1
|
Pasetto S, Harshe I, Brady-Nicholls R, Gatenby RA, Enderling H. Harnessing Flex Point Symmetry to Estimate Logistic Tumor Population Growth. Bull Math Biol 2024; 86:135. [PMID: 39384633 DOI: 10.1007/s11538-024-01361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
The observed time evolution of a population is well approximated by a logistic growth function in many research fields, including oncology, ecology, chemistry, demography, economy, linguistics, and artificial neural networks. Initial growth is exponential, then decelerates as the population approaches its limit size, i.e., the carrying capacity. In mathematical oncology, the tumor carrying capacity has been postulated to be dynamically evolving as the tumor overcomes several evolutionary bottlenecks and, thus, to be patient specific. As the relative tumor-over-carrying capacity ratio may be predictive and prognostic for tumor growth and treatment response dynamics, it is paramount to estimate it from limited clinical data. We show that exploiting the logistic function's rotation symmetry can help estimate the population's growth rate and carry capacity from fewer data points than conventional regression approaches. We test this novel approach against published pan-cancer animal and human breast cancer data, achieving a 30% to 40% reduction in the time at which subsequent data collection is necessary to estimate the logistic growth rate and carrying capacity correctly. These results could improve tumor dynamics forecasting and augment the clinical decision-making process.
Collapse
Affiliation(s)
- Stefano Pasetto
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| | - Isha Harshe
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Renee Brady-Nicholls
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Robert A Gatenby
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
- Department of Radiology, H. Lee Moffitt Cancer & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Heiko Enderling
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77070, USA.
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77070, USA.
| |
Collapse
|
2
|
Pasetto S, Montejo M, Zahid MU, Rosa M, Gatenby R, Schlicke P, Diaz R, Enderling H. Calibrating tumor growth and invasion parameters with spectral spatial analysis of cancer biopsy tissues. NPJ Syst Biol Appl 2024; 10:112. [PMID: 39358360 PMCID: PMC11447233 DOI: 10.1038/s41540-024-00439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
The reaction-diffusion equation is widely used in mathematical models of cancer. The calibration of model parameters based on limited clinical data is critical to using reaction-diffusion equation simulations for reliable predictions on a per-patient basis. Here, we focus on cell-level data as routinely available from tissue biopsies used for clinical cancer diagnosis. We analyze the spatial architecture in biopsy tissues stained with multiplex immunofluorescence. We derive a two-point correlation function and the corresponding spatial power spectral distribution. We show that this data-deduced power spectral distribution can fit the power spectrum of the solution of reaction-diffusion equations that can then identify patient-specific tumor growth and invasion rates. This approach allows the measurement of patient-specific critical tumor dynamical properties from routinely available biopsy material at a single snapshot in time.
Collapse
Affiliation(s)
- Stefano Pasetto
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA.
| | - Michael Montejo
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Mohammad U Zahid
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Marilin Rosa
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Robert Gatenby
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Pirmin Schlicke
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Roberto Diaz
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Heiko Enderling
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA.
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA.
| |
Collapse
|
3
|
Browning AP, Lewin TD, Baker RE, Maini PK, Moros EG, Caudell J, Byrne HM, Enderling H. Predicting Radiotherapy Patient Outcomes with Real-Time Clinical Data Using Mathematical Modelling. Bull Math Biol 2024; 86:19. [PMID: 38238433 PMCID: PMC10796515 DOI: 10.1007/s11538-023-01246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024]
Abstract
Longitudinal tumour volume data from head-and-neck cancer patients show that tumours of comparable pre-treatment size and stage may respond very differently to the same radiotherapy fractionation protocol. Mathematical models are often proposed to predict treatment outcome in this context, and have the potential to guide clinical decision-making and inform personalised fractionation protocols. Hindering effective use of models in this context is the sparsity of clinical measurements juxtaposed with the model complexity required to produce the full range of possible patient responses. In this work, we present a compartment model of tumour volume and tumour composition, which, despite relative simplicity, is capable of producing a wide range of patient responses. We then develop novel statistical methodology and leverage a cohort of existing clinical data to produce a predictive model of both tumour volume progression and the associated level of uncertainty that evolves throughout a patient's course of treatment. To capture inter-patient variability, all model parameters are patient specific, with a bootstrap particle filter-like Bayesian approach developed to model a set of training data as prior knowledge. We validate our approach against a subset of unseen data, and demonstrate both the predictive ability of our trained model and its limitations.
