1
|
Verma A, Tzaridis S, Blazes M, Friedlander M, Lee AY, Wu Y. Developing a 10-Layer Retinal Segmentation for MacTel Using Semi-Supervised Learning. Transl Vis Sci Technol 2024; 13:2. [PMID: 39499591 PMCID: PMC11542501 DOI: 10.1167/tvst.13.11.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/19/2024] [Indexed: 11/07/2024] Open
Abstract
Purpose Automated segmentation software in optical coherence tomography (OCT) devices is usually developed for and primarily tested on common diseases. Therefore segmentation accuracy of automated software can be limited in eyes with rare pathologies. Methods We sought to develop a semisupervised deep learning segmentation model that segments 10 retinal layers and four retinal features in eyes with Macular Telangiectasia Type II (MacTel) using a small labeled dataset by leveraging unlabeled images. We compared our model against popular supervised and semisupervised models, as well as conducted ablation studies on the model itself. Results Our model significantly outperformed all other models in terms of intersection over union on the 10 retinal layers and two retinal features in the test dataset. For the remaining two features, the pre-retinal space above the internal limiting membrane and the background below the retinal pigment epithelium, all of the models performed similarly. Furthermore, we showed that using more unlabeled images improved the performance of our semisupervised model. Conclusions Our model improves segmentation performance over supervised models by leveraging unlabeled data. This approach has the potential to improve segmentation performance for other diseases, where labeled data is limited but unlabeled data abundant. Translational Relevance Improving automated segmentation of MacTel pathology on OCT imaging by leveraging unlabeled data may enable more accurate assessment of disease progression, and this approach may be useful for improving feature identification and location on OCT in other rare diseases as well.
Collapse
Affiliation(s)
- Aayush Verma
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | - Simone Tzaridis
- The Scripps Research Institute, La Jolla, CA, USA
- The Lowy Medical Research Institute, La Jolla, CA, USA
| | - Marian Blazes
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | - Martin Friedlander
- The Scripps Research Institute, La Jolla, CA, USA
- The Lowy Medical Research Institute, La Jolla, CA, USA
| | - Aaron Y. Lee
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | - Yue Wu
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| |
Collapse
|
2
|
Huang J, Zhang X, Jin R, Xu T, Jin Z, Shen M, Lv F, Chen J, Liu J. Wavelet-based selection-and-recalibration network for Parkinson's disease screening in OCT images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 256:108368. [PMID: 39154408 DOI: 10.1016/j.cmpb.2024.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND AND OBJECTIVE Parkinson's disease (PD) is one of the most prevalent neurodegenerative brain diseases worldwide. Therefore, accurate PD screening is crucial for early clinical intervention and treatment. Recent clinical research indicates that changes in pathology, such as the texture and thickness of the retinal layers, can serve as biomarkers for clinical PD diagnosis based on optical coherence tomography (OCT) images. However, the pathological manifestations of PD in the retinal layers are subtle compared to the more salient lesions associated with retinal diseases. METHODS Inspired by textural edge feature extraction in frequency domain learning, we aim to explore a potential approach to enhance the distinction between the feature distributions in retinal layers of PD cases and healthy controls. In this paper, we introduce a simple yet novel wavelet-based selection and recalibration module to effectively enhance the feature representations of the deep neural network by aggregating the unique clinical properties, such as the retinal layers in each frequency band. We combine this module with the residual block to form a deep network named Wavelet-based Selection and Recalibration Network (WaveSRNet) for automatic PD screening. RESULTS The extensive experiments on a clinical PD-OCT dataset and two publicly available datasets demonstrate that our approach outperforms state-of-the-art methods. Visualization analysis and ablation studies are conducted to enhance the explainability of WaveSRNet in the decision-making process. CONCLUSIONS Our results suggest the potential role of the retina as an assessment tool for PD. Visual analysis shows that PD-related elements include not only certain retinal layers but also the location of the fovea in OCT images.
Collapse
Affiliation(s)
- Jingqi Huang
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaoqing Zhang
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Center for High Performance Computing and Shenzhen Key Laboratory of Intelligent Bioinformatics, Shenzhen institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Richu Jin
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tao Xu
- The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China; The Oujiang Laboratory; The Affiliated Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang, China
| | - Zi Jin
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Meixiao Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fan Lv
- The Oujiang Laboratory; The Affiliated Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiangfan Chen
- The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China; The Oujiang Laboratory; The Affiliated Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang, China
| | - Jiang Liu
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China; Singapore Eye Research Institute, 169856, Singapore.
| |
Collapse
|
3
|
Rozhyna A, Somfai GM, Atzori M, DeBuc DC, Saad A, Zoellin J, Müller H. Exploring Publicly Accessible Optical Coherence Tomography Datasets: A Comprehensive Overview. Diagnostics (Basel) 2024; 14:1668. [PMID: 39125544 PMCID: PMC11312046 DOI: 10.3390/diagnostics14151668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Artificial intelligence has transformed medical diagnostic capabilities, particularly through medical image analysis. AI algorithms perform well in detecting abnormalities with a strong performance, enabling computer-aided diagnosis by analyzing the extensive amounts of patient data. The data serve as a foundation upon which algorithms learn and make predictions. Thus, the importance of data cannot be underestimated, and clinically corresponding datasets are required. Many researchers face a lack of medical data due to limited access, privacy concerns, or the absence of available annotations. One of the most widely used diagnostic tools in ophthalmology is Optical Coherence Tomography (OCT). Addressing the data availability issue is crucial for enhancing AI applications in the field of OCT diagnostics. This review aims to provide a comprehensive analysis of all publicly accessible retinal OCT datasets. Our main objective is to compile a list of OCT datasets and their properties, which can serve as an accessible reference, facilitating data curation for medical image analysis tasks. For this review, we searched through the Zenodo repository, Mendeley Data repository, MEDLINE database, and Google Dataset search engine. We systematically evaluated all the identified datasets and found 23 open-access datasets containing OCT images, which significantly vary in terms of size, scope, and ground-truth labels. Our findings indicate the need for improvement in data-sharing practices and standardized documentation. Enhancing the availability and quality of OCT datasets will support the development of AI algorithms and ultimately improve diagnostic capabilities in ophthalmology. By providing a comprehensive list of accessible OCT datasets, this review aims to facilitate better utilization and development of AI in medical image analysis.
Collapse
Affiliation(s)
- Anastasiia Rozhyna
- Informatics Institute, University of Applied Sciences Western Switzerland (HES-SO), 3960 Sierre, Switzerland
- Medical Informatics, University of Geneva, 1205 Geneva, Switzerland
| | - Gábor Márk Somfai
- Department of Ophthalmology, Stadtspital Zürich, 8063 Zurich, Switzerland
- Spross Research Institute, 8063 Zurich, Switzerland
| | - Manfredo Atzori
- Informatics Institute, University of Applied Sciences Western Switzerland (HES-SO), 3960 Sierre, Switzerland
- Department of Neuroscience, University of Padua, 35121 Padova, Italy
| | - Delia Cabrera DeBuc
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Amr Saad
- Department of Ophthalmology, Stadtspital Zürich, 8063 Zurich, Switzerland
- Spross Research Institute, 8063 Zurich, Switzerland
| | - Jay Zoellin
- Department of Ophthalmology, Stadtspital Zürich, 8063 Zurich, Switzerland
- Spross Research Institute, 8063 Zurich, Switzerland
| | - Henning Müller
- Informatics Institute, University of Applied Sciences Western Switzerland (HES-SO), 3960 Sierre, Switzerland
- Medical Informatics, University of Geneva, 1205 Geneva, Switzerland
- The Sense Research and Innovation Center, 1007 Lausanne, Switzerland
| |
Collapse
|
4
|
Salaheldin AM, Abdel Wahed M, Saleh N. A hybrid model for the detection of retinal disorders using artificial intelligence techniques. Biomed Phys Eng Express 2024; 10:055005. [PMID: 38955139 DOI: 10.1088/2057-1976/ad5db2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
The prevalence of vision impairment is increasing at an alarming rate. The goal of the study was to create an automated method that uses optical coherence tomography (OCT) to classify retinal disorders into four categories: choroidal neovascularization, diabetic macular edema, drusen, and normal cases. This study proposed a new framework that combines machine learning and deep learning-based techniques. The utilized classifiers were support vector machine (SVM), K-nearest neighbor (K-NN), decision tree (DT), and ensemble model (EM). A feature extractor, the InceptionV3 convolutional neural network, was also employed. The performance of the models was evaluated against nine criteria using a dataset of 18000 OCT images. For the SVM, K-NN, DT, and EM classifiers, the analysis exhibited state-of-the-art performance, with classification accuracies of 99.43%, 99.54%, 97.98%, and 99.31%, respectively. A promising methodology has been introduced for the automatic identification and classification of retinal disorders, leading to reduced human error and saved time.
Collapse
Affiliation(s)
- Ahmed M Salaheldin
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
- Systems and Biomedical Engineering Department, Higher Institute of Engineering, EL Shorouk Academy, Cairo, Egypt
| | - Manal Abdel Wahed
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Neven Saleh
- Systems and Biomedical Engineering Department, Higher Institute of Engineering, EL Shorouk Academy, Cairo, Egypt
- Electrical Communication and Electronic Systems Engineering Department, Engineering Faculty, October University for Modern Sciences and Arts, Giza, Egypt
| |
Collapse
|
5
|
Feng X, Xu K, Luo MJ, Chen H, Yang Y, He Q, Song C, Li R, Wu Y, Wang H, Tham YC, Ting DSW, Lin H, Wong TY, Lam DSC. Latest developments of generative artificial intelligence and applications in ophthalmology. Asia Pac J Ophthalmol (Phila) 2024; 13:100090. [PMID: 39128549 DOI: 10.1016/j.apjo.2024.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024] Open
Abstract
The emergence of generative artificial intelligence (AI) has revolutionized various fields. In ophthalmology, generative AI has the potential to enhance efficiency, accuracy, personalization and innovation in clinical practice and medical research, through processing data, streamlining medical documentation, facilitating patient-doctor communication, aiding in clinical decision-making, and simulating clinical trials. This review focuses on the development and integration of generative AI models into clinical workflows and scientific research of ophthalmology. It outlines the need for development of a standard framework for comprehensive assessments, robust evidence, and exploration of the potential of multimodal capabilities and intelligent agents. Additionally, the review addresses the risks in AI model development and application in clinical service and research of ophthalmology, including data privacy, data bias, adaptation friction, over interdependence, and job replacement, based on which we summarized a risk management framework to mitigate these concerns. This review highlights the transformative potential of generative AI in enhancing patient care, improving operational efficiency in the clinical service and research in ophthalmology. It also advocates for a balanced approach to its adoption.
