung metropolitan region. 50 participants working with the MR scanners were regarded as exposed group and 27 participants from CT scan and X-ray departments were classified as control group. The study comprised 57% females and 43% male participants with an average MRI experience of 5.4 years. Using logistic regression, tinnitus was significantly different between various job titles (p< .034) and it was reported more often (OR 8:00; CI 1.51, 15.17) by those who worked on a 3 T scanner. Increased years of MRI experience was a significant predictor of headache (p< .05), and reporting of nausea was significantly different between various job titles (p < .01). There was an increased risks of reporting vertigo often among female participants (OR: 4.43; CI 0.91, 21.47), those with 5-15 years of MRI experience (OR: 2.09; CI 0.47, 9.34), and those with a light to moderate workload (OR: 2.70; CI 0.49, 14.86). Using linear regression, presence in zone IV during image acquisitioning was the only significant predictor for the sensation of glowing (p < .000). Movement of head/ upper body in the scanner bore was a significant predictor of nausea (p< .026), vertigo (p< .014), instability when standing (p< .014), and a metallic taste (p< .031). There was no correlation between reporting of symptoms and perceived risk of scanners. However, shift duration (rs = 0.576), movement of head/upper body in the scanner bore (rs = 0.424), and strength of the scanners (rs = 0.299) were significantly correlated with perceived risk of scanners. MRI safety training and a comprehensive occupational health and safety program are necessary.
Collapse
Affiliation(s)
- Phoka C Rathebe
- Department of Environmental Health, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg, P.O. Box 524 South Africa
| |
Collapse
|
3
|
Sklinda K, Karpowicz J, Stępniewski A. Electromagnetic Exposure of Personnel Involved in Cardiac MRI Examinations in 1.5T, 3T and 7T Scanners. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010076. [PMID: 35010336 PMCID: PMC8751149 DOI: 10.3390/ijerph19010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
(1) Background: It has been hypothesised that a significant increase in the use of cardiac magnetic resonance (CMR), for example, when examining COVID-19 convalescents using magnetic resonance imaging (MRI), has an influence the exposure profiles of medical personnel to static magnetic fields (STmf). (2) Methods: Static exposure to STmf (SEmf) was recorded during activities that modelled performing CMR by radiographers. The motion-induced time variability of that exposure (TVEmf) was calculated from SEmf samples. The results were compared with: (i) labour law requirements; (ii) the distribution of vertigo perception probability near MRI magnets; and (iii) the exposure profile when actually performing a head MRI. (3) Results: The exposure profiles of personnel managing 42 CMR scans (modelled using medium (1.5T), high (3T) and ultrahigh (7T) field scanners) were significantly different than when managing a head MRI. The majority of SEmf and TVEmf samples (up to the 95th percentile) were at low vertigo perception probability (SEmf < 500 mT, TVEmf < 600 mT/s), but a small fraction were at medium/high levels; (4) Conclusion: Even under the “normal working conditions” defined for SEmf (STmf < 2T) by labour legislation (Directive 2013/35/EC), increased CMR usage increases vertigo-related hazards experienced by MRI personnel (a re-evaluation of electromagnetic safety hazards is suggested in the case of these or similar changes in work organisation).