Collapse
Affiliation(s)
| | - Thomas D Lewin
- Mathematical Institute, University of Oxford, Oxford, UK
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Ruth E Baker
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Philip K Maini
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Eduardo G Moros
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, USA
| | - Jimmy Caudell
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, USA
| | - Helen M Byrne
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Heiko Enderling
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, USA.
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, USA.
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Mohsin N, Enderling H, Brady-Nicholls R, Zahid MU. Simulating tumor volume dynamics in response to radiotherapy: Implications of model selection. J Theor Biol 2024; 576:111656. [PMID: 37952611 DOI: 10.1016/j.jtbi.2023.111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
From the beginning of the usage of radiotherapy (RT) for cancer treatment, mathematical modeling has been integral to understanding radiobiology and for designing treatment approaches and schedules. There has been extensive modeling of response to RT with the inclusion of various degrees of biological complexity. In this study, we compare three models of tumor volume dynamics: (1) exponential growth with RT directly reducing tumor volume, (2) logistic growth with direct tumor volume reduction, and (3) logistic growth with RT reducing the tumor carrying capacity with the objective of understanding the implications of model selection and informing the process of model calibration and parameterization. For all three models, we: examined the rates of change in tumor volume during and RT treatment course; performed parameter sensitivity and identifiability analyses; and investigated the impact of the parameter sensitivity on the tumor volume trajectories. In examining the tumor volume dynamics trends, we coined a new metric - the point of maximum reduction of tumor volume (MRV) - to quantify the magnitude and timing of the expected largest impact of RT during a treatment course. We found distinct timing differences in MRV, dependent on model selection. The parameter identifiability and sensitivity analyses revealed the interdependence of the different model parameters and that it is only possible to independently identify tumor growth and radiation response parameters if the underlying tumor growth rate is sufficiently large. Ultimately, the results of these analyses help us to better understand the implications of model selection while simultaneously generating falsifiable hypotheses about MRV timing that can be tested on longitudinal measurements of tumor volume from pre-clinical or clinical data with high acquisition frequency. Although, our study only compares three particular models, the results demonstrate that caution is necessary in selecting models of response to RT, given the artifacts imposed by each model.
Collapse
Affiliation(s)
- Nuverah Mohsin
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Heiko Enderling
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Renee Brady-Nicholls
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.
| | - Mohammad U Zahid
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.
| |
Collapse
|
5
|
Chaudhuri A, Pash G, Hormuth DA, Lorenzo G, Kapteyn M, Wu C, Lima EABF, Yankeelov TE, Willcox K. Predictive digital twin for optimizing patient-specific radiotherapy regimens under uncertainty in high-grade gliomas. Front Artif Intell 2023; 6:1222612. [PMID: 37886348 PMCID: PMC10598726 DOI: 10.3389/frai.2023.1222612] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/07/2023] [Indexed: 10/28/2023] Open
Abstract
We develop a methodology to create data-driven predictive digital twins for optimal risk-aware clinical decision-making. We illustrate the methodology as an enabler for an anticipatory personalized treatment that accounts for uncertainties in the underlying tumor biology in high-grade gliomas, where heterogeneity in the response to standard-of-care (SOC) radiotherapy contributes to sub-optimal patient outcomes. The digital twin is initialized through prior distributions derived from population-level clinical data in the literature for a mechanistic model's parameters. Then the digital twin is personalized using Bayesian model calibration for assimilating patient-specific magnetic resonance imaging data. The calibrated digital twin is used to propose optimal radiotherapy treatment regimens by solving a multi-objective risk-based optimization under uncertainty problem. The solution leads to a suite of patient-specific optimal radiotherapy treatment regimens exhibiting varying levels of trade-off between the two competing clinical objectives: (i) maximizing tumor control (characterized by minimizing the risk of tumor volume growth) and (ii) minimizing the toxicity from radiotherapy. The proposed digital twin framework is illustrated by generating an in silico cohort of 100 patients with high-grade glioma growth and response properties typically observed in the literature. For the same total radiation dose as the SOC, the personalized treatment regimens lead to median increase in tumor time to progression of around six days. Alternatively, for the same level of tumor control as the SOC, the digital twin provides optimal treatment options that lead to a median reduction in radiation dose by 16.7% (10 Gy) compared to SOC total dose of 60 Gy. The range of optimal solutions also provide options with increased doses for patients with aggressive cancer, where SOC does not lead to sufficient tumor control.
