1
|
Shyntar A, Patel A, Rhodes M, Enderling H, Hillen T. The Tumor Invasion Paradox in Cancer Stem Cell-Driven Solid Tumors. Bull Math Biol 2022; 84:139. [PMID: 36301402 PMCID: PMC9613767 DOI: 10.1007/s11538-022-01086-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
Cancer stem cells (CSCs) are key in understanding tumor growth and tumor progression. A counterintuitive effect of CSCs is the so-called tumor growth paradox: the effect where a tumor with a higher death rate may grow larger than a tumor with a lower death rate. Here we extend the modeling of the tumor growth paradox by including spatial structure and considering cancer invasion. Using agent-based modeling and a corresponding partial differential equation model, we demonstrate and prove mathematically a tumor invasion paradox: a larger cell death rate can lead to a faster invasion speed. We test this result on a generic hypothetical cancer with typical growth rates and typical treatment sensitivities. We find that the tumor invasion paradox may play a role for continuous and intermittent treatments, while it does not seem to be essential in fractionated treatments. It should be noted that no attempt was made to fit the model to a specific cancer, thus, our results are generic and theoretical.
Collapse
|
2
|
Padmanabhan R, Kheraldine HS, Meskin N, Vranic S, Al Moustafa AE. Crosstalk between HER2 and PD-1/PD-L1 in Breast Cancer: From Clinical Applications to Mathematical Models. Cancers (Basel) 2020; 12:E636. [PMID: 32164163 PMCID: PMC7139939 DOI: 10.3390/cancers12030636] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is one of the major causes of mortality in women worldwide. The most aggressive breast cancer subtypes are human epidermal growth factor receptor-positive (HER2+) and triple-negative breast cancers. Therapies targeting HER2 receptors have significantly improved HER2+ breast cancer patient outcomes. However, several recent studies have pointed out the deficiency of existing treatment protocols in combatting disease relapse and improving response rates to treatment. Overriding the inherent actions of the immune system to detect and annihilate cancer via the immune checkpoint pathways is one of the important hallmarks of cancer. Thus, restoration of these pathways by various means of immunomodulation has shown beneficial effects in the management of various types of cancers, including breast. We herein review the recent progress in the management of HER2+ breast cancer via HER2-targeted therapies, and its association with the programmed death receptor-1 (PD-1)/programmed death ligand-1 (PD-L1) axis. In order to link research in the areas of medicine and mathematics and point out specific opportunities for providing efficient theoretical analysis related to HER2+ breast cancer management, we also review mathematical models pertaining to the dynamics of HER2+ breast cancer and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Regina Padmanabhan
- Department of Electrical Engineering, Qatar University, 2713 Doha, Qatar;
- Biomedical Research Centre, Qatar University, 2713 Doha, Qatar;
| | - Hadeel Shafeeq Kheraldine
- Biomedical Research Centre, Qatar University, 2713 Doha, Qatar;
- College of Pharmacy, QU Health, Qatar University, 2713 Doha, Qatar
| | - Nader Meskin
- Department of Electrical Engineering, Qatar University, 2713 Doha, Qatar;
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar;
| | - Ala-Eddin Al Moustafa
- Biomedical Research Centre, Qatar University, 2713 Doha, Qatar;
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar;
| |
Collapse
|
3
|
A mathematical model for the immune-mediated theory of metastasis. J Theor Biol 2019; 482:109999. [PMID: 31493486 DOI: 10.1016/j.jtbi.2019.109999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/13/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022]
Abstract
Accumulating experimental and clinical evidence suggest that the immune response to cancer is not exclusively anti-tumor. Indeed, the pro-tumor roles of the immune system - as suppliers of growth and pro-angiogenic factors or defenses against cytotoxic immune attacks, for example - have been long appreciated, but relatively few theoretical works have considered their effects. Inspired by the recently proposed "immune-mediated" theory of metastasis, we develop a mathematical model for tumor-immune interactions at two anatomically distant sites, which includes both anti- and pro-tumor immune effects, and the experimentally observed tumor-induced phenotypic plasticity of immune cells (tumor "education" of the immune cells). Upon confrontation of our model to experimental data, we use it to evaluate the implications of the immune-mediated theory of metastasis. We find that tumor education of immune cells may explain the relatively poor performance of immunotherapies, and that many metastatic phenomena, including metastatic blow-up, dormancy, and metastasis to sites of injury, can be explained by the immune-mediated theory of metastasis. Our results suggest that further work is warranted to fully elucidate the pro-tumor effects of the immune system in metastatic cancer.