Collapse
Affiliation(s)
- Katarzyna Sklinda
- Department of Radiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warszawa, Poland;
| | - Jolanta Karpowicz
- Department of Bioelectromagnetics, Central Institute for Labour Protection–National Research Institute (CIOP-PIB), Czerniakowska 16, 00-701 Warszawa, Poland
- Correspondence: ; Tel.: +48-226-234-650
| | - Andrzej Stępniewski
- ECOTECH-COMPLEX Centre, University of Maria Curie-Skłodowska, Głęboka 39, 20-612 Lublin, Poland;
| |
Collapse
|
4
|
Hartwig V, Virgili G, Mattei FE, Biagini C, Romeo S, Zeni O, Scarfì MR, Massa R, Campanella F, Landini L, Gobba F, Modenese A, Giovannetti G. Occupational exposure to electromagnetic fields in magnetic resonance environment: an update on regulation, exposure assessment techniques, health risk evaluation, and surveillance. Med Biol Eng Comput 2021; 60:297-320. [PMID: 34586563 DOI: 10.1007/s11517-021-02435-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 08/27/2021] [Indexed: 12/15/2022]
Abstract
Magnetic resonance imaging (MRI) is one of the most-used diagnostic imaging methods worldwide. There are ∼50,000 MRI scanners worldwide each of which involves a minimum of five workers from different disciplines who spend their working days around MRI scanners. This review analyzes the state of the art of literature about the several aspects of the occupational exposure to electromagnetic fields (EMF) in MRI: regulations, literature studies on biological effects, and health surveillance are addressed here in detail, along with a summary of the main approaches for exposure assessment. The original research papers published from 2013 to 2021 in international peer-reviewed journals, in the English language, are analyzed, together with documents published by legislative bodies. The key points for each topic are identified and described together with useful tips for precise safeguarding of MRI operators, in terms of exposure assessment, studies on biological effects, and health surveillance.
Collapse
Affiliation(s)
- Valentina Hartwig
- Institute of Clinical Physiology (IFC), Italian National Research Council (CNR), Via G. Moruzzi 1, 56124, Pisa, San Cataldo, Italy.
| | - Giorgio Virgili
- Virgili Giorgio, Via G. Pastore 2, 26040, Crespina-Lorenzana, Italy
| | - F Ederica Mattei
- West Systems S.R.L, Via Don Mazzolari 25, 56025, Pontedera, PI, Italy
| | - Cristiano Biagini
- Associazione Italiana Tecnici Dell'Imaging in Risonanza Magnetica, AITIRM, Via XX Settembre 76, 50129, Florence, Italy
| | - Stefania Romeo
- Institute for Electromagnetic Sensing of the Environment (IREA) , Italian National Research Council (CNR), Via Diocleziano 328, 80124, Naples, Italy
| | - Olga Zeni
- Institute for Electromagnetic Sensing of the Environment (IREA) , Italian National Research Council (CNR), Via Diocleziano 328, 80124, Naples, Italy
| | - Maria Rosaria Scarfì
- Institute for Electromagnetic Sensing of the Environment (IREA) , Italian National Research Council (CNR), Via Diocleziano 328, 80124, Naples, Italy
| | - Rita Massa
- Institute for Electromagnetic Sensing of the Environment (IREA) , Italian National Research Council (CNR), Via Diocleziano 328, 80124, Naples, Italy.,Department of Physics, University Federico II, Via Cinthia 21, 80126, Naples, Italy
| | - Francesco Campanella
- Dipartimento di medicina, epidemiologia, Igiene del Lavoro E Ambientale, Inail, Via Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Luigi Landini
- Fondazione Toscana "G. Monasterio", Via G. Moruzzi 1, 56124, Pisa, San Cataldo, Italy
| | - Fabriziomaria Gobba
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy
| | - Alberto Modenese
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy
| | - Giulio Giovannetti
- Institute of Clinical Physiology (IFC), Italian National Research Council (CNR), Via G. Moruzzi 1, 56124, Pisa, San Cataldo, Italy
| |
Collapse
|
5
|
Assessment of the Exposure to Gradient Magnetic Fields Generated by MRI Tomographs: Measurement Method, Verification of Limits and Clearance Areas through a Web-Based Platform. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073475. [PMID: 33801598 PMCID: PMC8037291 DOI: 10.3390/ijerph18073475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 11/24/2022]
Abstract
This work is the result of a campaign of measures of exposure levels to magnetic field gradients (GMF) generated by magnetic resonance imaging (MRI) tomographs, to which both healthcare staff and any persons accompanying patients who remain inside the magnet room are exposed while performing a diagnostic Investigation. The study was conducted on three MRI tomographs with a static magnetic induction field up to 1.5 T installed in two hospitals of Lombardy. The study aims to characterize electromagnetic emissions within the magnet room and the definition of a measurement method suitable for assessing the level of exposure of healthcare personnel and any persons accompanying patients. The measurements performed concerned the determination of the weighted peak index for magnetic induction, due to the diagnostic GMF, relating to the action levels for the workers and the reference levels for the general population, in force in the European Union. Thanks to the defined experimental setup, the use of two different measuring instruments, and the software resources of the WEBNIR platform, it was possible to identify, for both categories of exposed persons, the “clearance” space, i.e., the distance from the magnet of the tomograph that guarantees health protection concerning the exposure to GMF, according to the indications of the standards in force. The method used showed that the exposure levels to GMF are substantially safe for professionally exposed workers who do not carry specific risks. For workers particularly sensitive to the specific risk, as well as to individuals part of the population, it is however advisable to maintain a distance from the magnet of about one meter to prevent sensorial neuromuscular stimulation effects.