Collapse
Affiliation(s)
- Anirban Chaudhuri
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
| | - Graham Pash
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
| | - David A. Hormuth
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, United States
| | - Guillermo Lorenzo
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Michael Kapteyn
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
| | - Chengyue Wu
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
| | - Ernesto A. B. F. Lima
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, United States
| | - Thomas E. Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX, United States
- Department of Oncology, The University of Texas at Austin, Austin, TX, United States
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, United States
| | - Karen Willcox
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
6
|
Kutuva AR, Caudell JJ, Yamoah K, Enderling H, Zahid MU. Mathematical modeling of radiotherapy: impact of model selection on estimating minimum radiation dose for tumor control. Front Oncol 2023; 13:1130966. [PMID: 37901317 PMCID: PMC10600389 DOI: 10.3389/fonc.2023.1130966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 08/28/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Radiation therapy (RT) is one of the most common anticancer therapies. Yet, current radiation oncology practice does not adapt RT dose for individual patients, despite wide interpatient variability in radiosensitivity and accompanying treatment response. We have previously shown that mechanistic mathematical modeling of tumor volume dynamics can simulate volumetric response to RT for individual patients and estimation personalized RT dose for optimal tumor volume reduction. However, understanding the implications of the choice of the underlying RT response model is critical when calculating personalized RT dose. Methods In this study, we evaluate the mathematical implications and biological effects of 2 models of RT response on dose personalization: (1) cytotoxicity to cancer cells that lead to direct tumor volume reduction (DVR) and (2) radiation responses to the tumor microenvironment that lead to tumor carrying capacity reduction (CCR) and subsequent tumor shrinkage. Tumor growth was simulated as logistic growth with pre-treatment dynamics being described in the proliferation saturation index (PSI). The effect of RT was simulated according to each respective model for a standard schedule of fractionated RT with 2 Gy weekday fractions. Parameter sweeps were evaluated for the intrinsic tumor growth rate and the radiosensitivity parameter for both models to observe the qualitative impact of each model parameter. We then calculated the minimum RT dose required for locoregional tumor control (LRC) across all combinations of the full range of radiosensitvity and proliferation saturation values. Results Both models estimate that patients with higher radiosensitivity will require a lower RT dose to achieve LRC. However, the two models make opposite estimates on the impact of PSI on the minimum RT dose for LRC: the DVR model estimates that tumors with higher PSI values will require a higher RT dose to achieve LRC, while the CCR model estimates that higher PSI values will require a lower RT dose to achieve LRC. Discussion Ultimately, these results show the importance of understanding which model best describes tumor growth and treatment response in a particular setting, before using any such model to make estimates for personalized treatment recommendations.
Collapse
Affiliation(s)
- Achyudhan R. Kutuva
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Jimmy J. Caudell
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Kosj Yamoah
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Mohammad U. Zahid
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| |
Collapse
|
7
|
Pasetto S, Harshe I, Brady-Nicholls R, Gatenby RA, Enderling H. Logistic tumor-population growth and ghost-points symmetry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555578. [PMID: 37693551 PMCID: PMC10491152 DOI: 10.1101/2023.08.30.555578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The observed time evolution of a population is well approximated by a logistic function in many research fields, including oncology, ecology, chemistry, demography, economy, linguistics, and artificial neural networks. Initial growth is exponential at a constant rate and capped at a limit size, i.e., the carrying capacity. In mathematical oncology, the carrying capacity has been postulated to be co-evolving and thus patient-specific. As the relative tumor-over-carrying capacity ratio may be predictive and prognostic for tumor growth and treatment response dynamics, it is paramount to estimate it from limited clinical data. We show that exploiting the logistic function's rotation symmetry can help estimate the population's growth rate and carry capacity from fewer data points than conventional regression approaches. We test this novel approach against a classic oncology database of logistic tumor growth, achieving a 30% to 40% reduction in the time necessary to correctly estimate the logistic growth rate and carrying capacity. Our results will improve tumor dynamics forecasting and augment the clinical decision-making process.