Collapse
Affiliation(s)
- Xiaoru Feng
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua University, Beijing, China; Institute for Hospital Management, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Kezheng Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Ming-Jie Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Haichao Chen
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Yangfan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Qi He
- Research Centre of Big Data and Artificial Research for Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chenxin Song
- Research Centre of Big Data and Artificial Research for Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruiyao Li
- Research Centre of Big Data and Artificial Research for Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - You Wu
- Institute for Hospital Management, Tsinghua Medicine, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China; Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Haibo Wang
- Research Centre of Big Data and Artificial Research for Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Yih Chung Tham
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Innovation and Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Ophthalmology and Visual Science Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Daniel Shu Wei Ting
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Ophthalmology and Visual Science Academic Clinical Program, Duke-NUS Medical School, Singapore; Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China; Center for Precision Medicine and Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, China
| | - Tien Yin Wong
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua Medicine, Tsinghua University, Beijing, China; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Dennis Shun-Chiu Lam
- The International Eye Research Institute, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China; The C-MER International Eye Care Group, Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Pan X, Wang P, Jia S, Wang Y, Liu Y, Zhang Y, Jiang C. Multi-contrast learning-guided lightweight few-shot learning scheme for predicting breast cancer molecular subtypes. Med Biol Eng Comput 2024; 62:1601-1613. [PMID: 38316663 DOI: 10.1007/s11517-024-03031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024]
Abstract
Invasive gene expression profiling studies have exposed prognostically significant breast cancer subtypes: normal-like, luminal, HER-2 enriched, and basal-like, which is defined in large part by human epidermal growth factor receptor 2 (HER-2), progesterone receptor (PR), and estrogen receptor (ER). However, while dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been generally employed in the screening and therapy of breast cancer, there is a challenging problem to noninvasively predict breast cancer molecular subtypes, which have extremely low-data regimes. In this paper, a novel few-shot learning scheme, which combines lightweight contrastive convolutional neural network (LC-CNN) and multi-contrast learning strategy (MCLS), is worthwhile to be developed for predicting molecular subtype of breast cancer in DCE-MRI. Moreover, MCLS is designed to construct One-vs-Rest and One-vs-One classification tasks, which addresses inter-class similarity among normal-like, luminal, HER-2 enriched, and basal-like. Extensive experiments demonstrate the superiority of our proposed scheme over state-of-the-art methods. Furthermore, our scheme is able to achieve competitive results on few samples due to joint LC-CNN and MCLS for excavating contrastive correlations of a pair of DCE-MRI.
Collapse
Affiliation(s)
- Xiang Pan
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Pei Wang
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
| | - Shunyuan Jia
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
| | - Yihang Wang
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
| | - Yuan Liu
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Jiangnan University, Wuxi, China.
| | - Chunjuan Jiang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
7
|
Musleh AM, AlRyalat SA, Abid MN, Salem Y, Hamila HM, Sallam AB. Diagnostic accuracy of artificial intelligence in detecting retinitis pigmentosa: A systematic review and meta-analysis. Surv Ophthalmol 2024; 69:411-417. [PMID: 38042377 DOI: 10.1016/j.survophthal.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Retinitis pigmentosa (RP) is often undetected in its early stages. Artificial intelligence (AI) has emerged as a promising tool in medical diagnostics. Therefore, we conducted a systematic review and meta-analysis to evaluate the diagnostic accuracy of AI in detecting RP using various ophthalmic images. We conducted a systematic search on PubMed, Scopus, and Web of Science databases on December 31, 2022. We included studies in the English language that used any ophthalmic imaging modality, such as OCT or fundus photography, used any AI technologies, had at least an expert in ophthalmology as a reference standard, and proposed an AI algorithm able to distinguish between images with and without retinitis pigmentosa features. We considered the sensitivity, specificity, and area under the curve (AUC) as the main measures of accuracy. We had a total of 14 studies in the qualitative analysis and 10 studies in the quantitative analysis. In total, the studies included in the meta-analysis dealt with 920,162 images. Overall, AI showed an excellent performance in detecting RP with pooled sensitivity and specificity of 0.985 [95%CI: 0.948-0.996], 0.993 [95%CI: 0.982-0.997] respectively. The area under the receiver operating characteristic (AUROC), using a random-effect model, was calculated to be 0.999 [95%CI: 0.998-1.000; P < 0.001]. The Zhou and Dendukuri I² test revealed a low level of heterogeneity between the studies, with [I2 = 19.94%] for sensitivity and [I2 = 21.07%] for specificity. The bivariate I² [20.33%] also suggested a low degree of heterogeneity. We found evidence supporting the accuracy of AI in the detection of RP; however, the level of heterogeneity between the studies was low.
Collapse
Affiliation(s)
| | - Saif Aldeen AlRyalat
- Department of Ophthalmology, The University of Jordan, Amman, Jordan; Department of Ophthalmology, Houston Methodist Hospital, Houston, TX, USA.
| | - Mohammad Naim Abid
- Marka Specialty Hospital, Amman, Jordan; Valley Retina Institute, P.A., McAllen, TX, USA
| | - Yahia Salem
- Faculty of Medicine, The University of Jordan, Amman, Jordan
| | | | - Ahmed B Sallam
- Harvey and Bernice Jones Eye Institute at the University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| |
Collapse
|
8
|
Sun J, Wei D, Wang L, Zheng Y. Hybrid unsupervised representation learning and pseudo-label supervised self-distillation for rare disease imaging phenotype classification with dispersion-aware imbalance correction. Med Image Anal 2024; 93:103102. [PMID: 38367598 DOI: 10.1016/j.media.2024.103102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/03/2023] [Accepted: 02/04/2024] [Indexed: 02/19/2024]
Abstract
Rare diseases are characterized by low prevalence and are often chronically debilitating or life-threatening. Imaging phenotype classification of rare diseases is challenging due to the severe shortage of training examples. Few-shot learning (FSL) methods tackle this challenge by extracting generalizable prior knowledge from a large base dataset of common diseases and normal controls and transferring the knowledge to rare diseases. Yet, most existing methods require the base dataset to be labeled and do not make full use of the precious examples of rare diseases. In addition, the extremely small size of the training samples may result in inter-class performance imbalance due to insufficient sampling of the true distributions. To this end, we propose in this work a novel hybrid approach to rare disease imaging phenotype classification, featuring three key novelties targeted at the above drawbacks. First, we adopt the unsupervised representation learning (URL) based on self-supervising contrastive loss, whereby to eliminate the overhead in labeling the base dataset. Second, we integrate the URL with pseudo-label supervised classification for effective self-distillation of the knowledge about the rare diseases, composing a hybrid approach taking advantage of both unsupervised and (pseudo-) supervised learning on the base dataset. Third, we use the feature dispersion to assess the intra-class diversity of training samples, to alleviate the inter-class performance imbalance via dispersion-aware correction. Experimental results of imaging phenotype classification of both simulated (skin lesions and cervical smears) and real clinical rare diseases (retinal diseases) show that our hybrid approach substantially outperforms existing FSL methods (including those using a fully supervised base dataset) via effective integration of the URL, pseudo-label driven self-distillation, and dispersion-aware imbalance correction, thus establishing a new state of the art.
Collapse
Affiliation(s)
- Jinghan Sun
- Xiamen University, Xiamen, 361005, China; Jarvis Research Center, Tencent YouTu Lab, Shenzhen, 518000, China
| | - Dong Wei
- Jarvis Research Center, Tencent YouTu Lab, Shenzhen, 518000, China
| | | | - Yefeng Zheng
- Jarvis Research Center, Tencent YouTu Lab, Shenzhen, 518000, China.
| |
Collapse
|
9
|
Choi JY, Kim H, Kim JK, Lee IS, Ryu IH, Kim JS, Yoo TK. Deep learning prediction of steep and flat corneal curvature using fundus photography in post-COVID telemedicine era. Med Biol Eng Comput 2024; 62:449-463. [PMID: 37889431 DOI: 10.1007/s11517-023-02952-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023]
Abstract
Recently, fundus photography (FP) is being increasingly used. Corneal curvature is an essential factor in refractive errors and is associated with several pathological corneal conditions. As FP-based examination systems have already been widely distributed, it would be helpful for telemedicine to extract information such as corneal curvature using FP. This study aims to develop a deep learning model based on FP for corneal curvature prediction by categorizing corneas into steep, regular, and flat groups. The EfficientNetB0 architecture with transfer learning was used to learn FP patterns to predict flat, regular, and steep corneas. In validation, the model achieved a multiclass accuracy of 0.727, a Matthews correlation coefficient of 0.519, and an unweighted Cohen's κ of 0.590. The areas under the receiver operating characteristic curves for binary prediction of flat and steep corneas were 0.863 and 0.848, respectively. The optic nerve and its peripheral areas were the main focus of the model. The developed algorithm shows that FP can potentially be used as an imaging modality to estimate corneal curvature in the post-COVID-19 era, whereby patients may benefit from the detection of abnormal corneal curvatures using FP in the telemedicine setting.
Collapse
Affiliation(s)
- Joon Yul Choi
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | | | - Jin Kuk Kim
- Department of Refractive Surgery, B&VIIT Eye Center, B2 GT Tower, 1317-23 Seocho-Dong, Seocho-Gu, Seoul, South Korea
| | - In Sik Lee
- Department of Refractive Surgery, B&VIIT Eye Center, B2 GT Tower, 1317-23 Seocho-Dong, Seocho-Gu, Seoul, South Korea
| | - Ik Hee Ryu
- Department of Refractive Surgery, B&VIIT Eye Center, B2 GT Tower, 1317-23 Seocho-Dong, Seocho-Gu, Seoul, South Korea
- Research and Development Department, VISUWORKS, Seoul, South Korea
| | - Jung Soo Kim
- Research and Development Department, VISUWORKS, Seoul, South Korea
| | - Tae Keun Yoo
- Department of Refractive Surgery, B&VIIT Eye Center, B2 GT Tower, 1317-23 Seocho-Dong, Seocho-Gu, Seoul, South Korea.
- Research and Development Department, VISUWORKS, Seoul, South Korea.
| |
Collapse
|
10
|
Guo Z, Ao S, Ao B. Few-shot learning based oral cancer diagnosis using a dual feature extractor prototypical network. J Biomed Inform 2024; 150:104584. [PMID: 38199300 DOI: 10.1016/j.jbi.2024.104584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/04/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
A large global health issue is cancer, wherein early diagnosis and treatment have proven to be life-saving. This holds true for oral cancer, thus emphasizing the significance of timely intervention. Deep learning techniques have gained traction in early cancer detection, exhibiting promising outcomes in accurate diagnosis. However, collecting a substantial amount of training data poses a challenge for deep learning models in cancer diagnosis. To address this limitation, this study proposes an oral cancer diagnosis approach based on a few-shot learning framework that circumvents the need for extensive training data. Specifically, a prototypical network is employed to construct a diagnostic model, wherein two feature extractors are utilized to extract prototypical features and query features respectively, departing from the conventional use of a single feature extraction function in prototypical networks. Moreover, a customized loss function is designed for the proposed method. Rigorous experimentation using a histopathological image dataset demonstrates the superior performance of our proposed approach over comparison methods.
Collapse
Affiliation(s)
- Zijun Guo
- Department of Stomatology, Daping Hospital, Army Medical Center of PLA, Chongqing 400042, China
| | - Sha Ao
- The People's Hospital of Rongchang District in Chongqing, Chongqing 402460, China
| | - Bo Ao
- Traditional Chinese Medicine Hospital of Jiulongpo District in Chongqing, Chongqing 400080, China.
| |
Collapse
|
11
|
Liu X, Dong X, Li T, Zou X, Cheng C, Jiang Z, Gao Z, Duan S, Chen M, Liu T, Huang P, Li D, Lu H. A difficulty-aware and task-augmentation method based on meta-learning model for few-shot diabetic retinopathy classification. Quant Imaging Med Surg 2024; 14:861-876. [PMID: 38223039 PMCID: PMC10784049 DOI: 10.21037/qims-23-567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/09/2023] [Indexed: 01/16/2024]
Abstract
Background Accurate classification techniques are essential for the early diagnosis and treatment of patients with diabetic retinopathy (DR). However, the limited amount of annotated DR data poses a challenge for existing deep-learning models. This article proposes a difficulty-aware and task-augmentation method based on meta-learning (DaTa-ML) model for few-shot DR classification with fundus images. Methods The difficulty-aware (Da) method operates by dynamically modifying the cross-entropy loss function applied to learning tasks. This methodology has the ability to intelligently down-weight simpler tasks, while simultaneously prioritizing more challenging tasks. These adjustments occur automatically and aim to optimize the learning process. Additionally, the task-augmentation (Ta) method is used to enhance the meta-training process by augmenting the number of tasks through image rotation and improving the feature-extraction capability. To implement the expansion of the meta-training tasks, various task instances can be sampled during the meta-training stage. Ultimately, the proposed Ta method was introduced to optimize the initialization parameters and enhance the meta-generalization performance of the model. The DaTa-ML model showed promising results by effectively addressing the challenges associated with few-shot DR classification. Results The Asia Pacific Tele-Ophthalmology Society (APTOS) 2019 blindness detection data set was used to evaluate the DaTa-ML model. The results showed that with only 1% of the training data (5-way, 20-shot) and a single update step (training time reduced by 90%), the DaTa-ML model had an accuracy rate of 89.6% on the test data, which is a 1.7% improvement over the transfer-learning method [i.e., residual neural network (ResNet)50 pre-trained on ImageNet], and a 16.8% improvement over scratch-built models (i.e., ResNet50 without pre-trained weights), despite having fewer trainable parameters (the parameters used by the DaTa-ML model are only 0.47% of the ResNet50 parameters). Conclusions The DaTa-ML model provides a more efficient DR classification solution with little annotated data and has significant advantages over state-of-the-art methods. Thus, it could be used to guide and assist ophthalmologists to determine the severity of DR.
