1
|
Dimitriou NM, Flores-Torres S, Kyriakidou M, Kinsella JM, Mitsis GD. Cancer cell sedimentation in 3D cultures reveals active migration regulated by self-generated gradients and adhesion sites. PLoS Comput Biol 2024; 20:e1012112. [PMID: 38861575 PMCID: PMC11195982 DOI: 10.1371/journal.pcbi.1012112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/24/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
Cell sedimentation in 3D hydrogel cultures refers to the vertical migration of cells towards the bottom of the space. Understanding this poorly examined phenomenon may allow us to design better protocols to prevent it, as well as provide insights into the mechanobiology of cancer development. We conducted a multiscale experimental and mathematical examination of 3D cancer growth in triple negative breast cancer cells. Migration was examined in the presence and absence of Paclitaxel, in high and low adhesion environments and in the presence of fibroblasts. The observed behaviour was modeled by hypothesizing active migration due to self-generated chemotactic gradients. Our results did not reject this hypothesis, whereby migration was likely to be regulated by the MAPK and TGF-β pathways. The mathematical model enabled us to describe the experimental data in absence (normalized error<40%) and presence of Paclitaxel (normalized error<10%), suggesting inhibition of random motion and advection in the latter case. Inhibition of sedimentation in low adhesion and co-culture experiments further supported the conclusion that cells actively migrated downwards due to the presence of signals produced by cells already attached to the adhesive glass surface.
Collapse
Affiliation(s)
| | | | - Maria Kyriakidou
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
2
|
Browning AP, Lewin TD, Baker RE, Maini PK, Moros EG, Caudell J, Byrne HM, Enderling H. Predicting Radiotherapy Patient Outcomes with Real-Time Clinical Data Using Mathematical Modelling. Bull Math Biol 2024; 86:19. [PMID: 38238433 PMCID: PMC10796515 DOI: 10.1007/s11538-023-01246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024]
Abstract
Longitudinal tumour volume data from head-and-neck cancer patients show that tumours of comparable pre-treatment size and stage may respond very differently to the same radiotherapy fractionation protocol. Mathematical models are often proposed to predict treatment outcome in this context, and have the potential to guide clinical decision-making and inform personalised fractionation protocols. Hindering effective use of models in this context is the sparsity of clinical measurements juxtaposed with the model complexity required to produce the full range of possible patient responses. In this work, we present a compartment model of tumour volume and tumour composition, which, despite relative simplicity, is capable of producing a wide range of patient responses. We then develop novel statistical methodology and leverage a cohort of existing clinical data to produce a predictive model of both tumour volume progression and the associated level of uncertainty that evolves throughout a patient's course of treatment. To capture inter-patient variability, all model parameters are patient specific, with a bootstrap particle filter-like Bayesian approach developed to model a set of training data as prior knowledge. We validate our approach against a subset of unseen data, and demonstrate both the predictive ability of our trained model and its limitations.
Collapse
Affiliation(s)
| | - Thomas D Lewin
- Mathematical Institute, University of Oxford, Oxford, UK
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Ruth E Baker
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Philip K Maini
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Eduardo G Moros
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, USA
| | - Jimmy Caudell
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, USA
| | - Helen M Byrne
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Heiko Enderling
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, USA.
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, USA.