Collapse
|
8
|
Wilson N, Drapaca CS, Enderling H, Caudell JJ, Wilkie KP. Modelling Radiation Cancer Treatment with a Death-Rate Term in Ordinary and Fractional Differential Equations. Bull Math Biol 2023; 85:47. [PMID: 37186175 PMCID: PMC10127975 DOI: 10.1007/s11538-023-01139-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/28/2023] [Indexed: 05/17/2023]
Abstract
Fractional calculus has recently been applied to the mathematical modelling of tumour growth, but its use introduces complexities that may not be warranted. Mathematical modelling with differential equations is a standard approach to study and predict treatment outcomes for population-level and patient-specific responses. Here, we use patient data of radiation-treated tumours to discuss the benefits and limitations of introducing fractional derivatives into three standard models of tumour growth. The fractional derivative introduces a history-dependence into the growth function, which requires a continuous death-rate term for radiation treatment. This newly proposed radiation-induced death-rate term improves computational efficiency in both ordinary and fractional derivative models. This computational speed-up will benefit common simulation tasks such as model parameterization and the construction and running of virtual clinical trials.
Collapse
Affiliation(s)
- Nicole Wilson
- Department of Mathematics, Toronto Metropolitan University, Toronto, Canada
| | - Corina S Drapaca
- Engineering Science and Mechanics, Pennsylvania State University, University Park, USA
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | - Jimmy J Caudell
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | - Kathleen P Wilkie
- Department of Mathematics, Toronto Metropolitan University, Toronto, Canada.
| |
Collapse
|
9
|
Bekker RA, Kim S, Pilon-Thomas S, Enderling H. Mathematical modeling of radiotherapy and its impact on tumor interactions with the immune system. Neoplasia 2022; 28:100796. [PMID: 35447601 PMCID: PMC9043662 DOI: 10.1016/j.neo.2022.100796] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 11/01/2022]
Abstract
Radiotherapy is a primary therapeutic modality widely utilized with curative intent. Traditionally tumor response was hypothesized to be due to high levels of cell death induced by irreparable DNA damage. However, the immunomodulatory aspect of radiation is now widely accepted. As such, interest into the combination of radiotherapy and immunotherapy is increasing, the synergy of which has the potential to improve tumor regression beyond that observed after either treatment alone. However, questions regarding the timing (sequential vs concurrent) and dose fractionation (hyper-, standard-, or hypo-fractionation) that result in improved anti-tumor immune responses, and thus potentially enhanced tumor inhibition, remain. Here we discuss the biological response to radiotherapy and its immunomodulatory properties before giving an overview of pre-clinical data and clinical trials concerned with answering these questions. Finally, we review published mathematical models of the impact of radiotherapy on tumor-immune interactions. Ranging from considering the impact of properties of the tumor microenvironment on the induction of anti-tumor responses, to the impact of choice of radiation site in the setting of metastatic disease, these models all have an underlying feature in common: the push towards personalized therapy.