Collapse
|
4
|
Jilkine A. Mathematical Models of Stem Cell Differentiation and Dedifferentiation. CURRENT STEM CELL REPORTS 2019. [DOI: 10.1007/s40778-019-00156-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
5
|
Qin H, Zhou J, Xu J, Cheng L, Tang Z, Ma H, Guo F. The nuclear transcription factor RelB functions as an oncogene in human lung adenocarcinoma SPC-A1 cells. Cancer Cell Int 2018; 18:88. [PMID: 29983639 PMCID: PMC6020198 DOI: 10.1186/s12935-018-0580-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/06/2018] [Indexed: 11/19/2022] Open
Abstract
Background Lung cancer is a leading public health issue worldwide. Although therapeutic approaches have improved drastically in the last decades, the prognosis of lung cancer patients remains suboptimal. The canonical nuclear transcription factor kappa B (NF-κB) signalling pathway is critical in the carcinogenesis of lung cancer. The non-canonical NF-κB signalling pathway (represented by RelB) has attracted increasing attention in the pathogenesis of haematological and epithelial malignancies. However, the function of RelB in non-small cell lung cancer (NSCLC) is still unclear. Recently, high expression of RelB has been detected in NSCLC tissues. We have also demonstrated that RelB expression is an independent prognostic factor in NSCLC patients. Methods The mRNA and protein expression of RelB in NSCLC tissues were detected by qRT-PCR and IHC assay. The cell growth of SPC-A1 cells was detected in real-time using the x-Celligence system and xenograft tumour assays. The proliferation capability of cells was detected using a CFSE assay. Cell apoptosis was measured using Annexin V/PI staining, cell cycle was analyzed by the cytometry. Cell migration abilities were detected using the x-Celligence system and wound healing assays. The relative amounts of the active and inactive gelatinases MMP-2 and MMP-9 were examined using gelatin zymography experiments. Apoptosis of RelB depletion SPC-A1 cells after ionizing radiation at 8 Gy. The expression of cellular proliferation signal pathway related-proteins were examined by Western blot analysis. Results The expression of RelB increases in NSCLC tissues. High RelB expression was significantly correlated with advanced-metastatic stage in patients with NSCLC. RelB-silencing inhibits cell growth in vitro and in vivo. We found that RelB affected cell proliferation by regulating AKT phosphorylation. RelB silencing attenuates the migration and invasion abilities of SPC-A1 cells and is likely related to the down regulation of MMP-9 activity and Integrin β-1 expression. In addition, RelB modulated radiation-induced survival of NSCLC cells predominantly by regulating Bcl-xL expression. Conclusions Given the involvement of RelB in cell proliferation, migration, invasion, and radio-resistance, RelB functions as an oncogene in NSCLC cells. Our data here shed light on unexplored aspects of RelB in NSCLC.