Collapse
Affiliation(s)
- Xueyao Liu
- Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Xueyuan Dong
- Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Tuo Li
- Shandong Yunhai Guochuang Cloud Computing Equipment Industry Innovation Co., Ltd., Jinan, China
| | - Xiaofeng Zou
- Shandong Yunhai Guochuang Cloud Computing Equipment Industry Innovation Co., Ltd., Jinan, China
| | - Chen Cheng
- Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Zekun Jiang
- Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Zhumin Gao
- Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Sixu Duan
- Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Meirong Chen
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Liu
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China
| | - Pu Huang
- Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Dengwang Li
- Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Hua Lu
- Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, China
| |
Collapse
|
12
|
Liu Q, Tian Y, Zhou T, Lyu K, Xin R, Shang Y, Liu Y, Ren J, Li J. A few-shot disease diagnosis decision making model based on meta-learning for general practice. Artif Intell Med 2024; 147:102718. [PMID: 38184346 DOI: 10.1016/j.artmed.2023.102718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/12/2023] [Accepted: 11/12/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Diagnostic errors have become the biggest threat to the safety of patients in primary health care. General practitioners, as the "gatekeepers" of primary health care, have a responsibility to accurately diagnose patients. However, many general practitioners have insufficient knowledge and clinical experience in some diseases. Clinical decision making tools need to be developed to effectively improve the diagnostic process in primary health care. The long-tailed class distributions of medical datasets are challenging for many popular decision making models based on deep learning, which have difficulty predicting few-shot diseases. Meta-learning is a new strategy for solving few-shot problems. METHODS AND MATERIALS In this study, a few-shot disease diagnosis decision making model based on a model-agnostic meta-learning algorithm (FSDD-MAML) is proposed. The MAML algorithm is applied in a knowledge graph-based disease diagnosis model to find the optimal model parameters. Moreover, FSDD-MAML can learn learning rates for all modules of the knowledge graph-based disease diagnosis model. For n-way, k-shot learning tasks, the inner loop of FSDD-MAML performs multiple gradient update steps to learn internal features in disease classification tasks using n×k examples, and the outer loop of FSDD-MAML optimizes the meta-objective to find the associated optimal parameters and learning rates. FSDD-MAML is compared with the original knowledge graph-based disease diagnosis model and other meta-learning algorithms based on an abdominal disease dataset. RESULT Meta-learning algorithms can greatly improve the performance of models in top-1 evaluation compared with top-3, top-5, and top-10 evaluations. The proposed decision making model FSDD-MAML outperforms all the other models, with a precision@1 of 90.02 %. We achieve state-of-the-art performance in the diagnosis of all diseases, and the prediction performance for few-shot diseases is greatly improved. For the two groups with the fewest examples of diseases, FSDD-MAML achieves relative increases in precision@1 of 29.13 % and 21.63 % compared with the original knowledge graph-based disease diagnosis model. In addition, we analyze the reasoning process of several few-shot disease predictions and provide an explanation for the results. CONCLUSION The decision making model based on meta-learning proposed in this paper can support the rapid diagnosis of diseases in general practice and is especially capable of helping general practitioners diagnose few-shot diseases. This study is of profound significance for the exploration and application of meta-learning to few-shot disease assessment in general practice.
Collapse
Affiliation(s)
- Qianghua Liu
- Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, No. 38 Zheda Road, Hangzhou 310027, Zhejiang Province, China
| | - Yu Tian
- Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, No. 38 Zheda Road, Hangzhou 310027, Zhejiang Province, China
| | - Tianshu Zhou
- Research Center for Healthcare Data Science, Zhejiang Laboratory, Hangzhou 311100, China
| | - Kewei Lyu
- Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, No. 38 Zheda Road, Hangzhou 310027, Zhejiang Province, China
| | - Ran Xin
- Research Center for Healthcare Data Science, Zhejiang Laboratory, Hangzhou 311100, China
| | - Yong Shang
- Research Center for Healthcare Data Science, Zhejiang Laboratory, Hangzhou 311100, China
| | - Ying Liu
- General Practice Department, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jingjing Ren
- General Practice Department, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jingsong Li
- Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, No. 38 Zheda Road, Hangzhou 310027, Zhejiang Province, China; Research Center for Healthcare Data Science, Zhejiang Laboratory, Hangzhou 311100, China.
| |
Collapse
|
13
|
Hu X, Ran AR, Nguyen TX, Szeto S, Yam JC, Chan CKM, Cheung CY. What can GPT-4 do for Diagnosing Rare Eye Diseases? A Pilot Study. Ophthalmol Ther 2023; 12:3395-3402. [PMID: 37656399 PMCID: PMC10640532 DOI: 10.1007/s40123-023-00789-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
INTRODUCTION Generative pretrained transformer-4 (GPT-4) has gained widespread attention from society, and its potential has been extensively evaluated in many areas. However, investigation of GPT-4's use in medicine, especially in the ophthalmology field, is still limited. This study aims to evaluate GPT-4's capability to identify rare ophthalmic diseases in three simulated scenarios for different end-users, including patients, family physicians, and junior ophthalmologists. METHODS We selected ten treatable rare ophthalmic disease cases from the publicly available EyeRounds service. We gradually increased the amount of information fed into GPT-4 to simulate the scenarios of patient, family physician, and junior ophthalmologist using GPT-4. GPT-4's responses were evaluated from two aspects: suitability (appropriate or inappropriate) and accuracy (right or wrong) by senior ophthalmologists (> 10 years' experiences). RESULTS Among the 30 responses, 83.3% were considered "appropriate" by senior ophthalmologists. In the scenarios of simulated patient, family physician, and junior ophthalmologist, seven (70%), ten (100%), and eight (80%) responses were graded as "appropriate" by senior ophthalmologists. However, compared to the ground truth, GPT-4 could only output several possible diseases generally without "right" responses in the simulated patient scenarios. In contrast, in the simulated family physician scenario, 50% of GPT-4's responses were "right," and in the simulated junior ophthalmologist scenario, the model achieved a higher "right" rate of 90%. CONCLUSION To our knowledge, this is the first proof-of-concept study that evaluates GPT-4's capacity to identify rare eye diseases in simulated scenarios involving patients, family physicians, and junior ophthalmologists. The results indicate that GPT-4 has the potential to serve as a consultation assisting tool for patients and family physicians to receive referral suggestions and an assisting tool for junior ophthalmologists to diagnose rare eye diseases. However, it is important to approach GPT-4 with caution and acknowledge the need for verification and careful referrals in clinical settings.
Collapse
Affiliation(s)
- Xiaoyan Hu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - An Ran Ran
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Truong X Nguyen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Simon Szeto
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Carol Y Cheung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
14
|
Li D, Ran AR, Cheung CY, Prince JL. Deep learning in optical coherence tomography: Where are the gaps? Clin Exp Ophthalmol 2023; 51:853-863. [PMID: 37245525 PMCID: PMC10825778 DOI: 10.1111/ceo.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/30/2023]
Abstract
Optical coherence tomography (OCT) is a non-invasive optical imaging modality, which provides rapid, high-resolution and cross-sectional morphology of macular area and optic nerve head for diagnosis and managing of different eye diseases. However, interpreting OCT images requires experts in both OCT images and eye diseases since many factors such as artefacts and concomitant diseases can affect the accuracy of quantitative measurements made by post-processing algorithms. Currently, there is a growing interest in applying deep learning (DL) methods to analyse OCT images automatically. This review summarises the trends in DL-based OCT image analysis in ophthalmology, discusses the current gaps, and provides potential research directions. DL in OCT analysis shows promising performance in several tasks: (1) layers and features segmentation and quantification; (2) disease classification; (3) disease progression and prognosis; and (4) referral triage level prediction. Different studies and trends in the development of DL-based OCT image analysis are described and the following challenges are identified and described: (1) public OCT data are scarce and scattered; (2) models show performance discrepancies in real-world settings; (3) models lack of transparency; (4) there is a lack of societal acceptance and regulatory standards; and (5) OCT is still not widely available in underprivileged areas. More work is needed to tackle the challenges and gaps, before DL is further applied in OCT image analysis for clinical use.
Collapse
Affiliation(s)
- Dawei Li
- College of Future Technology, Peking University, Beijing, China
| | - An Ran Ran
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Carol Y. Cheung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jerry L. Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Li Z, Han Y, Yang X. Multi-Fundus Diseases Classification Using Retinal Optical Coherence Tomography Images with Swin Transformer V2. J Imaging 2023; 9:203. [PMID: 37888310 PMCID: PMC10607340 DOI: 10.3390/jimaging9100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Fundus diseases cause damage to any part of the retina. Untreated fundus diseases can lead to severe vision loss and even blindness. Analyzing optical coherence tomography (OCT) images using deep learning methods can provide early screening and diagnosis of fundus diseases. In this paper, a deep learning model based on Swin Transformer V2 was proposed to diagnose fundus diseases rapidly and accurately. In this method, calculating self-attention within local windows was used to reduce computational complexity and improve its classification efficiency. Meanwhile, the PolyLoss function was introduced to further improve the model's accuracy, and heat maps were generated to visualize the predictions of the model. Two independent public datasets, OCT 2017 and OCT-C8, were applied to train the model and evaluate its performance, respectively. The results showed that the proposed model achieved an average accuracy of 99.9% on OCT 2017 and 99.5% on OCT-C8, performing well in the automatic classification of multi-fundus diseases using retinal OCT images.
Collapse
Affiliation(s)
- Zhenwei Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.H.); (X.Y.)
| | | | | |
Collapse
|
16
|
Nouri H, Nasri R, Abtahi SH. Addressing inter-device variations in optical coherence tomography angiography: will image-to-image translation systems help? Int J Retina Vitreous 2023; 9:51. [PMID: 37644613 PMCID: PMC10466880 DOI: 10.1186/s40942-023-00491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Optical coherence tomography angiography (OCTA) is an innovative technology providing visual and quantitative data on retinal microvasculature in a non-invasive manner. MAIN BODY Due to variations in the technical specifications of different OCTA devices, there are significant inter-device differences in OCTA data, which can limit their comparability and generalizability. These variations can also result in a domain shift problem that may interfere with applicability of machine learning models on data obtained from different OCTA machines. One possible approach to address this issue may be unsupervised deep image-to-image translation leveraging systems such as Cycle-Consistent Generative Adversarial Networks (Cycle-GANs) and Denoising Diffusion Probabilistic Models (DDPMs). Through training on unpaired images from different device domains, Cycle-GANs and DDPMs may enable cross-domain translation of images. They have been successfully applied in various medical imaging tasks, including segmentation, denoising, and cross-modality image-to-image translation. In this commentary, we briefly describe how Cycle-GANs and DDPMs operate, and review the recent experiments with these models on medical and ocular imaging data. We then discuss the benefits of applying such techniques for inter-device translation of OCTA data and the potential challenges ahead. CONCLUSION Retinal imaging technologies and deep learning-based domain adaptation techniques are rapidly evolving. We suggest exploring the potential of image-to-image translation methods in improving the comparability of OCTA data from different centers or devices. This may facilitate more efficient analysis of heterogeneous data and broader applicability of machine learning models trained on limited datasets in this field.