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Dimitriou NM, Demirag E, Strati K, Mitsis GD. A calibration and uncertainty quantification analysis of classical, fractional and multiscale logistic models of tumour growth. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107920. [PMID: 37976612 DOI: 10.1016/j.cmpb.2023.107920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND OBJECTIVE The validation of mathematical models of tumour growth is frequently hampered by the lack of sufficient experimental data, resulting in qualitative rather than quantitative studies. Recent approaches to this problem have attempted to extract information about tumour growth by integrating multiscale experimental measurements, such as longitudinal cell counts and gene expression data. In the present study, we investigated the performance of several mathematical models of tumour growth, including classical logistic, fractional and novel multiscale models, in terms of quantifying in-vitro tumour growth in the presence and absence of therapy. We further examined the effect of genes associated with changes in chemosensitivity in cell death rates. METHODS The multiscale expansion of logistic growth models was performed by coupling gene expression profiles to the cell death rates. State-of-the-art Bayesian inference, likelihood maximisation and uncertainty quantification techniques allowed a thorough evaluation of model performance. RESULTS The results suggest that the classical single-cell population model (SCPM) was the best fit for the untreated and low-dose treatment conditions, while the multiscale model with a cell death rate symmetric with the expression profile of OCT4 (Sym-SCPM) yielded the best fit for the high-dose treatment data. Further identifiability analysis showed that the multiscale model was both structurally and practically identifiable under the condition of known OCT4 expression profiles. CONCLUSIONS Overall, the present study demonstrates that model performance can be improved by incorporating multiscale measurements of tumour growth when high-dose treatment is involved.
Collapse
Affiliation(s)
| | - Ece Demirag
- Department of Biological Sciences, University of Cyprus, Nicosia, 2109, Cyprus
| | - Katerina Strati
- Department of Biological Sciences, University of Cyprus, Nicosia, 2109, Cyprus
| | - Georgios D Mitsis
- Department of Bioengineering, McGill University, Montreal, H3A 0E9, QC, Canada.
| |
Collapse
|
4
|
Strobl MAR, Gallaher J, Robertson-Tessi M, West J, Anderson ARA. Treatment of evolving cancers will require dynamic decision support. Ann Oncol 2023; 34:867-884. [PMID: 37777307 PMCID: PMC10688269 DOI: 10.1016/j.annonc.2023.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 10/02/2023] Open
Abstract
Cancer research has traditionally focused on developing new agents, but an underexplored question is that of the dose and frequency of existing drugs. Based on the modus operandi established in the early days of chemotherapies, most drugs are administered according to predetermined schedules that seek to deliver the maximum tolerated dose and are only adjusted for toxicity. However, we believe that the complex, evolving nature of cancer requires a more dynamic and personalized approach. Chronicling the milestones of the field, we show that the impact of schedule choice crucially depends on processes driving treatment response and failure. As such, cancer heterogeneity and evolution dictate that a one-size-fits-all solution is unlikely-instead, each patient should be mapped to the strategy that best matches their current disease characteristics and treatment objectives (i.e. their 'tumorscape'). To achieve this level of personalization, we need mathematical modeling. In this perspective, we propose a five-step 'Adaptive Dosing Adjusted for Personalized Tumorscapes (ADAPT)' paradigm to integrate data and understanding across scales and derive dynamic and personalized schedules. We conclude with promising examples of model-guided schedule personalization and a call to action to address key outstanding challenges surrounding data collection, model development, and integration.
Collapse
Affiliation(s)
- M A R Strobl
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa; Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, USA
| | - J Gallaher
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa
| | - M Robertson-Tessi
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa
| | - J West
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa
| | - A R A Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa.
| |
Collapse
|
5
|
Hervas-Raluy S, Wirthl B, Guerrero PE, Robalo Rei G, Nitzler J, Coronado E, Font de Mora Sainz J, Schrefler BA, Gomez-Benito MJ, Garcia-Aznar JM, Wall WA. Tumour growth: An approach to calibrate parameters of a multiphase porous media model based on in vitro observations of Neuroblastoma spheroid growth in a hydrogel microenvironment. Comput Biol Med 2023; 159:106895. [PMID: 37060771 DOI: 10.1016/j.compbiomed.2023.106895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/09/2023] [Accepted: 04/09/2023] [Indexed: 04/17/2023]
Abstract
To unravel processes that lead to the growth of solid tumours, it is necessary to link knowledge of cancer biology with the physical properties of the tumour and its interaction with the surrounding microenvironment. Our understanding of the underlying mechanisms is however still imprecise. We therefore developed computational physics-based models, which incorporate the interaction of the tumour with its surroundings based on the theory of porous media. However, the experimental validation of such models represents a challenge to its clinical use as a prognostic tool. This study combines a physics-based model with in vitro experiments based on microfluidic devices used to mimic a three-dimensional tumour microenvironment. By conducting a global sensitivity analysis, we identify the most influential input parameters and infer their posterior distribution based on Bayesian calibration. The resulting probability density is in agreement with the scattering of the experimental data and thus validates the proposed workflow. This study demonstrates the huge challenges associated with determining precise parameters with usually only limited data for such complex processes and models, but also demonstrates in general how to indirectly characterise the mechanical properties of neuroblastoma spheroids that cannot feasibly be measured experimentally.