Collapse
|
6
|
Exposure levels of radiofrequency magnetic fields and static magnetic fields in 1.5 and 3.0 T MRI units. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04178-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AbstractMagnetic resonance imaging (MRI) staff is exposed to a complex mixture of electromagnetic fields from MRI units. Exposure to these fields results in the development of transient exposure-related symptoms. This study aimed to investigate the exposure levels of radiofrequency (RF) magnetic fields and static magnetic fields (SMFs) from 1.5 and 3.0 T MRI scanners in two public hospitals in the Mangaung Metropolitan region, South Africa. The exposure levels of SMFs and RF magnetic fields were measured using the THM1176 3-Axis hall magnetometer and TM-196 3 Axis RF field strength meter, respectively. Measurements were collected at a distance of 1 m (m) and 2 m from the gantry for SMFs when the brain, cervical spine and extremities were scanned. Measurements for RF magnetic fields were collected at a distance of 1 m with an average scan duration of six minutes. Friedman’s test was used to compared exposure mean values from two 1.5 T scanners, and Wilcoxon test with Bonferroni adjustment was used to identify where the difference between exist. The Shapiro–Wilk test was also used to test for normality between exposure levels in 1.5 and 3.0 T scanners. The measured peak values for SMFs from the 3.0 T scanner at hospital A were 1300 milliTesla (mT) and 726 mT from 1.5 T scanner in hospital B. The difference in terms of SMFs exposure levels was observed between two 1.5 T scanners at a distance of 2 m. The difference between 1.5 T scanners at 1 m was also observed during repeated measurements when brain, cervical spine and extremities scans were performed. Scanners’ configurations, magnet type, clinical setting and location were identified as factors that could influence different propagation of SMFs between scanners of the same nominal B0. The RF pulse design, sequence setting flip-angle and scans performed influenced the measured RF magnetic fields. Three scanners were complaint with occupational exposure guidelines stipulated by the ICNIRP; however, peak levels that exist at 1 m could be managed through adoption of occupational health and safety programs.
Collapse
|
7
|
Hartwig V, Biagini C, De Marchi D, Flori A, Gabellieri C, Virgili G, Ferrante Vero LF, Landini L, Vanello N, Giovannetti G. Analysis, comparison and representation of occupational exposure to a static magnetic field in a 3-T MRI site. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2020; 28:76-85. [PMID: 32276568 DOI: 10.1080/10803548.2020.1738114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The purpose of this study is to analyze exposure to the time-varying magnetic field caused by worker movements in a 3-T clinical magnetic resonance imaging (MRI) scanner. Measurements of the static magnetic field (B) in the proximity of the MRI scanner were performed to create a detailed map of the spatial gradient of B, in order to indicate the areas at high risk of exposure. Moreover, a personal exposure recording system was used in order to analyze and compare exposure to the static magnetic field during different routine procedures in MRI. We found that for all of the performed work activities, exposure was compliant with International Commission on Non-Ionizing Radiation Protection levels. However, our findings confirm that there is great variability of exposure between different workers and suggest the importance of performing personal exposure measurements and of detailed knowledge of the magnetic field spatial distribution.