Collapse
Affiliation(s)
- Hosein Nouri
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Reza Nasri
- School of Engineering, University of Isfahan, Isfahan, Iran
| | - Seyed-Hossein Abtahi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Ophthalmology, Torfe Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Berk A, Ozturan G, Delavari P, Maberley D, Yılmaz Ö, Oruc I. Learning from small data: Classifying sex from retinal images via deep learning. PLoS One 2023; 18:e0289211. [PMID: 37535591 PMCID: PMC10399793 DOI: 10.1371/journal.pone.0289211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/14/2023] [Indexed: 08/05/2023] Open
Abstract
Deep learning (DL) techniques have seen tremendous interest in medical imaging, particularly in the use of convolutional neural networks (CNNs) for the development of automated diagnostic tools. The facility of its non-invasive acquisition makes retinal fundus imaging particularly amenable to such automated approaches. Recent work in the analysis of fundus images using CNNs relies on access to massive datasets for training and validation, composed of hundreds of thousands of images. However, data residency and data privacy restrictions stymie the applicability of this approach in medical settings where patient confidentiality is a mandate. Here, we showcase results for the performance of DL on small datasets to classify patient sex from fundus images-a trait thought not to be present or quantifiable in fundus images until recently. Specifically, we fine-tune a Resnet-152 model whose last layer has been modified to a fully-connected layer for binary classification. We carried out several experiments to assess performance in the small dataset context using one private (DOVS) and one public (ODIR) data source. Our models, developed using approximately 2500 fundus images, achieved test AUC scores of up to 0.72 (95% CI: [0.67, 0.77]). This corresponds to a mere 25% decrease in performance despite a nearly 1000-fold decrease in the dataset size compared to prior results in the literature. Our results show that binary classification, even with a hard task such as sex categorization from retinal fundus images, is possible with very small datasets. Our domain adaptation results show that models trained with one distribution of images may generalize well to an independent external source, as in the case of models trained on DOVS and tested on ODIR. Our results also show that eliminating poor quality images may hamper training of the CNN due to reducing the already small dataset size even further. Nevertheless, using high quality images may be an important factor as evidenced by superior generalizability of results in the domain adaptation experiments. Finally, our work shows that ensembling is an important tool in maximizing performance of deep CNNs in the context of small development datasets.
Collapse
Affiliation(s)
- Aaron Berk
- Department of Mathematics & Statistics, McGill University, Montréal, Canada
| | - Gulcenur Ozturan
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| | - Parsa Delavari
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| | - David Maberley
- Department of Ophthalmology, University of Ottawa, Ottawa, Canada
| | - Özgür Yılmaz
- Department of Mathematics, University of British Columbia, Vancouver, Canada
| | - Ipek Oruc
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
18
|
Ali H, Nyman E, Näslund U, Grönlund C. Translation of atherosclerotic disease features onto healthy carotid ultrasound images using domain-to-domain translation. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
19
|
Qin X, Zhang M, Zhou C, Ran T, Pan Y, Deng Y, Xie X, Zhang Y, Gong T, Zhang B, Zhang L, Wang Y, Li Q, Wang D, Gao L, Zou D. A deep learning model using hyperspectral image for EUS-FNA cytology diagnosis in pancreatic ductal adenocarcinoma. Cancer Med 2023; 12:17005-17017. [PMID: 37455599 PMCID: PMC10501295 DOI: 10.1002/cam4.6335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 06/12/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND AND AIMS Endoscopic ultrasonography-guided fine-needle aspiration/biopsy (EUS-FNA/B) is considered to be a first-line procedure for the pathological diagnosis of pancreatic cancer owing to its high accuracy and low complication rate. The number of new cases of pancreatic ductal adenocarcinoma (PDAC) is increasing, and its accurate pathological diagnosis poses a challenge for cytopathologists. Our aim was to develop a hyperspectral imaging (HSI)-based convolution neural network (CNN) algorithm to aid in the diagnosis of pancreatic EUS-FNA cytology specimens. METHODS HSI images were captured of pancreatic EUS-FNA cytological specimens from benign pancreatic tissues (n = 33) and PDAC (n = 39) prepared using a liquid-based cytology method. A CNN was established to test the diagnostic performance, and Attribution Guided Factorization Visualization (AGF-Visualization) was used to visualize the regions of important classification features identified by the model. RESULTS A total of 1913 HSI images were obtained. Our ResNet18-SimSiam model achieved an accuracy of 0.9204, sensitivity of 0.9310 and specificity of 0.9123 (area under the curve of 0.9625) when trained on HSI images for the differentiation of PDAC cytological specimens from benign pancreatic cells. AGF-Visualization confirmed that the diagnoses were based on the features of tumor cell nuclei. CONCLUSIONS An HSI-based model was developed to diagnose cytological PDAC specimens obtained using EUS-guided sampling. Under the supervision of experienced cytopathologists, we performed multi-staged consecutive in-depth learning of the model. Its superior diagnostic performance could be of value for cytologists when diagnosing PDAC.
Collapse
Affiliation(s)
- Xianzheng Qin
- Department of GastroenterologyRuijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Minmin Zhang
- Department of GastroenterologyRuijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Chunhua Zhou
- Department of GastroenterologyRuijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Taojing Ran
- Department of GastroenterologyRuijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yundi Pan
- Department of GastroenterologyRuijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yingjiao Deng
- Shanghai Key Laboratory of Multidimensional Information ProcessingEast China Normal UniversityShanghaiChina
| | - Xingran Xie
- Shanghai Key Laboratory of Multidimensional Information ProcessingEast China Normal UniversityShanghaiChina
| | - Yao Zhang
- Department of GastroenterologyRuijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Tingting Gong
- Department of GastroenterologyRuijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Benyan Zhang
- Department of PathologyRuijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Ling Zhang
- Department of GastroenterologyRuijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yan Wang
- Shanghai Key Laboratory of Multidimensional Information ProcessingEast China Normal UniversityShanghaiChina
| | - Qingli Li
- Shanghai Key Laboratory of Multidimensional Information ProcessingEast China Normal UniversityShanghaiChina
| | - Dong Wang
- Department of GastroenterologyRuijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Lili Gao
- Department of PathologyRuijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Duowu Zou
- Department of GastroenterologyRuijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
20
|
Gozzi F, Bertolini M, Gentile P, Verzellesi L, Trojani V, De Simone L, Bolletta E, Mastrofilippo V, Farnetti E, Nicoli D, Croci S, Belloni L, Zerbini A, Adani C, De Maria M, Kosmarikou A, Vecchi M, Invernizzi A, Ilariucci F, Zanelli M, Iori M, Cimino L. Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma. Diagnostics (Basel) 2023; 13:2451. [PMID: 37510195 PMCID: PMC10378347 DOI: 10.3390/diagnostics13142451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Anterior segment optical coherence tomography (AS-OCT) allows the explore not only the anterior chamber but also the front part of the vitreous cavity. Our cross-sectional single-centre study investigated whether AS-OCT can distinguish between vitreous involvement due to vitreoretinal lymphoma (VRL) and vitritis in uveitis. We studied AS-OCT images from 28 patients (11 with biopsy-proven VRL and 17 with differential diagnosis uveitis) using publicly available radiomics software written in MATLAB. Patients were divided into two balanced groups: training and testing. Overall, 3260/3705 (88%) AS-OCT images met our defined quality criteria, making them eligible for analysis. We studied five different sets of grey-level samplings (16, 32, 64, 128, and 256 levels), finding that 128 grey levels performed the best. We selected the five most effective radiomic features ranked by the ability to predict the class (VRL or uveitis). We built a classification model using the xgboost python function; through our model, 87% of eyes were correctly diagnosed as VRL or uveitis, regardless of exam technique or lens status. Areas under the receiver operating characteristic curves (AUC) in the 128 grey-level model were 0.95 [CI 0.94, 0.96] and 0.84 for training and testing datasets, respectively. This preliminary retrospective study highlights how AS-OCT can support ophthalmologists when there is clinical suspicion of VRL.
Collapse
Affiliation(s)
- Fabrizio Gozzi
- Ocular Immunology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy
| | - Marco Bertolini
- Medical Physics Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy
| | - Pietro Gentile
- Ocular Immunology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Laura Verzellesi
- Medical Physics Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy
| | - Valeria Trojani
- Medical Physics Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy
| | - Luca De Simone
- Ocular Immunology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy
| | - Elena Bolletta
- Ocular Immunology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy
| | | | - Enrico Farnetti
- Molecular Pathology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy
| | - Davide Nicoli
- Molecular Pathology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy
| | - Lucia Belloni
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy
| | - Alessandro Zerbini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy
| | - Chantal Adani
- Ocular Immunology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy
| | - Michele De Maria
- Ophthalmology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy
| | - Areti Kosmarikou
- Ophthalmology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy
| | - Marco Vecchi
- Ophthalmology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy
| | - Alessandro Invernizzi
- Eye Clinic, Luigi Sacco Hospital, Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
- Faculty of Health and Medicine, Save Sight Institute, University of Sydney, Sydney, NSW 2000, Australia
| | | | - Magda Zanelli
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Mauro Iori
- Medical Physics Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy
| | - Luca Cimino
- Ocular Immunology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, with Interest in Transplants, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| |
Collapse
|
21
|
Arnould L, Meriaudeau F, Guenancia C, Germanese C, Delcourt C, Kawasaki R, Cheung CY, Creuzot-Garcher C, Grzybowski A. Using Artificial Intelligence to Analyse the Retinal Vascular Network: The Future of Cardiovascular Risk Assessment Based on Oculomics? A Narrative Review. Ophthalmol Ther 2023; 12:657-674. [PMID: 36562928 PMCID: PMC10011267 DOI: 10.1007/s40123-022-00641-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The healthcare burden of cardiovascular diseases remains a major issue worldwide. Understanding the underlying mechanisms and improving identification of people with a higher risk profile of systemic vascular disease through noninvasive examinations is crucial. In ophthalmology, retinal vascular network imaging is simple and noninvasive and can provide in vivo information of the microstructure and vascular health. For more than 10 years, different research teams have been working on developing software to enable automatic analysis of the retinal vascular network from different imaging techniques (retinal fundus photographs, OCT angiography, adaptive optics, etc.) and to provide a description of the geometric characteristics of its arterial and venous components. Thus, the structure of retinal vessels could be considered a witness of the systemic vascular status. A new approach called "oculomics" using retinal image datasets and artificial intelligence algorithms recently increased the interest in retinal microvascular biomarkers. Despite the large volume of associated research, the role of retinal biomarkers in the screening, monitoring, or prediction of systemic vascular disease remains uncertain. A PubMed search was conducted until August 2022 and yielded relevant peer-reviewed articles based on a set of inclusion criteria. This literature review is intended to summarize the state of the art in oculomics and cardiovascular disease research.