Collapse
|
10
|
Cellular plasticity upon proton irradiation determines tumor cell radiosensitivity. Cell Rep 2022; 38:110422. [PMID: 35196495 DOI: 10.1016/j.celrep.2022.110422] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/24/2021] [Accepted: 02/01/2022] [Indexed: 12/31/2022] Open
Abstract
Proton radiotherapy has been implemented into the standard-of-care for cancer patients within recent years. However, experimental studies investigating cellular and molecular mechanisms are lacking, and prognostic biomarkers are needed. Cancer stem cell (CSC)-related biomarkers, such as aldehyde dehydrogenase (ALDH), are known to influence cellular radiosensitivity through inactivation of reactive oxygen species, DNA damage repair, and cell death. In a previous study, we found that ionizing radiation itself enriches for ALDH-positive CSCs. In this study, we analyze CSC marker dynamics in prostate cancer, head and neck cancer, and glioblastoma cells upon proton beam irradiation. We find that proton irradiation has a higher potential to target CSCs through induction of complex DNA damages, lower rates of cellular senescence, and minor alteration in histone methylation pattern compared with conventional photon irradiation. Mathematical modeling indicates differences in plasticity rates among ALDH-positive CSCs and ALDH-negative cancer cells between the two irradiation types.
Collapse
|
11
|
Zahid MU, Mohsin N, Mohamed ASR, Caudell JJ, Harrison LB, Fuller CD, Moros EG, Enderling H. Forecasting Individual Patient Response to Radiation Therapy in Head and Neck Cancer With a Dynamic Carrying Capacity Model. Int J Radiat Oncol Biol Phys 2021; 111:693-704. [PMID: 34102299 PMCID: PMC8463501 DOI: 10.1016/j.ijrobp.2021.05.132] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/21/2022]
Abstract
Purpose: To model and predict individual patient responses to radiation therapy. Methods and Materials: We modeled tumor dynamics as logistic growth and the effect of radiation as a reduction in the tumor carrying capacity, motivated by the effect of radiation on the tumor microenvironment. The model was assessed on weekly tumor volume data collected for 2 independent cohorts of patients with head and neck cancer from the H. Lee Moffitt Cancer Center (MCC) and the MD Anderson Cancer Center (MDACC) who received 66 to 70 Gy in standard daily fractions or with accelerated fractionation. To predict response to radiation therapy for individual patients, we developed a new forecasting framework that combined the learned tumor growth rate and carrying capacity reduction fraction (δ) distribution with weekly measurements of tumor volume reduction for a given test patient to estimate δ, which was used to predict patient-specific outcomes. Results: The model fit data from MCC with high accuracy with patient-specific δ and a fixed tumor growth rate across all patients. The model fit data from an independent cohort from MDACC with comparable accuracy using the tumor growth rate learned from the MCC cohort, showing transferability of the growth rate. The forecasting framework predicted patient-specific outcomes with 76% sensitivity and 83% specificity for locoregional control and 68% sensitivity and 85% specificity for disease-free survival with the inclusion of 4 on-treatment tumor volume measurements. Conclusions: These results demonstrate that our simple mathematical model can describe a variety of tumor volume dynamics. Furthermore, combining historically observed patient responses with a few patient-specific tumor volume measurements allowed for the accurate prediction of patient outcomes, which may inform treatment adaptation and personalization.
Collapse
Affiliation(s)
- Mohammad U Zahid
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Nuverah Mohsin
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida; Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida
| | - Abdallah S R Mohamed
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jimmy J Caudell
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Louis B Harrison
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Clifton D Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eduardo G Moros
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida; Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida.
| |
Collapse
|
12
|
Alfonso JCL, Grass GD, Welsh E, Ahmed KA, Teer JK, Pilon-Thomas S, Harrison LB, Cleveland JL, Mulé JJ, Eschrich SA, Torres-Roca JF, Enderling H. Tumor-immune ecosystem dynamics define an individual Radiation Immune Score to predict pan-cancer radiocurability. Neoplasia 2021; 23:1110-1122. [PMID: 34619428 PMCID: PMC8502777 DOI: 10.1016/j.neo.2021.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/10/2023] Open
Abstract
Radiotherapy efficacy is the result of radiation-mediated cytotoxicity coupled with stimulation of antitumor immune responses. We develop an in silico 3-dimensional agent-based model of diverse tumor-immune ecosystems (TIES) represented as anti- or pro-tumor immune phenotypes. We validate the model in 10,469 patients across 31 tumor types by demonstrating that clinically detected tumors have pro-tumor TIES. We then quantify the likelihood radiation induces antitumor TIES shifts toward immune-mediated tumor elimination by developing the individual Radiation Immune Score (iRIS). We show iRIS distribution across 31 tumor types is consistent with the clinical effectiveness of radiotherapy, and in combination with a molecular radiosensitivity index (RSI) combines to predict pan-cancer radiocurability. We show that iRIS correlates with local control and survival in a separate cohort of 59 lung cancer patients treated with radiation. In combination, iRIS and RSI predict radiation-induced TIES shifts in individual patients and identify candidates for radiation de-escalation and treatment escalation. This is the first clinically and biologically validated computational model to simulate and predict pan-cancer response and outcomes via the perturbation of the TIES by radiotherapy.