Collapse
Affiliation(s)
- Silvia Hervas-Raluy
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Aragon Institute for Engineering Research (I3A), Maria de Luna 3, Zaragoza, 50018, Spain.
| | - Barbara Wirthl
- Institute for Computational Mechanics, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics & Computation, Boltzmannstraße 15, Garching b. Munich, 85748, Germany
| | - Pedro E Guerrero
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Aragon Institute for Engineering Research (I3A), Maria de Luna 3, Zaragoza, 50018, Spain
| | - Gil Robalo Rei
- Institute for Computational Mechanics, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics & Computation, Boltzmannstraße 15, Garching b. Munich, 85748, Germany
| | - Jonas Nitzler
- Institute for Computational Mechanics, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics & Computation, Boltzmannstraße 15, Garching b. Munich, 85748, Germany; Professorship for Data-Driven Materials Modeling, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics & Computation, Boltzmannstraße 15, Garching b. Munich, 85748, Germany
| | - Esther Coronado
- Clinical and Translational Oncology Research Group, Instituto de Investigación La Fe,, Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Jaime Font de Mora Sainz
- Clinical and Translational Oncology Research Group, Instituto de Investigación La Fe,, Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Bernhard A Schrefler
- Department of Civil, Environmental and Architectural Engineering, University of Padua, Marzolo 9, Padua, 35131, Italy; Institute for Advanced Study, Technical University of Munich, Boltzmannstraße 15, Garching b. Munich, 85748, Germany
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Aragon Institute for Engineering Research (I3A), Maria de Luna 3, Zaragoza, 50018, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Aragon Institute for Engineering Research (I3A), Maria de Luna 3, Zaragoza, 50018, Spain
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics & Computation, Boltzmannstraße 15, Garching b. Munich, 85748, Germany
| |
Collapse
|
6
|
Murphy RJ, Gunasingh G, Haass NK, Simpson MJ. Growth and adaptation mechanisms of tumour spheroids with time-dependent oxygen availability. PLoS Comput Biol 2023; 19:e1010833. [PMID: 36634128 PMCID: PMC9876349 DOI: 10.1371/journal.pcbi.1010833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/25/2023] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Tumours are subject to external environmental variability. However, in vitro tumour spheroid experiments, used to understand cancer progression and develop cancer therapies, have been routinely performed for the past fifty years in constant external environments. Furthermore, spheroids are typically grown in ambient atmospheric oxygen (normoxia), whereas most in vivo tumours exist in hypoxic environments. Therefore, there are clear discrepancies between in vitro and in vivo conditions. We explore these discrepancies by combining tools from experimental biology, mathematical modelling, and statistical uncertainty quantification. Focusing on oxygen variability to develop our framework, we reveal key biological mechanisms governing tumour spheroid growth. Growing spheroids in time-dependent conditions, we identify and quantify novel biological adaptation mechanisms, including unexpected necrotic core removal, and transient reversal of the tumour spheroid growth phases.