Collapse
Affiliation(s)
| | - Cristiano Biagini
- Associazione Italiana Tecnici dell'Imaging in Risonanza Magnetica, AITIRM, Italy
| | - Daniele De Marchi
- Associazione Italiana Tecnici dell'Imaging in Risonanza Magnetica, AITIRM, Italy.,Fondazione CNR-Regione Toscana 'G. Monasterio', Italy
| | | | | | | | | | - Luigi Landini
- Fondazione CNR-Regione Toscana 'G. Monasterio', Italy.,Department of Information Engineering, University of Pisa, Italy
| | - Nicola Vanello
- Department of Information Engineering, University of Pisa, Italy
| | | |
Collapse
|
8
|
Hartwig V, Biagini C, De Marchi D, Flori A, Gabellieri C, Virgili G, Ferrante Vero LF, Landini L, Vanello N, Giovannetti G. The Procedure for Quantitative Characterization and Analysis of Magnetic Fields in Magnetic Resonance Sites for Protection of Workers: A Pilot Study. Ann Work Expo Health 2020; 63:328-336. [PMID: 30852618 DOI: 10.1093/annweh/wxz002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/20/2018] [Accepted: 01/09/2019] [Indexed: 11/14/2022] Open
Abstract
Concerning the occupational exposure in magnetic resonance imaging (MRI) facilities, the worker behavior in the magnetic resonance (MR) room is of such particular importance that there is the need for a simple but reliable method to alert the worker of the highest magnetic field exposure. Here, we describe a quantitative analysis of occupational exposure in different MRI working environments: in particular, we present a field measurement method integrated with a software tool for an accurate mapping of the fringe field in the proximity of the magnetic resonance bore. Three illustrative assessment studies are finally presented, compared and discussed, considering an example of a realistic path followed by an MRI worker during the daily procedure. The results show that the basic restrictions set by ICNIRP can be exceeded during standard procedure even in 1.5 T scanners. Using the described simplified metrics, it is possible to introduce behavioral rules on how to move around an MRI room that could be more useful than a numerical limit to aid magnetic field risk mitigation strategies.
Collapse
Affiliation(s)
- Valentina Hartwig
- Institute of Clinical Physiology, CNR, Via G. Moruzzi 1, San Cataldo, Pisa, Italy
| | - Cristiano Biagini
- Associazione Italiana Tecnici dell'Imaging in Risonanza Magnetica, AITIRM, Via XX Settembre 76, Firenze, Italy
| | - Daniele De Marchi
- Associazione Italiana Tecnici dell'Imaging in Risonanza Magnetica, AITIRM, Via XX Settembre 76, Firenze, Italy.,Fondazione CNR-Regione Toscana ''G. Monasterio'', Via G. Moruzzi 1, San Cataldo, Pisa, Italy
| | - Alessandra Flori
- Fondazione CNR-Regione Toscana ''G. Monasterio'', Via G. Moruzzi 1, San Cataldo, Pisa, Italy
| | - Chiara Gabellieri
- Ambulatori Della Misericordia Srl Impresa Sociale, Via Montalvo 8, Campi Bisenzio (FI), Italy
| | | | | | - Luigi Landini
- Fondazione CNR-Regione Toscana ''G. Monasterio'', Via G. Moruzzi 1, San Cataldo, Pisa, Italy.,Department of Information Engineering, University of Pisa, Via G. Caruso 16, Pisa, Italy
| | - Nicola Vanello
- Department of Information Engineering, University of Pisa, Via G. Caruso 16, Pisa, Italy
| | - Giulio Giovannetti
- Institute of Clinical Physiology, CNR, Via G. Moruzzi 1, San Cataldo, Pisa, Italy
| |
Collapse
|
9
|
A health and safety model for occupational exposure to radiofrequency fields and static magnetic fields from 1.5 and 3 T MRI scanners. HEALTH AND TECHNOLOGY 2020. [DOI: 10.1007/s12553-019-00379-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Izzo L, Tunesi M, Boeri L, Laganà M, Giordano C, Raimondi MT. Influence of the static magnetic field on cell response in a miniaturized optically accessible bioreactor for 3D cell culture. Biomed Microdevices 2019; 21:29. [PMID: 30868253 PMCID: PMC6451746 DOI: 10.1007/s10544-019-0387-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Hydraulic sealing is a crucial condition for the maintenance of sterility during long term operation of microfluidic bioreactors. We developed a miniaturized optically accessible bioreactor (MOAB) allowing perfused culture of 3D cellularised constructs. In the MOAB, the culture chambers are sealed by magnets that generate a weak static magnetic field (SMF). Here, we predicted computationally the exact level of SMF to which cells are subjected during culture in the MOAB and we assessed its influence on the viability, metabolic activity and gene expression of neuroblastoma-derived cells cultured up to seven days. The predicted SMF ranged from 0.32 to 0.57 T using an axial-symmetric model of a single chamber, whereas it ranged from 0.35 to 0.62 T using a 3D model of the complete device. Cell function was evaluated in SH-SY5Y neuroblastoma cells at 2 and 7 days of culture in the MOAB, compared to 2D monolayer, 3D non-perfused constructs, and 3D perfused constructs cultured in a modified MOAB with magnet-free sealing. We measured the cell metabolic activity normalized by the DNA content and the expression levels of heat-shock protein 70 (Hsp-70), Bcl-2 and Bax. We found that the level of SMF applied to cells in the MOAB did not influence their metabolic activity and exerted a stressful effect in 2D monolayer, not confirmed in 3D conditions, neither static not perfused. Instead, the magnets provided a significantly greater hydraulic sealing in long-term culture, thus the MOAB might be potentially exploitable for the development of reliable in vitro models of neurodegeneration.