Collapse
Affiliation(s)
- Juan C L Alfonso
- Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - G Daniel Grass
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric Welsh
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kamran A Ahmed
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Louis B Harrison
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - John L Cleveland
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - James J Mulé
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Steven A Eschrich
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Javier F Torres-Roca
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Heiko Enderling
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
13
|
Kimmel GJ, Locke FL, Altrock PM. The roles of T cell competition and stochastic extinction events in chimeric antigen receptor T cell therapy. Proc Biol Sci 2021; 288:20210229. [PMID: 33757357 PMCID: PMC8059581 DOI: 10.1098/rspb.2021.0229] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a remarkably effective immunotherapy that relies on in vivo expansion of engineered CAR T cells, after lymphodepletion (LD) by chemotherapy. The quantitative laws underlying this expansion and subsequent tumour eradication remain unknown. We develop a mathematical model of T cell-tumour cell interactions and demonstrate that expansion can be explained by immune reconstitution dynamics after LD and competition among T cells. CAR T cells rapidly grow and engage tumour cells but experience an emerging growth rate disadvantage compared to normal T cells. Since tumour eradication is deterministically unstable in our model, we define cure as a stochastic event, which, even when likely, can occur at variable times. However, we show that variability in timing is largely determined by patient variability. While cure events impacted by these fluctuations occur early and are narrowly distributed, progression events occur late and are more widely distributed in time. We parameterized our model using population-level CAR T cell and tumour data over time and compare our predictions with progression-free survival rates. We find that therapy could be improved by optimizing the tumour-killing rate and the CAR T cells' ability to adapt, as quantified by their carrying capacity. Our tumour extinction model can be leveraged to examine why therapy works in some patients but not others, and to better understand the interplay of deterministic and stochastic effects on outcomes. For example, our model implies that LD before a second CAR T injection is necessary.
Collapse
Affiliation(s)
- Gregory J Kimmel
- Department of Integrated Mathematical Oncology, Research Institute, Tampa, FL, USA
| | - Frederick L Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Research Institute, Tampa, FL, USA
| | - Philipp M Altrock
- Department of Integrated Mathematical Oncology, Research Institute, Tampa, FL, USA.,Department of Blood and Marrow Transplant and Cellular Immunotherapy, Research Institute, Tampa, FL, USA.,Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
14
|
Affiliation(s)
- Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33647, USA
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany
| |
Collapse
|
15
|
Bayesian Information-Theoretic Calibration of Radiotherapy Sensitivity Parameters for Informing Effective Scanning Protocols in Cancer. J Clin Med 2020; 9:jcm9103208. [PMID: 33027933 PMCID: PMC7601810 DOI: 10.3390/jcm9103208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/03/2022] Open
Abstract
With new advancements in technology, it is now possible to collect data for a variety of different metrics describing tumor growth, including tumor volume, composition, and vascularity, among others. For any proposed model of tumor growth and treatment, we observe large variability among individual patients’ parameter values, particularly those relating to treatment response; thus, exploiting the use of these various metrics for model calibration can be helpful to infer such patient-specific parameters both accurately and early, so that treatment protocols can be adjusted mid-course for maximum efficacy. However, taking measurements can be costly and invasive, limiting clinicians to a sparse collection schedule. As such, the determination of optimal times and metrics for which to collect data in order to best inform proper treatment protocols could be of great assistance to clinicians. In this investigation, we employ a Bayesian information-theoretic calibration protocol for experimental design in order to identify the optimal times at which to collect data for informing treatment parameters. Within this procedure, data collection times are chosen sequentially to maximize the reduction in parameter uncertainty with each added measurement, ensuring that a budget of n high-fidelity experimental measurements results in maximum information gain about the low-fidelity model parameter values. In addition to investigating the optimal temporal pattern for data collection, we also develop a framework for deciding which metrics should be utilized at each data collection point. We illustrate this framework with a variety of toy examples, each utilizing a radiotherapy treatment regimen. For each scenario, we analyze the dependence of the predictive power of the low-fidelity model upon the measurement budget.