Collapse
Affiliation(s)
- Hualong Qin
- 1Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Zhou
- 2Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingjing Xu
- 2Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Cheng
- 2Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zaixiang Tang
- 3Department of Biostatistics, Medical College of Soochow University, Suzhou, China
| | - Haitao Ma
- 1Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Guo
- 4Department of Oncology, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, 215001 China
| |
Collapse
|
6
|
Yan H, Romero-López M, Benitez LI, Di K, Frieboes HB, Hughes CCW, Bota DA, Lowengrub JS. Multiscale modeling of glioblastoma. Transl Cancer Res 2018; 7:S96-S98. [PMID: 30211018 PMCID: PMC6130886 DOI: 10.21037/tcr.2017.12.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Huaming Yan
- Department of Mathematics, University of California, Irvine, USA
| | | | - Lesly I. Benitez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, USA
| | - Kaijun Di
- Department of Neurology, University of California, Irvine, USA
| | - Hermann B. Frieboes
- James Graham Brown Cancer Center, University of Louisville, Louisville, USA
- Department of Bioengineering, University of Louisville, Louisville, USA
| | - Christopher C. W. Hughes
- Department of Biomedical Engineering, University of California, Irvine, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, USA
- Chao Comprehensive Cancer Center, University of California, Irvine, USA
- Center for Complex Biological Systems, University of California, Irvine, USA
| | - Daniela A. Bota
- Department of Neurology, University of California, Irvine, USA
- Chao Comprehensive Cancer Center, University of California, Irvine, USA
- Department of Neurological Surgery, University of California, Irvine, USA
| | - John S. Lowengrub
- Department of Mathematics, University of California, Irvine, USA
- Department of Biomedical Engineering, University of California, Irvine, USA
- Chao Comprehensive Cancer Center, University of California, Irvine, USA
- Center for Complex Biological Systems, University of California, Irvine, USA
| |
Collapse
|
7
|
Stocks T, Hillen T, Gong J, Burger M. A stochastic model for the normal tissue complication probability (NTCP) and applicationss. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2017; 34:469-492. [PMID: 27591250 DOI: 10.1093/imammb/dqw013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 08/06/2016] [Indexed: 11/14/2022]
Abstract
The normal tissue complication probability (NTCP) is a measure for the estimated side effects of a given radiation treatment schedule. Here we use a stochastic logistic birth-death process to define an organ-specific and patient-specific NTCP. We emphasize an asymptotic simplification which relates the NTCP to the solution of a logistic differential equation. This framework is based on simple modelling assumptions and it prepares a framework for the use of the NTCP model in clinical practice. As example, we consider side effects of prostate cancer brachytherapy such as increase in urinal frequency, urinal retention and acute rectal dysfunction.
Collapse
Affiliation(s)
- Theresa Stocks
- Department of Mathematics, Stockholm University, SE - 106 91 Stockholm, Sweden
| | - Thomas Hillen
- Centre for Mathematical Biology, Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G2G1, Canada
| | - Jiafen Gong
- The hospital for sick children research institute, SickKids, 555 University Avenue, Toronto, Ontario M5G1X8, Canada
| | - Martin Burger
- Institute for Computational and Applied Mathematics, Excellence Cluster Cells in Motion, University of Münster, Einsteinstrasse 62, D-48149 Münster
| |
Collapse
|
8
|
Park M, Yoon HJ, Kang MC, Kwon J, Lee HW. MiR-338-5p enhances the radiosensitivity of esophageal squamous cell carcinoma by inducing apoptosis through targeting survivin. Sci Rep 2017; 7:10932. [PMID: 28883406 PMCID: PMC5589838 DOI: 10.1038/s41598-017-10977-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
Radioresistance is a challenge in the treatment of esophageal squamous cell carcinoma (ESCC). MicroRNAs (miRNAs) are known to play an important role in the functional modification of cancer cells and recent studies have reported miRNA-mediated radiotherapy resistance. However, further research is necessary to reveal the regulation mechanisms, and treatment strategies using miRNA are yet to be established for ESCC. We compared the miRNA expression profiles of ESCC parental (TE-4) and acquired radioresistance (TE-4R) cell lines using a miRNA microarray and qRT-PCR. Our data showed that miR-338-5p, one of the target miRNA biomarkers, was significantly downregulated in TE-4R. Ectopic overexpression of miR-338-5p induced apoptosis and sensitivity to radiation treatment by interfering with survivin, which is a known inhibitor of apoptosis. Overexpression of survivin reversed miR-338-5p-induced apoptosis. Tumor xenograft experiments indicated that therapeutic delivery of the miR-338-5p mimics via direct injection into tumor mass increased sensitivity to radiation therapy. In conclusion, our findings suggest that miR-338-5p is a potential radiosensitizer and may be a therapeutic biomarker for radioresistant in ESCC.