Collapse
Affiliation(s)
- Louis Arnould
- Ophthalmology Department, Dijon University Hospital, 14 Rue Paul Gaffarel, 21079, Dijon CEDEX, France. .,University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR U1219, 33000, Bordeaux, France.
| | - Fabrice Meriaudeau
- Laboratory ImViA, IFTIM, Université Bourgogne Franche-Comté, 21078, Dijon, France
| | - Charles Guenancia
- Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases, (EA 7460), Faculty of Health Sciences, Université de Bourgogne Franche-Comté, Dijon, France.,Cardiology Department, Dijon University Hospital, Dijon, France
| | - Clément Germanese
- Ophthalmology Department, Dijon University Hospital, 14 Rue Paul Gaffarel, 21079, Dijon CEDEX, France
| | - Cécile Delcourt
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR U1219, 33000, Bordeaux, France
| | - Ryo Kawasaki
- Artificial Intelligence Center for Medical Research and Application, Osaka University Hospital, Osaka, Japan
| | - Carol Y Cheung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Catherine Creuzot-Garcher
- Ophthalmology Department, Dijon University Hospital, 14 Rue Paul Gaffarel, 21079, Dijon CEDEX, France.,Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Andrzej Grzybowski
- Department of Ophthalmology, University of Warmia and Mazury, Olsztyn, Poland.,Institute for Research in Ophthalmology, Poznan, Poland
| |
Collapse
|
22
|
Sedighipour Chafjiri F, Mohebbian MR, Wahid KA, Babyn P. Classification of endoscopic image and video frames using distance metric-based learning with interpolated latent features. MULTIMEDIA TOOLS AND APPLICATIONS 2023; 82:1-22. [PMID: 37362715 PMCID: PMC10020761 DOI: 10.1007/s11042-023-14982-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/16/2022] [Accepted: 02/22/2023] [Indexed: 06/28/2023]
Abstract
Conventional Endoscopy (CE) and Wireless Capsule Endoscopy (WCE) are well known tools for diagnosing gastrointestinal (GI) tract related disorders. Defining the anatomical location within the GI tract helps clinicians determine appropriate treatment options, which can reduce the need for repetitive endoscopy. Limited research addresses the localization of the anatomical location of WCE and CE images using classification, mainly due to the difficulty in collecting annotated data. In this study, we present a few-shot learning method based on distance metric learning which combines transfer-learning and manifold mixup schemes to localize and classify endoscopic images and video frames. The proposed method allows us to develop a pipeline for endoscopy video sequence localization that can be trained with only a few samples. The use of manifold mixup improves learning by increasing the number of training epochs while reducing overfitting and providing more accurate decision boundaries. A dataset is collected from 10 different anatomical positions of the human GI tract. Two models were trained using only 78 CE and 27 WCE annotated frames to predict the location of 25,700 and 1825 video frames from CE and WCE respectively. We performed subjective evaluation using nine gastroenterologists to validate the need of having such an automated system to localize endoscopic images and video frames. Our method achieved higher accuracy and a higher F1-score when compared with the scores from subjective evaluation. In addition, the results show improved performance with less cross-entropy loss when compared with several existing methods trained on the same datasets. This indicates that the proposed method has the potential to be used in endoscopy image classification. Supplementary Information The online version contains supplementary material available at 10.1007/s11042-023-14982-1.
Collapse
Affiliation(s)
- Fatemeh Sedighipour Chafjiri
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A9 Canada
| | - Mohammad Reza Mohebbian
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A9 Canada
| | - Khan A. Wahid
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A9 Canada
| | - Paul Babyn
- Department of Medical Imaging, University of Saskatchewan and Saskatchewan Health Authority, Saskatoon, SK S7K 0M7 Canada
| |
Collapse
|
23
|
Choudhary A, Ahlawat S, Urooj S, Pathak N, Lay-Ekuakille A, Sharma N. A Deep Learning-Based Framework for Retinal Disease Classification. Healthcare (Basel) 2023; 11:healthcare11020212. [PMID: 36673578 PMCID: PMC9859538 DOI: 10.3390/healthcare11020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
This study addresses the problem of the automatic detection of disease states of the retina. In order to solve the abovementioned problem, this study develops an artificially intelligent model. The model is based on a customized 19-layer deep convolutional neural network called VGG-19 architecture. The model (VGG-19 architecture) is empowered by transfer learning. The model is designed so that it can learn from a large set of images taken with optical coherence tomography (OCT) and classify them into four conditions of the retina: (1) choroidal neovascularization, (2) drusen, (3) diabetic macular edema, and (4) normal form. The training datasets (taken from publicly available sources) consist of 84,568 instances of OCT retinal images. The datasets exhibit all four classes of retinal disease mentioned above. The proposed model achieved a 99.17% classification accuracy with 0.995 specificities and 0.99 sensitivity, making it better than the existing models. In addition, the proper statistical evaluation is done on the predictions using such performance measures as (1) area under the receiver operating characteristic curve, (2) Cohen's kappa parameter, and (3) confusion matrix. Experimental results show that the proposed VGG-19 architecture coupled with transfer learning is an effective technique for automatically detecting the disease state of a retina.
Collapse
Affiliation(s)
- Amit Choudhary
- University School of Automation and Robotics, G.G.S. Indraprastha University, New Delhi 110092, India
| | - Savita Ahlawat
- Maharaja Surajmal Institute of Technology, G.G.S. Indraprastha University, New Delhi 110058, India
- Correspondence: (S.A.); (S.U.)
| | - Shabana Urooj
- Department of Electrical Engineering, College of Engineering, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
- Correspondence: (S.A.); (S.U.)
| | - Nitish Pathak
- Department of Information Technology, Bhagwan Parshuram Institute of Technology (BPIT), G.G.S. Indraprastha University, New Delhi 110078, India
| | - Aimé Lay-Ekuakille
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy
| | - Neelam Sharma
- Department of Artificial Intelligence and Machine Learning, Maharaja Agrasen Institute of Technology (MAIT), G.G.S. Indraprastha University, New Delhi 110086, India
| |
Collapse
|
24
|
DeepPDT-Net: predicting the outcome of photodynamic therapy for chronic central serous chorioretinopathy using two-stage multimodal transfer learning. Sci Rep 2022; 12:18689. [PMID: 36333442 PMCID: PMC9636239 DOI: 10.1038/s41598-022-22984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Central serous chorioretinopathy (CSC), characterized by serous detachment of the macular retina, can cause permanent vision loss in the chronic course. Chronic CSC is generally treated with photodynamic therapy (PDT), which is costly and quite invasive, and the results are unpredictable. In a retrospective case-control study design, we developed a two-stage deep learning model to predict 1-year outcome of PDT using initial multimodal clinical data. The training dataset included 166 eyes with chronic CSC and an additional learning dataset containing 745 healthy control eyes. A pre-trained ResNet50-based convolutional neural network was first trained with normal fundus photographs (FPs) to detect CSC and then adapted to predict CSC treatability through transfer learning. The domain-specific ResNet50 successfully predicted treatable and refractory CSC (accuracy, 83.9%). Then other multimodal clinical data were integrated with the FP deep features using XGBoost.The final combined model (DeepPDT-Net) outperformed the domain-specific ResNet50 (accuracy, 88.0%). The FP deep features had the greatest impact on DeepPDT-Net performance, followed by central foveal thickness and age. In conclusion, DeepPDT-Net could solve the PDT outcome prediction task challenging even to retinal specialists. This two-stage strategy, adopting transfer learning and concatenating multimodal data, can overcome the clinical prediction obstacles arising from insufficient datasets.
Collapse
|
25
|
Ho E, Wang E, Youn S, Sivajohan A, Lane K, Chun J, Hutnik CML. Deep Ensemble Learning for Retinal Image Classification. Transl Vis Sci Technol 2022; 11:39. [PMID: 36306121 PMCID: PMC9624270 DOI: 10.1167/tvst.11.10.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Vision impairment affects 2.2 billion people worldwide, half of which is preventable with early detection and treatment. Currently, automatic screening of ocular pathologies using convolutional neural networks (CNNs) on retinal fundus photographs is limited to a few pathologies. Simultaneous detection of multiple ophthalmic pathologies would increase clinical usability and uptake. Methods Two thousand five hundred sixty images were used from the Retinal Fundus Multi-Disease Image Dataset (RFMiD). Models were trained (n = 1920) and validated (n = 640). Five selected CNN architectures were trained to predict the presence of any pathology and categorize the 28 pathologies. All models were trained to minimize asymmetric loss, a modified form of binary cross-entropy. Individual model predictions were averaged to obtain a final ensembled model and assessed for mean area under the receiver-operator characteristic curve (AUROC) for disease screening (healthy versus pathologic image) and classification (AUROC for each class). Results The ensemble network achieved a disease screening (healthy versus pathologic) AUROC score of 0.9613. The highest single network score was 0.9586 using the SE-ResNeXt architecture. For individual disease classification, the average AUROC score for each class was 0.9295. Conclusions Retinal fundus images analyzed by an ensemble of CNNs trained to minimize asymmetric loss were effective in detection and classification of ocular pathologies than individual models. External validation is needed to translate machine learning models to diverse clinical contexts. Translational Relevance This study demonstrates the potential benefit of ensemble-based deep learning methods on improving automatic screening and diagnosis of multiple ocular pathologies from fundoscopy imaging.
Collapse
Affiliation(s)
- Edward Ho
- Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Edward Wang
- Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Saerom Youn
- Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Asaanth Sivajohan
- Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Kevin Lane
- Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Jin Chun
- Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Cindy M. L. Hutnik
- Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- Departments of Ophthalmology and Pathology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
26
|
Kugelman J, Alonso-Caneiro D, Read SA, Collins MJ. A review of generative adversarial network applications in optical coherence tomography image analysis. JOURNAL OF OPTOMETRY 2022; 15 Suppl 1:S1-S11. [PMID: 36241526 PMCID: PMC9732473 DOI: 10.1016/j.optom.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Optical coherence tomography (OCT) has revolutionized ophthalmic clinical practice and research, as a result of the high-resolution images that the method is able to capture in a fast, non-invasive manner. Although clinicians can interpret OCT images qualitatively, the ability to quantitatively and automatically analyse these images represents a key goal for eye care by providing clinicians with immediate and relevant metrics to inform best clinical practice. The range of applications and methods to analyse OCT images is rich and rapidly expanding. With the advent of deep learning methods, the field has experienced significant progress with state-of-the-art-performance for several OCT image analysis tasks. Generative adversarial networks (GANs) represent a subfield of deep learning that allows for a range of novel applications not possible in most other deep learning methods, with the potential to provide more accurate and robust analyses. In this review, the progress in this field and clinical impact are reviewed and the potential future development of applications of GANs to OCT image processing are discussed.
Collapse
Affiliation(s)
- Jason Kugelman
- Queensland University of Technology (QUT), Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Kelvin Grove, QLD 4059, Australia.
| | - David Alonso-Caneiro
- Queensland University of Technology (QUT), Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Kelvin Grove, QLD 4059, Australia
| | - Scott A Read
- Queensland University of Technology (QUT), Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Kelvin Grove, QLD 4059, Australia
| | - Michael J Collins
- Queensland University of Technology (QUT), Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Kelvin Grove, QLD 4059, Australia
| |
Collapse
|
27
|
Yoo TK, Ryu IH, Kim JK, Lee IS. Deep learning for predicting uncorrected refractive error using posterior segment optical coherence tomography images. Eye (Lond) 2022; 36:1959-1965. [PMID: 34611313 PMCID: PMC9500028 DOI: 10.1038/s41433-021-01795-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND/OBJECTIVES This study aimed to evaluate a deep learning model for estimating uncorrected refractive error using posterior segment optical coherence tomography (OCT) images. METHODS In this retrospective study, we assigned healthy subjects to development (N = 688 eyes of 344 subjects) and test (N = 248 eyes of 124 subjects) datasets (prospective validation design). We developed and validated OCT-based deep learning models to estimate refractive error. A regression model based on a pretrained ResNet50 architecture was trained using horizontal OCT images to predict the spherical equivalent (SE). The performance of the deep learning model for detecting high myopia was also evaluated. A saliency map was generated using the Grad-CAM technique to visualize the characteristic features. RESULTS The developed model showed a low mean absolute error for SE prediction (2.66 D) and a significant Pearson correlation coefficient of 0.588 (P < 0.001) in the test dataset validation. To detect high myopia, the model yielded an area under the receiver operating characteristic curve of 0.813 (95% confidence interval [CI], 0.744-0.881) and an accuracy of 71.4% (95% CI, 65.3-76.9%). The inner retinal layers and relatively steepened curvatures were highlighted using a saliency map to detect high myopia. CONCLUSION A deep learning algorithm showed that OCT could potentially be used as an imaging modality to estimate refractive error. This method will facilitate the evaluation of refractive error to prevent clinicians from overlooking the risks associated with refractive error during OCT assessment.