Collapse
Affiliation(s)
- Luca Izzo
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy.
| | - Marta Tunesi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | | | - Carmen Giordano
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| |
Collapse
|
11
|
Acri G, Inferrera P, Denaro L, Sansotta C, Ruello E, Anfuso C, Salmeri FM, Garreffa G, Vermiglio G, Testagrossa B. dB/dt Evaluation in MRI Sites: Is ICNIRP Threshold Limit (for Workers) Exceeded? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1298. [PMID: 29933587 PMCID: PMC6068997 DOI: 10.3390/ijerph15071298] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 11/17/2022]
Abstract
The Directive 2013/35/EU establishes standards for workers exposed to static and time varying magnetic fields. These limits are based on ICNIRP guidelines expressed in terms of the electric field induced in the body. The complexity of this measurement led to theoretical models being developed. In this study, the experimental evaluation included varying magnetic field exposures for two classes of MRI workers. The measurements are conducted on four different MRI Systems including one 0.35 T, two 1.5 T, and one 3.0 T. Pocket magnetic dosimeters were used and it was carried out during routine conditions, emergency conditions, and cold-head maintenance/substitution. The acquired data has been processed and the corresponding dB/dt curves have been computed as the first time derivative of the dataset. The weighted peak approach was also implemented for the compliance assessment with regulatory limits. The dB/dt peak values have been compared with the reference level (RL) proposed by ICNIRP. The results show that the RL always exceeds during measurements on the 3.0 T scanner and sometimes on 1.5 T. In light of the foregoing, the diffusion of ultra-high field MRI scanners involves the introduction of behavioral rules that could be more useful than a numerical action level.
Collapse
Affiliation(s)
- Giuseppe Acri
- Department of BIOMORF, University of Messina, Via Consolare Valeria, 98168 Messina, Italy.
| | - Patrizia Inferrera
- School on Medical Physic, University of Messina, Via Consolare Valeria, 98168 Messina, Italy.
| | - Lucia Denaro
- Department of BIOMORF, University of Messina, Via Consolare Valeria, 98168 Messina, Italy.
| | - Carlo Sansotta
- Department of BIOMORF, University of Messina, Via Consolare Valeria, 98168 Messina, Italy.
| | - Elisa Ruello
- Department of BIOMORF, University of Messina, Via Consolare Valeria, 98168 Messina, Italy.
| | - Carmelo Anfuso
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, C.da Casazza, 98123 Messina, Italy.
| | | | - Girolamo Garreffa
- IEMEST (PA), Fondazione Potito (CB), FISMECO (RM), Via G. Donati, 00159 Roma, Italy.
| | - Giuseppe Vermiglio
- Department of P.A.S.S.I., University of Messina, Consolare Valeria, 98168 Messina, Italy.
| | - Barbara Testagrossa
- Department of BIOMORF, University of Messina, Via Consolare Valeria, 98168 Messina, Italy.
| |
Collapse
|