Collapse
Affiliation(s)
- Misun Park
- Department of Translational Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Radiological & Medico-Oncological Sciences, Korea University of Science and Technology, Daejeon, Korea
| | - Hyeon-Joon Yoon
- Department of Translational Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Moon Chul Kang
- Department of Thoracic Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Junhye Kwon
- Department of Translational Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.
| | - Hae Won Lee
- Department of Thoracic Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.
| |
Collapse
|
9
|
Zhang G, Wang W, Yao C, Zhang S, Liang L, Han M, Ren J, Qi X, Zhang X, Wang S, Li L. Radiation-resistant cancer stem-like cell properties are regulated by PTEN through the activity of nuclear β-catenin in nasopharyngeal carcinoma. Oncotarget 2017; 8:74661-74672. [PMID: 29088815 PMCID: PMC5650370 DOI: 10.18632/oncotarget.20339] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/26/2017] [Indexed: 01/06/2023] Open
Abstract
Radiotherapy is the primary and most important treatment for nasopharyngeal carcinoma (NPC). Cancer stem-like cells (CSCs) have been shown to be resistant to radiation. The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor gene has been suggested to play a role in stem cell self-renewal. In the present study, we sorted PTEN−/+ cells using a flow cytometer. The clone formation assay showed that PTEN− cells were more radioresistant than PTEN+ NPC cells. We found that PTEN− cells demonstrated a significant increase in tumorsphere formation and CSCs markers compared with PTEN+ cells. Silencing the expression of PTEN with siRNA resulted in increased expression of p-AKT, active β-catenin and Nanog. siPTEN cells irradiated showed more radioresistant and DNA damage than parental cells. We also confirmed that down-regulation of β-catenin expression with shRNA resulted in a reduced percentage of side population cells and expression of Nanog. shβ-catenin cells significantly decreased survivin expression at 4 Gy irradiation in PTEN− cells compared with PTEN+ cells. In siPTEN cells, β-catenin staining shifted from the cytoplasmic membrane to the nucleus. Furthermore, immunofluorescence showed that following irradiation of PTEN− cells, at 4 Gy, active β-catenin was mainly found in the nucleus. Immunohistochemistry analysis also demonstrated that the PTEN−/p-AKT+/β-catenin+/Nanog+ axis may indicate poor prognosis and radioresistance in clinical NPC specimens. Thus, our findings strongly suggest that PTEN− cells have CSCs properties that are resistant to radiation in NPC. PTEN exerts these effects through the downstream effector PI3K/AKT/β-catenin/Nanog axis which depends on nuclear β-catenin accumulation.
Collapse
Affiliation(s)
- Gong Zhang
- Department of Radiotherapy of People's Hospital of Shanxi Province, Taiyuan 030012, PR China
| | - Wenjun Wang
- Research Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China
| | - Chunxiao Yao
- Department of Radiotherapy of People's Hospital of Shanxi Province, Taiyuan 030012, PR China
| | - Shuping Zhang
- Department of Radiotherapy of People's Hospital of Shanxi Province, Taiyuan 030012, PR China
| | - Lili Liang
- Department of Dermatology of People's Hospital of Shanxi Province, Taiyuan 030012, PR China
| | - Muyuan Han
- Department of Ophthalmology of People's Hospital of Shanxi Province, Taiyuan 030012, PR China
| | - Jinjin Ren
- Department of Radiotherapy of People's Hospital of Shanxi Province, Taiyuan 030012, PR China
| | - Xiurong Qi
- Department of Radiotherapy of People's Hospital of Shanxi Province, Taiyuan 030012, PR China
| | - Xiaofeng Zhang
- Department of Radiotherapy of People's Hospital of Shanxi Province, Taiyuan 030012, PR China
| | - Shuye Wang
- Department of Radiotherapy of People's Hospital of Shanxi Province, Taiyuan 030012, PR China
| | - Lei Li
- Department of Radiotherapy of People's Hospital of Shanxi Province, Taiyuan 030012, PR China
| |
Collapse
|
10
|
Zhang G, Wang W, Yao C, Ren J, Zhang S, Han M. Salinomycin overcomes radioresistance in nasopharyngeal carcinoma cells by inhibiting Nrf2 level and promoting ROS generation. Biomed Pharmacother 2017; 91:147-154. [DOI: 10.1016/j.biopha.2017.04.095] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 01/10/2023] Open
|
11
|