Collapse
Affiliation(s)
- Tae Keun Yoo
- B&VIIT Eye Center, Seoul, South Korea.
- Department of Ophthalmology, Aerospace Medical Center, Republic of Korea Air Force, Cheongju, South Korea.
- VISUWORKS, Seoul, South Korea.
| | - Ik Hee Ryu
- B&VIIT Eye Center, Seoul, South Korea
- VISUWORKS, Seoul, South Korea
| | - Jin Kuk Kim
- B&VIIT Eye Center, Seoul, South Korea
- VISUWORKS, Seoul, South Korea
| | - In Sik Lee
- B&VIIT Eye Center, Seoul, South Korea
- VISUWORKS, Seoul, South Korea
| |
Collapse
|
28
|
Shi Y, Dai S, Liu X, Zhang Y, Wu X, Jiang T. Event recognition method based on dual-augmentation for a Φ-OTDR system with a few training samples. OPTICS EXPRESS 2022; 30:31232-31243. [PMID: 36242210 DOI: 10.1364/oe.468779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
Thanks to the development of machine learning and deep learning, data-driven pattern recognition based on neural network is a trend for Φ-OTDR system intrusion event recognition. The data-driven pattern recognition needs a large number of samples for training. However, in some scenarios, intrusion signals are difficult to collect, resulting in the lack of training samples. At the same time, labeling a large number of samples is also a very time-consuming work. This paper presents a few-shot learning classification method based on time series transfer and cycle generative adversarial network (CycleGAN) data augmentation for Φ-OTDR system. By expanding the rare samples based on time series transfer and CycleGAN, the number of samples in the dataset can finally meet the requirement of network training. The experimental result shows that even when the training set has two minor classes with only two samples, the average accuracy of the validation set with 5 classification tasks can still reach 90.84%, and the classification accuracy of minor classes can reach 79.28% with the proposed method.
Collapse
|
29
|
Yoo TK, Ryu IH, Kim JK, Lee IS, Kim HK. A deep learning approach for detection of shallow anterior chamber depth based on the hidden features of fundus photographs. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 219:106735. [PMID: 35305492 DOI: 10.1016/j.cmpb.2022.106735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVES Patients with angle-closure glaucoma (ACG) are asymptomatic until they experience a painful attack. Shallow anterior chamber depth (ACD) is considered a significant risk factor for ACG. We propose a deep learning approach to detect shallow ACD using fundus photographs and to identify the hidden features of shallow ACD. METHODS This retrospective study assigned healthy subjects to the training (n = 1188 eyes) and test (n = 594) datasets (prospective validation design). We used a deep learning approach to estimate ACD and build a classification model to identify eyes with a shallow ACD. The proposed method, including subtraction of the input and output images of CycleGAN and a thresholding algorithm, was adopted to visualize the characteristic features of fundus photographs with a shallow ACD. RESULTS The deep learning model integrating fundus photographs and clinical variables achieved areas under the receiver operating characteristic curve of 0.978 (95% confidence interval [CI], 0.963-0.988) for an ACD ≤ 2.60 mm and 0.895 (95% CI, 0.868-0.919) for an ACD ≤ 2.80 mm, and outperformed the regression model using only clinical variables. However, the difference between shallow and deep ACD classes on fundus photographs was difficult to be detected with the naked eye. We were unable to identify the features of shallow ACD using the Grad-CAM. The CycleGAN-based feature images showed that area around the macula and optic disk significantly contributed to the classification of fundus photographs with a shallow ACD. CONCLUSIONS We demonstrated the feasibility of a novel deep learning model to detect a shallow ACD as a screening tool for ACG using fundus photographs. The CycleGAN-based feature map showed the hidden characteristic features of shallow ACD that were previously undetectable by conventional techniques and ophthalmologists. This framework will facilitate the early detection of shallow ACD to prevent overlooking the risks associated with ACG.
Collapse
Affiliation(s)
- Tae Keun Yoo
- B&VIIT Eye Center, Seoul, South Korea; Department of Ophthalmology, Aerospace Medical Center, Republic of Korea Air Force, Cheongju, South Korea.
| | - Ik Hee Ryu
- B&VIIT Eye Center, Seoul, South Korea; VISUWORKS, Seoul, South Korea
| | - Jin Kuk Kim
- B&VIIT Eye Center, Seoul, South Korea; VISUWORKS, Seoul, South Korea
| | | | - Hong Kyu Kim
- Department of Ophthalmology, Dankook University Hospital, Dankook University College of Medicine, Cheonan, South Korea
| |
Collapse
|
30
|
Hsu HY, Chou YB, Jheng YC, Kao ZK, Huang HY, Chen HR, Hwang DK, Chen SJ, Chiou SH, Wu YT. Automatic Segmentation of Retinal Fluid and Photoreceptor Layer from Optical Coherence Tomography Images of Diabetic Macular Edema Patients Using Deep Learning and Associations with Visual Acuity. Biomedicines 2022; 10:1269. [PMID: 35740291 PMCID: PMC9220118 DOI: 10.3390/biomedicines10061269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023] Open
Abstract
Diabetic macular edema (DME) is a highly common cause of vision loss in patients with diabetes. Optical coherence tomography (OCT) is crucial in classifying DME and tracking the results of DME treatment. The presence of intraretinal cystoid fluid (IRC) and subretinal fluid (SRF) and the disruption of the ellipsoid zone (EZ), which is part of the photoreceptor layer, are three crucial factors affecting the best corrected visual acuity (BCVA). However, the manual segmentation of retinal fluid and the EZ from retinal OCT images is laborious and time-consuming. Current methods focus only on the segmentation of retinal features, lacking a correlation with visual acuity. Therefore, we proposed a modified U-net, a deep learning algorithm, to segment these features from OCT images of patients with DME. We also correlated these features with visual acuity. The IRC, SRF, and EZ of the OCT retinal images were manually labeled and checked by doctors. We trained the modified U-net model on these labeled images. Our model achieved Sørensen-Dice coefficients of 0.80 and 0.89 for IRC and SRF, respectively. The area under the receiver operating characteristic curve (ROC) for EZ disruption was 0.88. Linear regression indicated that EZ disruption was the factor most strongly correlated with BCVA. This finding agrees with that of previous studies on OCT images. Thus, we demonstrate that our segmentation network can be feasibly applied to OCT image segmentation and assist physicians in assessing the severity of the disease.
Collapse
Affiliation(s)
- Huan-Yu Hsu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, 155, Sec-2, Li Nong Street, Taipei 112304, Taiwan; (H.-Y.H.); (Z.-K.K.)
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (Y.-B.C.); (H.-R.C.); (D.-K.H.); (S.-J.C.)
| | - Yu-Bai Chou
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (Y.-B.C.); (H.-R.C.); (D.-K.H.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, 201, Sec-2, Shipai Rd., Taipei 112201, Taiwan
| | - Ying-Chun Jheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (Y.-C.J.); (H.-Y.H.)
- Big Data Center, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Zih-Kai Kao
- Institute of Biophotonics, National Yang Ming Chiao Tung University, 155, Sec-2, Li Nong Street, Taipei 112304, Taiwan; (H.-Y.H.); (Z.-K.K.)
| | - Hsin-Yi Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (Y.-C.J.); (H.-Y.H.)
- Big Data Center, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hung-Ruei Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (Y.-B.C.); (H.-R.C.); (D.-K.H.); (S.-J.C.)
| | - De-Kuang Hwang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (Y.-B.C.); (H.-R.C.); (D.-K.H.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, 201, Sec-2, Shipai Rd., Taipei 112201, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (Y.-C.J.); (H.-Y.H.)
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shih-Jen Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (Y.-B.C.); (H.-R.C.); (D.-K.H.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, 201, Sec-2, Shipai Rd., Taipei 112201, Taiwan
| | - Shih-Hwa Chiou
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (Y.-B.C.); (H.-R.C.); (D.-K.H.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, 201, Sec-2, Shipai Rd., Taipei 112201, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (Y.-C.J.); (H.-Y.H.)
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, 155, Sec-2, Li Nong Street, Taipei 112304, Taiwan; (H.-Y.H.); (Z.-K.K.)
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
31
|
Toğaçar M, Ergen B, Tümen V. Use of dominant activations obtained by processing OCT images with the CNNs and slime mold method in retinal disease detection. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
32
|
Zheng C, Ye H, Yang J, Fei P, Qiu Y, Xie X, Wang Z, Chen J, Zhao P. Development and Clinical Validation of Semi-Supervised Generative Adversarial Networks for Detection of Retinal Disorders in Optical Coherence Tomography Images Using Small Dataset. Asia Pac J Ophthalmol (Phila) 2022; 11:219-226. [PMID: 35342179 DOI: 10.1097/apo.0000000000000498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE To develop and test semi-supervised generative adversarial networks (GANs) that detect retinal disorders on optical coherence tomography (OCT) images using a small-labeled dataset. METHODS From a public database, we randomly chose a small supervised dataset with 400 OCT images (100 choroidal neovascularization, 100 diabetic macular edema, 100 drusen, and 100 normal) and assigned all other OCT images to unsupervised dataset (107,912 images without labeling). We adopted a semi-supervised GAN and a supervised deep learning (DL) model for automatically detecting retinal disorders from OCT images. The performance of the 2 models was compared in 3 testing datasets with different OCT devices. The evaluation metrics included accuracy, sensitivity, specificity, and the area under the receiver operating characteristic curves. RESULTS The local validation dataset included 1000 images with 250 from each category. The independent clinical dataset included 366 OCT images using Cirrus OCT Shanghai Shibei Hospital and 511 OCT images using RTVue OCT from Xinhua Hospital respectively. The semi-supervised GANs classifier achieved better accuracy than supervised DL model (0.91 vs 0.86 for local cell validation dataset, 0.91 vs 0.86 in the Shanghai Shibei Hospital testing dataset, and 0.93 vs 0.92 in Xinhua Hospital testing dataset). For detecting urgent referrals (choroidal neo-vascularization and diabetic macular edema) from nonurgent referrals (drusen and normal) on OCT images, the semi-supervised GANs classifier also achieved better area under the receiver operating characteristic curves than supervised DL model (0.99 vs 0.97, 0.97 vs 0.96, and 0.99 vs 0.99, respectively). CONCLUSIONS A semi-supervised GAN can achieve better performance than that of a supervised DL model when the labeled dataset is limited. The current study offers utility to various research and clinical studies using DL with relatively small datasets. Semi-supervised GANs can detect retinal disorders from OCT images using relatively small dataset.