Collapse
|
16
|
Aherne NJ, Dhawan A, Scott JG, Enderling H. Mathematical oncology and it's application in non melanoma skin cancer - A primer for radiation oncology professionals. Oral Oncol 2020; 103:104473. [PMID: 32109841 DOI: 10.1016/j.oraloncology.2019.104473] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022]
Abstract
Cancers of the skin (the majority of which are basal and squamous cell skin carcinomas, but also include the rarer Merkel cell carcinoma) are overwhelmingly the most common of all types of cancer. Most of these are treated surgically, with radiation reserved for those patients with high risk features or anatomical locations less suitable for surgery. Given the high incidence of both basal and squamous cell carcinomas, as well as the relatively poor outcome for Merkel cell carcinoma, it is useful to investigate the role of other disciplines regarding their diagnosis, staging and treatment. Mathematical modelling is one such area of investigation. The use of mathematical modelling is a relatively recent addition to the armamentarium of cancer treatment. It has long been recognised that tumour growth and treatment response is a complex, non-linear biological phenomenon with many mechanisms yet to be understood. Despite decades of research, including clinical, population and basic science approaches, we continue to be challenged by the complexity, heterogeneity and adaptability of tumours, both in individual patients in the oncology clinic and across wider patient populations. Prospective clinical trials predominantly focus on average outcome, with little understanding as to why individual patients may or may not respond. The use of mathematical models may lead to a greater understanding of tumour initiation, growth dynamics and treatment response.
Collapse
Affiliation(s)
- Noel J Aherne
- Department of Radiation Oncology, Mid North Coast Cancer Institute, Coffs Harbour, NSW 2450, Australia; RCS Faculty of Medicine, University of New South Wales, New South Wales, Australia.
| | - Andrew Dhawan
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA; Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jacob G Scott
- Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
17
|
Lewin TD, Byrne HM, Maini PK, Caudell JJ, Moros EG, Enderling H. The importance of dead material within a tumour on the dynamics in response to radiotherapy. ACTA ACUST UNITED AC 2020; 65:015007. [DOI: 10.1088/1361-6560/ab4c27] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Nourollahi S, Ghate A, Kim M. Optimal modality selection in external beam radiotherapy. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2019; 36:361-380. [PMID: 30192934 DOI: 10.1093/imammb/dqy013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 12/25/2022]
Abstract
The goal in external beam radiotherapy (EBRT) for cancer is to maximize damage to the tumour while limiting toxic effects on the organs-at-risk. EBRT can be delivered via different modalities such as photons, protons and neutrons. The choice of an optimal modality depends on the anatomy of the irradiated area and the relative physical and biological properties of the modalities under consideration. There is no single universally dominant modality. We present the first-ever mathematical formulation of the optimal modality selection problem. We show that this problem can be tackled by solving the Karush-Kuhn-Tucker conditions of optimality, which reduce to an analytically tractable quartic equation. We perform numerical experiments to gain insights into the effect of biological and physical properties on the choice of an optimal modality or combination of modalities.