Yan H, Romero-López M, Benitez LI, Di K, Frieboes HB, Hughes CCW, Bota DA, Lowengrub JS. 3D Mathematical Modeling of Glioblastoma Suggests That Transdifferentiated Vascular Endothelial Cells Mediate Resistance to Current Standard-of-Care Therapy. Cancer Res 2017; 77:4171-4184. [PMID: 28536277 DOI: 10.1158/0008-5472.can-16-3094] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/24/2017] [Accepted: 05/16/2017] [Indexed: 01/17/2023]
Abstract
Glioblastoma (GBM), the most aggressive brain tumor in human patients, is decidedly heterogeneous and highly vascularized. Glioma stem/initiating cells (GSC) are found to play a crucial role by increasing cancer aggressiveness and promoting resistance to therapy. Recently, cross-talk between GSC and vascular endothelial cells has been shown to significantly promote GSC self-renewal and tumor progression. Furthermore, GSC also transdifferentiate into bona fide vascular endothelial cells (GEC), which inherit mutations present in GSC and are resistant to traditional antiangiogenic therapies. Here we use three-dimensional mathematical modeling to investigate GBM progression and response to therapy. The model predicted that GSCs drive invasive fingering and that GEC spontaneously form a network within the hypoxic core, consistent with published experimental findings. Standard-of-care treatments using DNA-targeted therapy (radiation/chemo) together with antiangiogenic therapies reduced GBM tumor size but increased invasiveness. Anti-GEC treatments blocked the GEC support of GSCs and reduced tumor size but led to increased invasiveness. Anti-GSC therapies that promote differentiation or disturb the stem cell niche effectively reduced tumor invasiveness and size, but were ultimately limited in reducing tumor size because GECs maintain GSCs. Our study suggests that a combinatorial regimen targeting the vasculature, GSCs, and GECs, using drugs already approved by the FDA, can reduce both tumor size and invasiveness and could lead to tumor eradication. Cancer Res; 77(15); 4171-84. ©2017 AACR.
Collapse
Affiliation(s)
- Huaming Yan
- Department of Mathematics, University of California, Irvine, California
| | - Mónica Romero-López
- Department of Biomedical Engineering, University of California, Irvine, California
| | - Lesly I Benitez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Kaijun Di
- Chao Comprehensive Cancer Center, University of California, Irvine, California.,Department of Neurological Surgery, University of California, Irvine, California
| | - Hermann B Frieboes
- James Graham Brown Cancer Center, University of Louisville.,Department of Bioengineering, University of Louisville, Louisville, Kentucky
| | - Christopher C W Hughes
- Department of Biomedical Engineering, University of California, Irvine, California.,Department of Molecular Biology and Biochemistry, University of California, Irvine, California.,Chao Comprehensive Cancer Center, University of California, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, California
| | - Daniela A Bota
- Chao Comprehensive Cancer Center, University of California, Irvine, California.,Department of Neurological Surgery, University of California, Irvine, California.,Department of Neurology, University of California, Irvine, California
| | - John S Lowengrub
- Department of Mathematics, University of California, Irvine, California. .,Department of Biomedical Engineering, University of California, Irvine, California.,Chao Comprehensive Cancer Center, University of California, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, California
| |
Collapse
|
12
|
Wu Z, Wang T, Zhang Y, Zheng Z, Yu S, Jing S, Chen S, Jiang H, Ma S. Anticancer effects of β-elemene with hyperthermia in lung cancer cells. Exp Ther Med 2017; 13:3153-3157. [PMID: 28588670 DOI: 10.3892/etm.2017.4350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/26/2017] [Indexed: 12/15/2022] Open
Abstract
β-elemene is a novel, plant-derived anticancer drug, which has been used to target multiple solid tumor types. Hyperthermia is an adjuvant therapeutic modality to treat cancer. However, the underlying mechanisms associated with the efficacy of these two treatments are largely unknown. The aim of the present study was to evaluate the effects of β-elemene combined with hyperthermia in lung cancer cell lines. An MTT assay was used to determine cell viability. The cell cycle and apoptosis were analyzed using flow cytometry. The morphology of cells during apoptosis was determined using a transmission electron microscope. The expression levels of P21, survivin, caspase-9, B-cell lymphoma 2 (Bcl-2) and Bcl-2-like protein 