Collapse
Affiliation(s)
- Ce Zheng
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongfei Ye
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianlong Yang
- Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Fei
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingping Qiu
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaolin Xie
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou University Medical College, Shantou, Guangdong, China
| | - Zilei Wang
- Shanghai Children's Hospital, Shanghai, China
| | - Jili Chen
- Department of Ophthalmology, Shibei Hospital, Shanghai, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Lim JS, Hong M, Lam WST, Zhang Z, Teo ZL, Liu Y, Ng WY, Foo LL, Ting DSW. Novel technical and privacy-preserving technology for artificial intelligence in ophthalmology. Curr Opin Ophthalmol 2022; 33:174-187. [PMID: 35266894 DOI: 10.1097/icu.0000000000000846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The application of artificial intelligence (AI) in medicine and ophthalmology has experienced exponential breakthroughs in recent years in diagnosis, prognosis, and aiding clinical decision-making. The use of digital data has also heralded the need for privacy-preserving technology to protect patient confidentiality and to guard against threats such as adversarial attacks. Hence, this review aims to outline novel AI-based systems for ophthalmology use, privacy-preserving measures, potential challenges, and future directions of each. RECENT FINDINGS Several key AI algorithms used to improve disease detection and outcomes include: Data-driven, imagedriven, natural language processing (NLP)-driven, genomics-driven, and multimodality algorithms. However, deep learning systems are susceptible to adversarial attacks, and use of data for training models is associated with privacy concerns. Several data protection methods address these concerns in the form of blockchain technology, federated learning, and generative adversarial networks. SUMMARY AI-applications have vast potential to meet many eyecare needs, consequently reducing burden on scarce healthcare resources. A pertinent challenge would be to maintain data privacy and confidentiality while supporting AI endeavors, where data protection methods would need to rapidly evolve with AI technology needs. Ultimately, for AI to succeed in medicine and ophthalmology, a balance would need to be found between innovation and privacy.
Collapse
Affiliation(s)
- Jane S Lim
- Singapore National Eye Centre, Singapore Eye Research Institute
| | | | - Walter S T Lam
- Yong Loo Lin School of Medicine, National University of Singapore
| | - Zheting Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University
| | - Zhen Ling Teo
- Singapore National Eye Centre, Singapore Eye Research Institute
| | - Yong Liu
- National University of Singapore, DukeNUS Medical School, Singapore
| | - Wei Yan Ng
- Singapore National Eye Centre, Singapore Eye Research Institute
| | - Li Lian Foo
- Singapore National Eye Centre, Singapore Eye Research Institute
| | - Daniel S W Ting
- Singapore National Eye Centre, Singapore Eye Research Institute
| |
Collapse
|
34
|
Diagnosis of Retinal Diseases Based on Bayesian Optimization Deep Learning Network Using Optical Coherence Tomography Images. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:8014979. [PMID: 35463234 PMCID: PMC9033334 DOI: 10.1155/2022/8014979] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/17/2022] [Indexed: 02/08/2023]
Abstract
Retinal abnormalities have emerged as a serious public health concern in recent years and can manifest gradually and without warning. These diseases can affect any part of the retina, causing vision impairment and indeed blindness in extreme cases. This necessitates the development of automated approaches to detect retinal diseases more precisely and, preferably, earlier. In this paper, we examine transfer learning of pretrained convolutional neural network (CNN) and then transfer it to detect retinal problems from Optical Coherence Tomography (OCT) images. In this study, pretrained CNN models, namely, VGG16, DenseNet201, InceptionV3, and Xception, are used to classify seven different retinal diseases from a dataset of images with and without retinal diseases. In addition, to choose optimum values for hyperparameters, Bayesian optimization is applied, and image augmentation is used to increase the generalization capabilities of the developed models. This research also provides a comparison of the proposed models as well as an analysis of them. The accuracy achieved using DenseNet201 on the Retinal OCT Image dataset is more than 99% and offers a good level of accuracy in classifying retinal diseases compared to other approaches, which only detect a small number of retinal diseases.
Collapse
|
35
|
Basilious A, Govas CN, Deans AM, Yoganathan P, Deans RM. Evaluating the Diagnostic Accuracy of a Novel Bayesian Decision-Making Algorithm for Vision Loss. Vision (Basel) 2022; 6:vision6020021. [PMID: 35466273 PMCID: PMC9036270 DOI: 10.3390/vision6020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/23/2022] [Accepted: 04/02/2022] [Indexed: 12/03/2022] Open
Abstract
The current diagnostic aids for acute vision loss are static flowcharts that do not provide dynamic, stepwise workups. We tested the diagnostic accuracy of a novel dynamic Bayesian algorithm for acute vision loss. Seventy-nine “participants” with acute vision loss in Windsor, Canada were assessed by an emergency medicine or primary care provider who completed a questionnaire about ocular symptoms/findings (without requiring fundoscopy). An ophthalmologist then attributed an independent “gold-standard diagnosis”. The algorithm employed questionnaire data to produce a differential diagnosis. The referrer diagnostic accuracy was 30.4%, while the algorithm’s accuracy was 70.9%, increasing to 86.1% with the algorithm’s top two diagnoses included and 88.6% with the top three included. In urgent cases of vision loss (n = 54), the referrer diagnostic accuracy was 38.9%, while the algorithm’s top diagnosis was correct in 72.2% of cases, increasing to 85.2% (top two included) and 87.0% (top three included). The algorithm’s sensitivity for urgent cases using the top diagnosis was 94.4% (95% CI: 85–99%), with a specificity of 76.0% (95% CI: 55–91%). This novel algorithm adjusts its workup at each step using clinical symptoms. In doing so, it successfully improves diagnostic accuracy for vision loss using clinical data collected by non-ophthalmologists.
Collapse
Affiliation(s)
- Amy Basilious
- Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St., London, ON N6A 5C1, Canada; (A.B.); (A.M.D.)
| | - Chris N. Govas
- School of Medicine, Ross University, Two Mile Hill, St. Michael, Bridgetown BB11093, Barbados;
| | - Alexander M. Deans
- Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St., London, ON N6A 5C1, Canada; (A.B.); (A.M.D.)
| | - Pradeepa Yoganathan
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University School of Medicine, Wayne State University, 540 E. Canfield Ave., Detroit, MI 48201, USA;
- Windsor Eye Associates, Department of Ophthalmology and Vision Sciences, University of Toronto, 2224 Walker Rd #198, Windsor, ON N8W 3P6, Canada
| | - Robin M. Deans
- Department of Ophthalmology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St., London, ON N6A 5C1, Canada
- Correspondence: ; Tel.: +519-980-1031
| |
Collapse
|
36
|
Ma D, Kumar M, Khetan V, Sen P, Bhende M, Chen S, Yu TTL, Lee S, Navajas EV, Matsubara JA, Ju MJ, Sarunic MV, Raman R, Beg MF. Clinical explainable differential diagnosis of polypoidal choroidal vasculopathy and age-related macular degeneration using deep learning. Comput Biol Med 2022; 143:105319. [PMID: 35220077 DOI: 10.1016/j.compbiomed.2022.105319] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND This study aims to achieve an automatic differential diagnosis between two types of retinal pathologies with similar pathological features - Polypoidal choroidal vasculopathy (PCV) and wet age-related macular degeneration (AMD) from volumetric optical coherence tomography (OCT) images, and identify clinically-relevant pathological features, using an explainable deep-learning-based framework. METHODS This is a retrospective study with data from a cross-sectional cohort. The OCT volume of 73 eyes from 59 patients was included in this study. Disease differentiation was achieved through single-B-scan-based classification followed by a volumetric probability prediction aggregation step. We compared different labeling strategies with and without identifying pathological B-scans within each OCT volume. Clinical interpretability was achieved through normalized aggregation of B-scan-based saliency maps followed by maximum-intensity-projection onto the en face plane. We derived the PCV score from the proposed differential diagnosis framework with different labeling strategies. The en face projection of saliency map was validated with the pathologies identified in Indocyanine green angiography (ICGA). RESULTS Model trained with both labeling strategies achieved similar level differentiation power (>90%), with good correspondence between pathological features detected from the projected en face saliency map and ICGA. CONCLUSIONS This study demonstrated the potential clinical application of non-invasive differential diagnosis using AI-driven OCT-based analysis, with minimal requirement of labeling efforts, along with clinical explainability achieved through automatically detected disease-related pathologies.
Collapse
Affiliation(s)
- Da Ma
- Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA; School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada.
| | - Meenakshi Kumar
- Shri Bhagwan Mahavir Vitreoretinal Service, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Vikas Khetan
- Shri Bhagwan Mahavir Vitreoretinal Service, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Parveen Sen
- Shri Bhagwan Mahavir Vitreoretinal Service, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Muna Bhende
- Shri Bhagwan Mahavir Vitreoretinal Service, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Shuo Chen
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Timothy T L Yu
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Sieun Lee
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada; Mental Health & Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Eduardo V Navajas
- Department of Ophthalmology & Visual Sciences, The University of British Columbia, Vancouver, BC, Canada; University of British Columbia Vancouver General Hospital, Eye Care Centre, Vancouver, BC, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology & Visual Sciences, The University of British Columbia, Vancouver, BC, Canada; University of British Columbia Vancouver General Hospital, Eye Care Centre, Vancouver, BC, Canada
| | - Myeong Jin Ju
- Department of Ophthalmology & Visual Sciences, The University of British Columbia, Vancouver, BC, Canada; University of British Columbia Vancouver General Hospital, Eye Care Centre, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, BC, Canada
| | - Marinko V Sarunic
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada; Institute of Ophthalmology, University College London, London, UK; Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom
| | - Rajiv Raman
- Shri Bhagwan Mahavir Vitreoretinal Service, Medical Research Foundation, Sankara Nethralaya, Chennai, India.
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
37
|
Deep Learning Model Based on 3D Optical Coherence Tomography Images for the Automated Detection of Pathologic Myopia. Diagnostics (Basel) 2022; 12:diagnostics12030742. [PMID: 35328292 PMCID: PMC8947335 DOI: 10.3390/diagnostics12030742] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/20/2022] Open
Abstract
Pathologic myopia causes vision impairment and blindness, and therefore, necessitates a prompt diagnosis. However, there is no standardized definition of pathologic myopia, and its interpretation by 3D optical coherence tomography images is subjective, requiring considerable time and money. Therefore, there is a need for a diagnostic tool that can automatically and quickly diagnose pathologic myopia in patients. This study aimed to develop an algorithm that uses 3D optical coherence tomography volumetric images (C-scan) to automatically diagnose patients with pathologic myopia. The study was conducted using 367 eyes of patients who underwent optical coherence tomography tests at the Ophthalmology Department of Incheon St. Mary’s Hospital and Seoul St. Mary’s Hospital from January 2012 to May 2020. To automatically diagnose pathologic myopia, a deep learning model was developed using 3D optical coherence tomography images. The model was developed using transfer learning based on four pre-trained convolutional neural networks (ResNet18, ResNext50, EfficientNetB0, EfficientNetB4). Grad-CAM was used to visualize features affecting the detection of pathologic myopia. The performance of each model was evaluated and compared based on accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC). The model based on EfficientNetB4 showed the best performance (95% accuracy, 93% sensitivity, 96% specificity, and 98% AUROC) in identifying pathologic myopia.