Collapse
Affiliation(s)
- Ryan J. Murphy
- Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- * E-mail:
| | - Gency Gunasingh
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Nikolas K. Haass
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew J. Simpson
- Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Byrne H. In vitro
and
in silico
approaches to engineering three-dimensional biological tissues and organoids. Interface Focus 2022. [PMCID: PMC9372642 DOI: 10.1098/rsfs.2022.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Helen Byrne
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| |
Collapse
|
8
|
Celora GL, Bader SB, Hammond EM, Maini PK, Pitt-Francis JM, Byrne HM. DNA-structured mathematical model of cell-cycle progression in cyclic hypoxia. J Theor Biol 2022; 545:111104. [PMID: 35337794 DOI: 10.1016/j.jtbi.2022.111104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 01/22/2023]
Abstract
New experimental data have shown how the periodic exposure of cells to low oxygen levels (i.e., cyclic hypoxia) impacts their progress through the cell-cycle. Cyclic hypoxia has been detected in tumours and linked to poor prognosis and treatment failure. While fluctuating oxygen environments can be reproduced in vitro, the range of oxygen cycles that can be tested is limited. By contrast, mathematical models can be used to predict the response to a wide range of cyclic dynamics. Accordingly, in this paper we develop a mechanistic model of the cell-cycle that can be combined with in vitro experiments, to better understand the link between cyclic hypoxia and cell-cycle dysregulation. A distinguishing feature of our model is the inclusion of impaired DNA synthesis and cell-cycle arrest due to periodic exposure to severely low oxygen levels. Our model decomposes the cell population into five compartments and a time-dependent delay accounts for the variability in the duration of the S phase which increases in severe hypoxia due to reduced rates of DNA synthesis. We calibrate our model against experimental data and show that it recapitulates the observed cell-cycle dynamics. We use the calibrated model to investigate the response of cells to oxygen cycles not yet tested experimentally. When the re-oxygenation phase is sufficiently long, our model predicts that cyclic hypoxia simply slows cell proliferation since cells spend more time in the S phase. On the contrary, cycles with short periods of re-oxygenation are predicted to lead to inhibition of proliferation, with cells arresting from the cell-cycle in the G2 phase. While model predictions on short time scales (about a day) are fairly accurate (i.e, confidence intervals are small), the predictions become more uncertain over longer periods. Hence, we use our model to inform experimental design that can lead to improved model parameter estimates and validate model predictions.
Collapse
Affiliation(s)
| | - Samuel B Bader
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Ester M Hammond
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Philip K Maini
- Mathematical Institute, University of Oxford, Oxford, UK
| | | | - Helen M Byrne
- Mathematical Institute, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Browning AP, Maclaren OJ, Buenzli PR, Lanaro M, Allenby MC, Woodruff MA, Simpson MJ. Model-based data analysis of tissue growth in thin 3D printed scaffolds. J Theor Biol 2021; 528:110852. [PMID: 34358535 DOI: 10.1016/j.jtbi.2021.110852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/08/2021] [Accepted: 07/26/2021] [Indexed: 10/24/2022]
Abstract
Tissue growth in three-dimensional (3D) printed scaffolds enables exploration and control of cell behaviour in more biologically realistic geometries than that allowed by traditional 2D cell culture. Cell proliferation and migration in these experiments have yet to be explicitly characterised, limiting the ability of experimentalists to determine the effects of various experimental conditions, such as scaffold geometry, on cell behaviour. We consider tissue growth by osteoblastic cells in melt electro-written scaffolds that comprise thin square pores with sizes that were deliberately increased between experiments. We collect highly detailed temporal measurements of the average cell density, tissue coverage, and tissue geometry. To quantify tissue growth in terms of the underlying cell proliferation and migration processes, we introduce and calibrate a mechanistic mathematical model based on the Porous-Fisher reaction-diffusion equation. Parameter estimates and uncertainty quantification through profile likelihood analysis reveal consistency in the rate of cell proliferation and steady-state cell density between pore sizes. This analysis also serves as an important model verification tool: while the use of reaction-diffusion models in biology is widespread, the appropriateness of these models to describe tissue growth in 3D scaffolds has yet to be explored. We find that the Porous-Fisher model is able to capture features relating to the cell density and tissue coverage, but is not able to capture geometric features relating to the circularity of the tissue interface. Our analysis identifies two distinct stages of tissue growth, suggests several areas for model refinement, and provides guidance for future experimental work that explores tissue growth in 3D printed scaffolds.