4 (Bax) mRNA were detected using quantitative polymerase chain reaction. β-elemene with hyperthermia treatment significantly inhibited the viability and increased the apoptosis rate of A549 cells compared with β-elemene treatment alone (P<0.01), and significantly decreased the proportion of cells in S phase compared with the control (P<0.01). Morphological observation using transmission electron microscopy indicated cross-sectional features of apoptosis: Chromatin condensation, reduced integrity of the plasma membrane, increased cellular granularity, nuclear collapse and the formation of apoptotic bodies. β-elemene with hyperthermia treatment significantly promoted P21 and Bax mRNA expression (P<0.01) and significantly decreased caspase-9, Bcl-2 and survivin mRNA expression (P<0.01) in A549 cells. In conclusion, β-elemene with hyperthermia has a significant inhibitory effect on A549 cells. This occurs through reducing S phase and inducing apoptosis, via an increase in P21 and Bax expression and a decrease in caspase-9, Bcl-2 and survivin expression.
Collapse
Affiliation(s)
- Zhibing Wu
- Center of Hyperthermia Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China.,Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China.,Key Laboratory of Molecular Oncology of Chinese Medicine and Western Medicine, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Ting Wang
- Department of Oncology, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Yanmei Zhang
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310005, P.R. China
| | - Zhishuang Zheng
- Center of Hyperthermia Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Shuhuan Yu
- Center of Hyperthermia Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Saisai Jing
- Center of Hyperthermia Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China.,Key Laboratory of Molecular Oncology of Chinese Medicine and Western Medicine, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Sumei Chen
- Center of Hyperthermia Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China.,Key Laboratory of Molecular Oncology of Chinese Medicine and Western Medicine, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Hao Jiang
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Shenglin Ma
- Center of Hyperthermia Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China.,Key Laboratory of Molecular Oncology of Chinese Medicine and Western Medicine, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
13
|
Konstorum A, Hillen T, Lowengrub J. Feedback Regulation in a Cancer Stem Cell Model can Cause an Allee Effect. Bull Math Biol 2016; 78:754-785. [PMID: 27113934 DOI: 10.1007/s11538-016-0161-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 03/15/2016] [Indexed: 12/24/2022]
Abstract
The exact mechanisms of spontaneous tumor remission or complete response to treatment are phenomena in oncology that are not completely understood. We use a concept from ecology, the Allee effect, to help explain tumor extinction in a model of tumor growth that incorporates feedback regulation of stem cell dynamics, which occurs in many tumor types where certain signaling molecules, such as Wnts, are upregulated. Due to feedback and the Allee effect, a tumor may become extinct spontaneously or after therapy even when the entire tumor has not been eradicated by the end of therapy. We quantify the Allee effect using an 'Allee index' that approximates the area of the basin of attraction for tumor extinction. We show that effectiveness of combination therapy in cancer treatment may occur due to the increased probability that the system will be in the Allee region after combination treatment versus monotherapy. We identify therapies that can attenuate stem cell self-renewal, alter the Allee region and increase its size. We also show that decreased response of tumor cells to growth inhibitors can reduce the size of the Allee region and increase stem cell densities, which may help to explain why this phenomenon is a hallmark of cancer.
Collapse
Affiliation(s)
- Anna Konstorum
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA.
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.
- Center for Quantitative Medicine, University of Connecticut Health Center, Farmington, CT, USA.
| | - Thomas Hillen
- Centre for Mathematical Biology, University of Alberta, Edmonton, AB, Canada
| | - John Lowengrub
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA.
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|