1
|
Sarry M, Bernelin-Cottet C, Michaud C, Relmy A, Romey A, Salomez AL, Renson P, Contrant M, Berthaud M, Huet H, Jouvion G, Hägglund S, Valarcher JF, Bakkali Kassimi L, Blaise-Boisseau S. Development of a primary cell model derived from porcine dorsal soft palate for foot-and-mouth disease virus research and diagnosis. Front Microbiol 2023; 14:1215347. [PMID: 37840704 PMCID: PMC10570842 DOI: 10.3389/fmicb.2023.1215347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals that has a significant socio-economic impact. One concern associated with this disease is the ability of its etiological agent, the FMD virus (FMDV), to persist in its hosts through underlying mechanisms that remain to be elucidated. While persistence has been described in cattle and small ruminants, it is unlikely to occur in pigs. One of the factors limiting the progress in understanding FMDV persistence and, in particular, differential persistence is the lack of suitable in vitro models. A primary bovine cell model derived from the dorsal soft palate, which is the primary site of replication and persistence of FMDV in cattle, has been developed, and it seemed relevant to develop a similar porcine model. Cells from two sites of FMDV replication in pigs, namely, the dorsal soft palate and the oropharyngeal tonsils, were isolated and cultured. The epithelial character of the cells from the dorsal soft palate was then assessed by immunofluorescence. The FMDV-sensitivity of these cells was assessed after monolayer infection with FMDV O/FRA/1/2001 Clone 2.2. These cells were also grown in multilayers at the air-liquid interface to mimic a stratified epithelium susceptible to FMDV infection. Consistent with what has been shown in vivo in pigs, our study showed no evidence of persistence of FMDV in either the monolayer or multilayer model, with no infectious virus detected 28 days after infection. The development of such a model opens up new possibilities for the study and diagnosis of FMDV in porcine cells.
Collapse
Affiliation(s)
- Morgan Sarry
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
- AgroParistech, Paris, France
| | - Cindy Bernelin-Cottet
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Caroline Michaud
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Anthony Relmy
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Aurore Romey
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Anne-Laure Salomez
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Patricia Renson
- ANSES Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Maud Contrant
- ANSES Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Maxime Berthaud
- ANSES Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Hélène Huet
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Grégory Jouvion
- Dynamyc Research Team, Université Paris-Est Créteil, Ecole Nationale Vétérinaire d’Alfort, ANSES, Créteil, France
- Unité d’Histologie et d’Anatomie Pathologique, Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France
| | - Sara Hägglund
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Jean-François Valarcher
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Labib Bakkali Kassimi
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Sandra Blaise-Boisseau
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
2
|
Giorgakoudi K, Schley D, Juleff N, Gubbins S, Ward J. The role of Type I interferons in the pathogenesis of foot-and-mouth disease virus in cattle: A mathematical modelling analysis. Math Biosci 2023; 363:109052. [PMID: 37495013 DOI: 10.1016/j.mbs.2023.109052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/16/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
Type I interferons (IFN) are the first line of immune response against infection. In this study, we explore the interaction between Type I IFN and foot-and-mouth disease virus (FMDV), focusing on the effect of this interaction on epithelial cell death. While several mathematical models have explored the interaction between interferon and viruses at a systemic level, with most of the work undertaken on influenza and hepatitis C, these cannot investigate why a virus such as FMDV causes extensive cell death in some epithelial tissues leading to the development of lesions, while other infected epithelial tissues exhibit negligible cell death. Our study shows how a model that includes epithelial tissue structure can explain the development of lesions in some tissues and their absence in others. Furthermore, we show how the site of viral entry in an epithelial tissue, the viral replication rate, IFN production, suppression of viral replication by IFN and IFN release by live cells, all have a major impact on results.