Collapse
Affiliation(s)
- Alexander P Browning
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia; ARC Centre of Excellence for Mathematical and Statistical Frontiers, QUT, Australia.
| | - Oliver J Maclaren
- Department of Engineering Science, University of Auckland, Auckland 1142, New Zealand
| | - Pascal R Buenzli
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Matthew Lanaro
- School of Mechanical, Medical & Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Mark C Allenby
- School of Mechanical, Medical & Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Maria A Woodruff
- School of Mechanical, Medical & Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Matthew J Simpson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia; ARC Centre of Excellence for Mathematical and Statistical Frontiers, QUT, Australia
| |
Collapse
|
10
|
Bayesian Information-Theoretic Calibration of Radiotherapy Sensitivity Parameters for Informing Effective Scanning Protocols in Cancer. J Clin Med 2020; 9:jcm9103208. [PMID: 33027933 PMCID: PMC7601810 DOI: 10.3390/jcm9103208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/03/2022] Open
Abstract
With new advancements in technology, it is now possible to collect data for a variety of different metrics describing tumor growth, including tumor volume, composition, and vascularity, among others. For any proposed model of tumor growth and treatment, we observe large variability among individual patients’ parameter values, particularly those relating to treatment response; thus, exploiting the use of these various metrics for model calibration can be helpful to infer such patient-specific parameters both accurately and early, so that treatment protocols can be adjusted mid-course for maximum efficacy. However, taking measurements can be costly and invasive, limiting clinicians to a sparse collection schedule. As such, the determination of optimal times and metrics for which to collect data in order to best inform proper treatment protocols could be of great assistance to clinicians. In this investigation, we employ a Bayesian information-theoretic calibration protocol for experimental design in order to identify the optimal times at which to collect data for informing treatment parameters. Within this procedure, data collection times are chosen sequentially to maximize the reduction in parameter uncertainty with each added measurement, ensuring that a budget of n high-fidelity experimental measurements results in maximum information gain about the low-fidelity model parameter values. In addition to investigating the optimal temporal pattern for data collection, we also develop a framework for deciding which metrics should be utilized at each data collection point. We illustrate this framework with a variety of toy examples, each utilizing a radiotherapy treatment regimen. For each scenario, we analyze the dependence of the predictive power of the low-fidelity model upon the measurement budget.
Collapse
|
11
|
Mang A, Bakas S, Subramanian S, Davatzikos C, Biros G. Integrated Biophysical Modeling and Image Analysis: Application to Neuro-Oncology. Annu Rev Biomed Eng 2020; 22:309-341. [PMID: 32501772 PMCID: PMC7520881 DOI: 10.1146/annurev-bioeng-062117-121105] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Central nervous system (CNS) tumors come with vastly heterogeneous histologic, molecular, and radiographic landscapes, rendering their precise characterization challenging. The rapidly growing fields of biophysical modeling and radiomics have shown promise in better characterizing the molecular, spatial, and temporal heterogeneity of tumors. Integrative analysis of CNS tumors, including clinically acquired multi-parametric magnetic resonance imaging (mpMRI) and the inverse problem of calibrating biophysical models to mpMRI data, assists in identifying macroscopic quantifiable tumor patterns of invasion and proliferation, potentially leading to improved (a) detection/segmentation of tumor subregions and (b) computer-aided diagnostic/prognostic/predictive modeling. This article presents a summary of (a) biophysical growth modeling and simulation,(b) inverse problems for model calibration, (c) these models' integration with imaging workflows, and (d) their application to clinically relevant studies. We anticipate that such quantitative integrative analysis may even be beneficial in a future revision of the World Health Organization (WHO) classification for CNS tumors, ultimately improving patient survival prospects.