Collapse
|
38
|
You A, Kim JK, Ryu IH, Yoo TK. Application of generative adversarial networks (GAN) for ophthalmology image domains: a survey. EYE AND VISION (LONDON, ENGLAND) 2022; 9:6. [PMID: 35109930 PMCID: PMC8808986 DOI: 10.1186/s40662-022-00277-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recent advances in deep learning techniques have led to improved diagnostic abilities in ophthalmology. A generative adversarial network (GAN), which consists of two competing types of deep neural networks, including a generator and a discriminator, has demonstrated remarkable performance in image synthesis and image-to-image translation. The adoption of GAN for medical imaging is increasing for image generation and translation, but it is not familiar to researchers in the field of ophthalmology. In this work, we present a literature review on the application of GAN in ophthalmology image domains to discuss important contributions and to identify potential future research directions. METHODS We performed a survey on studies using GAN published before June 2021 only, and we introduced various applications of GAN in ophthalmology image domains. The search identified 48 peer-reviewed papers in the final review. The type of GAN used in the analysis, task, imaging domain, and the outcome were collected to verify the usefulness of the GAN. RESULTS In ophthalmology image domains, GAN can perform segmentation, data augmentation, denoising, domain transfer, super-resolution, post-intervention prediction, and feature extraction. GAN techniques have established an extension of datasets and modalities in ophthalmology. GAN has several limitations, such as mode collapse, spatial deformities, unintended changes, and the generation of high-frequency noises and artifacts of checkerboard patterns. CONCLUSIONS The use of GAN has benefited the various tasks in ophthalmology image domains. Based on our observations, the adoption of GAN in ophthalmology is still in a very early stage of clinical validation compared with deep learning classification techniques because several problems need to be overcome for practical use. However, the proper selection of the GAN technique and statistical modeling of ocular imaging will greatly improve the performance of each image analysis. Finally, this survey would enable researchers to access the appropriate GAN technique to maximize the potential of ophthalmology datasets for deep learning research.
Collapse
Affiliation(s)
- Aram You
- School of Architecture, Kumoh National Institute of Technology, Gumi, Gyeongbuk, South Korea
| | - Jin Kuk Kim
- B&VIIT Eye Center, Seoul, South Korea
- VISUWORKS, Seoul, South Korea
| | - Ik Hee Ryu
- B&VIIT Eye Center, Seoul, South Korea
- VISUWORKS, Seoul, South Korea
| | - Tae Keun Yoo
- B&VIIT Eye Center, Seoul, South Korea.
- Department of Ophthalmology, Aerospace Medical Center, Republic of Korea Air Force, 635 Danjae-ro, Namil-myeon, Cheongwon-gun, Cheongju, Chungcheongbuk-do, 363-849, South Korea.
| |
Collapse
|
39
|
Yoo TK, Kim BY, Jeong HK, Kim HK, Yang D, Ryu IH. Simple Code Implementation for Deep Learning-Based Segmentation to Evaluate Central Serous Chorioretinopathy in Fundus Photography. Transl Vis Sci Technol 2022; 11:22. [PMID: 35147661 PMCID: PMC8842634 DOI: 10.1167/tvst.11.2.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose Central serous chorioretinopathy (CSC) is a retinal disease that frequently shows resolution and recurrence with serous detachment of the neurosensory retina. Here, we present a deep learning analysis of subretinal fluid (SRF) lesion segmentation in fundus photographs to evaluate CSC. Methods We collected 194 fundus photographs of SRF lesions from the patients with CSC. Three graders manually annotated of the entire SRF area in the retinal images. The dataset was randomly separated into training (90%) and validation (10%) datasets. We used the U-Net segmentation model based on conditional generative adversarial networks (pix2pix) to detect the SRF lesions. The algorithms were trained and validated using Google Colaboratory. Researchers did not need prior knowledge of coding skills or computing resources to implement this code. Results The validation results showed that the Jaccard index and Dice coefficient scores were 0.619 and 0.763, respectively. In most cases, the segmentation results overlapped with most of the reference areas in the annotated images. However, cases with exceptional SRFs were not accurate in terms of prediction. Using Colaboratory, the proposed segmentation task ran easily in a web-based environment without setup or personal computing resources. Conclusions The results suggest that the deep learning model based on U-Net from the pix2pix algorithm is suitable for the automatic segmentation of SRF lesions to evaluate CSC. Translational Relevance Our code implementation has the potential to facilitate ophthalmology research; in particular, deep learning–based segmentation can assist in the development of pathological lesion detection solutions.
Collapse
Affiliation(s)
- Tae Keun Yoo
- Department of Ophthalmology, Aerospace Medical Center, Korea Air Force, Cheongju, South Korea.,B&VIIT Eye Center, Seoul, South Korea
| | - Bo Yi Kim
- Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun Kyo Jeong
- Department of Ophthalmology, 10 th Fighter Wing, Republic of Korea Air Force, Suwon, South Korea
| | - Hong Kyu Kim
- Department of Ophthalmology, Dankook University Hospital, Dankook University College of Medicine, Cheonan, South Korea
| | - Donghyun Yang
- Medical Research Center, Aerospace Medical Center, Republic of Korea Air Force, Cheongju, South Korea
| | - Ik Hee Ryu
- B&VIIT Eye Center, Seoul, South Korea.,Visuworks, Seoul, South Korea
| |
Collapse
|
40
|
Huang X, Wang H, She C, Feng J, Liu X, Hu X, Chen L, Tao Y. Artificial intelligence promotes the diagnosis and screening of diabetic retinopathy. Front Endocrinol (Lausanne) 2022; 13:946915. [PMID: 36246896 PMCID: PMC9559815 DOI: 10.3389/fendo.2022.946915] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Deep learning evolves into a new form of machine learning technology that is classified under artificial intelligence (AI), which has substantial potential for large-scale healthcare screening and may allow the determination of the most appropriate specific treatment for individual patients. Recent developments in diagnostic technologies facilitated studies on retinal conditions and ocular disease in metabolism and endocrinology. Globally, diabetic retinopathy (DR) is regarded as a major cause of vision loss. Deep learning systems are effective and accurate in the detection of DR from digital fundus photographs or optical coherence tomography. Thus, using AI techniques, systems with high accuracy and efficiency can be developed for diagnosing and screening DR at an early stage and without the resources that are only accessible in special clinics. Deep learning enables early diagnosis with high specificity and sensitivity, which makes decisions based on minimally handcrafted features paving the way for personalized DR progression real-time monitoring and in-time ophthalmic or endocrine therapies. This review will discuss cutting-edge AI algorithms, the automated detecting systems of DR stage grading and feature segmentation, the prediction of DR outcomes and therapeutics, and the ophthalmic indications of other systemic diseases revealed by AI.
Collapse
Affiliation(s)
- Xuan Huang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hui Wang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Chongyang She
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jing Feng
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xuhui Liu
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaofeng Hu
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Li Chen
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yong Tao,
| |
Collapse
|
41
|
Synthetic OCT data in challenging conditions: three-dimensional OCT and presence of abnormalities. Med Biol Eng Comput 2021; 60:189-203. [PMID: 34792759 PMCID: PMC8724113 DOI: 10.1007/s11517-021-02469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/06/2021] [Indexed: 12/09/2022]
Abstract
Nowadays, retinal optical coherence tomography (OCT) plays an important role in ophthalmology and automatic analysis of the OCT is of real importance: image denoising facilitates a better diagnosis and image segmentation and classification are undeniably critical in treatment evaluation. Synthetic OCT was recently considered to provide a benchmark for quantitative comparison of automatic algorithms and to be utilized in the training stage of novel solutions based on deep learning. Due to complicated data structure in retinal OCTs, a limited number of delineated OCT datasets are already available in presence of abnormalities; furthermore, the intrinsic three-dimensional (3D) structure of OCT is ignored in many public 2D datasets. We propose a new synthetic method, applicable to 3D data and feasible in presence of abnormalities like diabetic macular edema (DME). In this method, a limited number of OCT data is used during the training step and the Active Shape Model is used to produce synthetic OCTs plus delineation of retinal boundaries and location of abnormalities. Statistical comparison of thickness maps showed that synthetic dataset can be used as a statistically acceptable representative of the original dataset (p > 0.05). Visual inspection of the synthesized vessels was also promising. Regarding the texture features of the synthesized datasets, Q-Q plots were used, and even in cases that the points have slightly digressed from the straight line, the p-values of the Kolmogorov–Smirnov test rejected the null hypothesis and showed the same distribution in texture features of the real and the synthetic data. The proposed algorithm provides a unique benchmark for comparison of OCT enhancement methods and a tailored augmentation method to overcome the limited number of OCTs in deep learning algorithms.
Collapse
|
42
|
Yoo TK, Choi JY, Kim HK, Ryu IH, Kim JK. Adopting low-shot deep learning for the detection of conjunctival melanoma using ocular surface images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 205:106086. [PMID: 33862570 DOI: 10.1016/j.cmpb.2021.106086] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/30/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND OBJECTIVE The purpose of the present study was to investigate low-shot deep learning models applied to conjunctival melanoma detection using a small dataset with ocular surface images. METHODS A dataset was composed of anonymized images of four classes; conjunctival melanoma (136), nevus or melanosis (93), pterygium (75), and normal conjunctiva (94). Before training involving conventional deep learning models, two generative adversarial networks (GANs) were constructed to augment the training dataset for low-shot learning. The collected data were randomly divided into training (70%), validation (10%), and test (20%) datasets. Moreover, 3D melanoma phantoms were designed to build an external validation set using a smartphone. The GoogleNet, InceptionV3, NASNet, ResNet50, and MobileNetV2 architectures were trained through transfer learning and validated using the test and external validation datasets. RESULTS The deep learning model demonstrated a significant improvement in the classification accuracy of conjunctival lesions using synthetic images generated by the GAN models. MobileNetV2 with GAN-based augmentation displayed the highest accuracy of 87.5% in the four-class classification and 97.2% in the binary classification for the detection of conjunctival melanoma. It showed an accuracy of 94.0% using 3D melanoma phantom images captured using a smartphone camera. CONCLUSIONS The present study described a low-shot deep learning model that can detect conjunctival melanomas using ocular surface images. To the best of our knowledge, this study is the first to develop a deep learning model to detect conjunctival melanoma using a digital imaging device such as smartphone camera.
Collapse
Affiliation(s)
- Tae Keun Yoo
- Department of Ophthalmology, Aerospace Medical Center, Republic of Korea Air Force, Cheongju, Republic of Korea.
| | - Joon Yul Choi
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Hong Kyu Kim
- Department of Ophthalmology, Dankook University Hospital, Dankook University College of Medicine, Cheonan, South Korea
| | - Ik Hee Ryu
- B&VIIT Eye Center, Seoul, South Korea; VISUWORKS, Seoul, South Korea
| | - Jin Kuk Kim
- B&VIIT Eye Center, Seoul, South Korea; VISUWORKS, Seoul, South Korea
| |
Collapse
|
43
|
Ran A, Cheung CY. Deep Learning-Based Optical Coherence Tomography and Optical Coherence Tomography Angiography Image Analysis: An Updated Summary. Asia Pac J Ophthalmol (Phila) 2021; 10:253-260. [PMID: 34383717 DOI: 10.1097/apo.0000000000000405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT Deep learning (DL) is a subset of artificial intelligence based on deep neural networks. It has made remarkable breakthroughs in medical imaging, particularly for image classification and pattern recognition. In ophthalmology, there are rising interests in applying DL methods to analyze optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) images. Studies showed that OCT and OCTA image evaluation by DL algorithms achieved good performance for disease detection, prognosis prediction, and image quality control, suggesting that the incorporation of DL technology could potentially enhance the accuracy of disease evaluation and the efficiency of clinical workflow. However, substantial issues, such as small training sample size, data preprocessing standardization, model robustness, results explanation, and performance cross-validation, are yet to be tackled before deploying these DL models in real-time clinics. This review summarized recent studies on DL-based image analysis models for OCT and OCTA images and discussed the potential challenges of clinical deployment and future research directions.
Collapse
Affiliation(s)
- Anran Ran
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong SAR
| | | |
Collapse
|