Collapse
Affiliation(s)
- Kyriaki Giorgakoudi
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK; Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.
| | - David Schley
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK.
| | - Nicholas Juleff
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK.
| | - Simon Gubbins
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK.
| | - John Ward
- Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.
| |
Collapse
|
3
|
Hägglund S, Laloy E, Näslund K, Pfaff F, Eschbaumer M, Romey A, Relmy A, Rikberg A, Svensson A, Huet H, Gorna K, Zühlke D, Riedel K, Beer M, Zientara S, Bakkali-Kassimi L, Blaise-Boisseau S, Valarcher JF. Model of persistent foot-and-mouth disease virus infection in multilayered cells derived from bovine dorsal soft palate. Transbound Emerg Dis 2019; 67:133-148. [PMID: 31419374 PMCID: PMC7003861 DOI: 10.1111/tbed.13332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022]
Abstract
Foot‐and‐mouth disease virus (FMDV) causes a highly contagious vesicular disease in livestock, with serious consequences for international trade. The virus persists in the nasopharynx of cattle and this slows down the process to obtain an FMDV‐free status after an outbreak. To study biological mechanisms, or to identify molecules that can be targeted to diagnose or interfere with persistence, we developed a model of persistent FMDV infection in bovine dorsal soft palate (DSP). Primary DSP cells were isolated after commercial slaughter and were cultured in multilayers at the air‐liquid interface. After 5 weeks of culture without further passage, the cells were infected with FMDV strain O/FRA/1/2001. Approximately, 20% of cells still had a polygonal morphology and displayed tight junctions as in stratified squamous epithelia. Subsets of cells expressed cytokeratin and most or all cells expressed vimentin. In contrast to monolayers in medium, multilayers in air demonstrated only a limited cytopathic effect. Integrin αVβ6 expression was observed in mono‐ but not in multilayers. FMDV antigen, FMDV RNA and live virus were detected from day 1 to 28, with peaks at day 1 and 2. The proportion of infected cells was highest at 24 hr (3% and 36% of cells at an MOI of 0.01 and 1, respectively). At day 28 after infection, at a time when animals that still harbour FMDV are considered carriers, FMDV antigen was detected in 0.2%–2.1% of cells, in all layers, and live virus was isolated from supernatants of 6/8 cultures. On the consensus level, the viral genome did not change within the first 24 hr after infection. Only a few minor single nucleotide variants were detected, giving no indication of the presence of a viral quasispecies. The air‐liquid interface model of DSP brings new possibilities to investigate FMDV persistence in a controlled manner.
Collapse
Affiliation(s)
- Sara Hägglund
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Eve Laloy
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Katarina Näslund
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Michael Eschbaumer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Aurore Romey
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Anthony Relmy
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Annika Rikberg
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Anna Svensson
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Helene Huet
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Kamila Gorna
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Daniela Zühlke
- Institute of Microbiology, Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Stephan Zientara
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Labib Bakkali-Kassimi
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Sandra Blaise-Boisseau
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Jean François Valarcher
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| |
Collapse
|
4
|
Giorgakoudi K, Gubbins S, Ward J, Juleff N, Zhang Z, Schley D. Using Mathematical Modelling to Explore Hypotheses about the Role of Bovine Epithelium Structure in Foot-And-Mouth Disease Virus-Induced Cell Lysis. PLoS One 2015; 10:e0138571. [PMID: 26431527 PMCID: PMC4592007 DOI: 10.1371/journal.pone.0138571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/01/2015] [Indexed: 11/18/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. FMD virus (FMDV) shows a strong tropism for epithelial cells, and FMD is characterised by cell lysis and the development of vesicular lesions in certain epithelial tissues (for example, the tongue). By contrast, other epithelial tissues do not develop lesions, despite being sites of viral replication (for example, the dorsal soft palate). The reasons for this difference are poorly understood, but hypotheses are difficult to test experimentally. In order to identify the factors which drive cell lysis, and consequently determine the development of lesions, we developed a partial differential equation model of FMDV infection in bovine epithelial tissues and used it to explore a range of hypotheses about epithelium structure which could be driving differences in lytic behaviour observed in different tissues. Our results demonstrate that, based on current parameter estimates, epithelial tissue thickness and cell layer structure are unlikely to be determinants of FMDV-induced cell lysis. However, differences in receptor distribution or viral replication amongst cell layers could influence the development of lesions, but only if viral replication rates are much lower than current estimates.
Collapse
Affiliation(s)
- Kyriaki Giorgakoudi
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
- Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom
| | - Simon Gubbins
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - John Ward
- Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom
| | | | - Zhidong Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - David Schley
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| |
Collapse
|
5
|
Mushayabasa S, Bhunu CP, Dhlamini M. Impact of Vaccination and Culling on Controlling Foot and Mouth Disease: A Mathematical Modelling Approach. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/wjv.2011.14016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|