Collapse
Affiliation(s)
- Andreas Mang
- Department of Mathematics, University of Houston, Houston, Texas 77204, USA;
| | - Spyridon Bakas
- Department of Mathematics, University of Houston, Houston, Texas 77204, USA;
| | - Shashank Subramanian
- Oden Institute of Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, USA; ,
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA); Department of Radiology; and Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; ,
| | - George Biros
- Oden Institute of Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, USA; ,
| |
Collapse
|
12
|
Antonopoulos M, Dionysiou D, Stamatakos G, Uzunoglu N. Three-dimensional tumor growth in time-varying chemical fields: a modeling framework and theoretical study. BMC Bioinformatics 2019; 20:442. [PMID: 31455206 PMCID: PMC6712764 DOI: 10.1186/s12859-019-2997-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/16/2019] [Indexed: 01/10/2023] Open
Abstract
Background Contemporary biological observations have revealed a large variety of mechanisms acting during the expansion of a tumor. However, there are still many qualitative and quantitative aspects of the phenomenon that remain largely unknown. In this context, mathematical and computational modeling appears as an invaluable tool providing the means for conducting in silico experiments, which are cheaper and less tedious than real laboratory experiments. Results This paper aims at developing an extensible and computationally efficient framework for in silico modeling of tumor growth in a 3-dimensional, inhomogeneous and time-varying chemical environment. The resulting model consists of a set of mathematically derived and algorithmically defined operators, each one addressing the effects of a particular biological mechanism on the state of the system. These operators may be extended or re-adjusted, in case a different set of starting assumptions or a different simulation scenario needs to be considered. Conclusion In silico modeling provides an alternative means for testing hypotheses and simulating scenarios for which exact biological knowledge remains elusive. However, finer tuning of pertinent methods presupposes qualitative and quantitative enrichment of available biological evidence. Validation in a strict sense would further require comprehensive, case-specific simulations and detailed comparisons with biomedical observations.
Collapse
Affiliation(s)
- Markos Antonopoulos
- Institute of Communication and Computer Systems, National Technical University of Athens, Athens, Greece.
| | - Dimitra Dionysiou
- Institute of Communication and Computer Systems, National Technical University of Athens, Athens, Greece
| | - Georgios Stamatakos
- Institute of Communication and Computer Systems, National Technical University of Athens, Athens, Greece
| | - Nikolaos Uzunoglu
- Institute of Communication and Computer Systems, National Technical University of Athens, Athens, Greece
| |
Collapse
|
13
|
Considerations for Modeling Proteus mirabilis Swarming. Methods Mol Biol 2019. [PMID: 31309513 DOI: 10.1007/978-1-4939-9601-8_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In this chapter we provide some initial guidance to experimentalists on how they might go about creating mathematical representations of their systems under study. Because the interests and goals of different researchers can differ, we try to provide broad instruction on the creation and use of mathematical models. We provide a brief overview of some modeling that has been done with Proteus mirabilis colonies, and discuss the goals of modeling. We suggest ways that collaborative teams may communicate with one another more effectively, and how they can build more confidence in their model results.
Collapse
|
14
|
Pathmanathan P, Cordeiro JM, Gray RA. Comprehensive Uncertainty Quantification and Sensitivity Analysis for Cardiac Action Potential Models. Front Physiol 2019; 10:721. [PMID: 31297060 PMCID: PMC6607060 DOI: 10.3389/fphys.2019.00721] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/23/2019] [Indexed: 12/15/2022] Open
Abstract
Recent efforts to ensure the reliability of computational model-based predictions in healthcare, such as the ASME V&V40 Standard, emphasize the importance of uncertainty quantification (UQ) and sensitivity analysis (SA) when evaluating computational models. UQ involves empirically determining the uncertainty in model inputs-typically resulting from natural variability or measurement error-and then calculating the resultant uncertainty in model outputs. SA involves calculating how uncertainty in model outputs can be apportioned to input uncertainty. Rigorous comprehensive UQ/SA provides confidence that model-based decisions are robust to underlying uncertainties. However, comprehensive UQ/SA is not currently feasible for whole heart models, due to numerous factors including model complexity and difficulty in measuring variability in the many parameters. Here, we present a significant step to developing a framework to overcome these limitations. We: (i) developed a novel action potential (AP) model of moderate complexity (six currents, seven variables, 36 parameters); (ii) prescribed input variability for all parameters (not empirically derived); (iii) used a single "hyper-parameter" to study increasing levels of parameter uncertainty; (iv) performed UQ and SA for a range of model-derived quantities with physiological relevance; and (v) present quantitative and qualitative ways to analyze different behaviors that occur under parameter uncertainty, including "model failure". This is the first time uncertainty in every parameter (including conductances, steady-state parameters, and time constant parameters) of every ionic current in a cardiac model has been studied. This approach allowed us to demonstrate that, for this model, the simulated AP is fully robust to low levels of parameter uncertainty - to our knowledge the first time this has been shown of any cardiac model. A range of dynamics was observed at larger parameter uncertainty (e.g., oscillatory dynamics); analysis revealed that five parameters were highly influential in these dynamics. Overall, we demonstrate feasibility of performing comprehensive UQ/SA for cardiac cell models and demonstrate how to assess robustness and overcome model failure when performing cardiac UQ analyses. The approach presented here represents an important and significant step toward the development of model-based clinical tools which are demonstrably robust to all underlying uncertainties and therefore more reliable in safety-critical decision-making.
Collapse
Affiliation(s)
- Pras Pathmanathan
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | | | - Richard A. Gray
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
15
|
Browning AP, McCue SW, Binny RN, Plank MJ, Shah ET, Simpson MJ. Inferring parameters for a lattice-free model of cell migration and proliferation using experimental data. J Theor Biol 2018; 437:251-260. [DOI: 10.1016/j.jtbi.2017.10.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/20/2022]
|
16
|
Collis J, Hill MR, Nicol JR, Paine PJ, Coulter JA. A hierarchical Bayesian approach to calibrating the linear-quadratic model from clonogenic survival assay data. Radiother Oncol 2017; 124:541-546. [PMID: 28870637 DOI: 10.1016/j.radonc.2017.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 10/18/2022]
Abstract
We propose a Bayesian hierarchical model applicable to the calibration of the linear-quadratic model of radiation dose-response. Experimental data used in model calibration were taken from a clonogenic survival assay conducted on human breast cancer cells (MDA-MB-231) across a range of radiation doses (0-6Gy). Employing Markov-chain Monte Carlo methods, we calibrated the proposed Bayesian hierarchical model, computed posterior distributions for the model parameters and survival fraction dose-response probability densities. Key contributions include the proposal of a model that incorporates multiple sources of inter- and intra-experiment variability commonly neglected in the standard frequentist approach and its subsequent application to in vitro experimental data.
Collapse
Affiliation(s)
- Joe Collis
- School of Mathematical Sciences, University of Nottingham, Nottingham, UK
| | - Michael R Hill
- School of Mathematical Sciences, University of Nottingham, Nottingham, UK
| | - James R Nicol
- School of Pharmacy, McClay Research Centre, Queen's University Belfast, UK
| | - Philip J Paine
- School of Mathematics and Statistics, University of Sheffield, UK
| | - Jonathan A Coulter
- School of Pharmacy, McClay Research Centre, Queen's University Belfast, UK.
| |
Collapse
|
17
|
Browning AP, McCue SW, Simpson MJ. A Bayesian Computational Approach to Explore the Optimal Duration of a Cell Proliferation Assay. Bull Math Biol 2017; 79:1888-1906. [DOI: 10.1007/s11538-017-0311-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/16/2017] [Indexed: 11/29/2022]
|