Collapse
Affiliation(s)
- Sevnaz Nourollahi
- Department of Industrial & Systems Engineering, University of Washington, Seattle, USA
| | - Archis Ghate
- Department of Industrial & Systems Engineering, University of Washington, Seattle, USA
| | - Minsun Kim
- Department of Radiation Oncology, University of Washington, Seattle, USA
| |
Collapse
|
19
|
Kühleitner M, Brunner N, Nowak WG, Renner-Martin K, Scheicher K. Best fitting tumor growth models of the von Bertalanffy-PütterType. BMC Cancer 2019; 19:683. [PMID: 31299926 PMCID: PMC6624893 DOI: 10.1186/s12885-019-5911-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022] Open
Abstract
Background Longitudinal studies of tumor volume have used certain named mathematical growth models. The Bertalanffy-Pütter differential equation unifies them: It uses five parameters, amongst them two exponents related to tumor metabolism and morphology. Each exponent-pair defines a unique three-parameter model of the Bertalanffy-Pütter type, and the above-mentioned named models correspond to specific exponent-pairs. Amongst these models we seek the best fitting one. Method The best fitting model curve within the Bertalanffy-Pütter class minimizes the sum of squared errors (SSE). We investigate also near-optimal model curves; their SSE is at most a certain percentage (e.g. 1%) larger than the minimal SSE. Models with near-optimal curves are visualized by the region of their near-optimal exponent pairs. While there is barely a visible difference concerning the goodness of fit between the best fitting and the near-optimal model curves, there are differences in the prognosis, whence the near-optimal models are used to assess the uncertainty of extrapolation. Results For data about the growth of an untreated tumor we found the best fitting growth model which reduced SSE by about 30% compared to the hitherto best fit. In order to analyze the uncertainty of prognosis, we repeated the search for the optimal and near-optimal exponent-pairs for the initial segments of the data (meaning the subset of the data for the first n days) and compared the prognosis based on these models with the actual data (i.e. the data for the remaining days). The optimal exponent-pairs and the regions of near-optimal exponent-pairs depended on how many data-points were used. Further, the regions of near-optimal exponent-pairs were larger for the first initial segments, where fewer data were used. Conclusion While for each near optimal exponent-pair its best fitting model curve remained close to the fitted data points, the prognosis using these model curves differed widely for the remaining data, whence e.g. the best fitting model for the first 65 days of growth was not capable to inform about tumor size for the remaining 49 days. For the present data, prognosis appeared to be feasible for a time span of ten days, at most.
Collapse
Affiliation(s)
- Manfred Kühleitner
- Institute of Mathematics, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences (BOKU), Gregor Mendel Strasse 33, A-1180, Vienna, Austria.
| | - Norbert Brunner
- Institute of Mathematics, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences (BOKU), Gregor Mendel Strasse 33, A-1180, Vienna, Austria
| | - Werner-Georg Nowak
- Institute of Mathematics, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences (BOKU), Gregor Mendel Strasse 33, A-1180, Vienna, Austria
| | - Katharina Renner-Martin
- Institute of Mathematics, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences (BOKU), Gregor Mendel Strasse 33, A-1180, Vienna, Austria
| | - Klaus Scheicher
- Institute of Mathematics, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences (BOKU), Gregor Mendel Strasse 33, A-1180, Vienna, Austria
| |
Collapse
|
20
|
Integrating Mathematical Modeling into the Roadmap for Personalized Adaptive Radiation Therapy. Trends Cancer 2019; 5:467-474. [PMID: 31421904 DOI: 10.1016/j.trecan.2019.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 11/21/2022]
Abstract
In current radiation oncology practice, treatment protocols are prescribed based on the average outcomes of large clinical trials, with limited personalization and without adaptations of dose or dose fractionation to individual patients based on their individual clinical responses. Predicting tumor responses to radiation and comparing predictions against observed responses offers an opportunity for novel treatment evaluation. These analyses can lead to protocol adaptation aimed at the improvement of patient outcomes with better therapeutic ratios. We foresee the integration of mathematical models into radiation oncology to simulate individual patient tumor growth and predict treatment response as dynamic biomarkers for personalized adaptive radiation therapy (RT).
Collapse
|
21
|
Rockne RC, Hawkins-Daarud A, Swanson KR, Sluka JP, Glazier JA, Macklin P, Hormuth DA, Jarrett AM, Lima EABF, Tinsley Oden J, Biros G, Yankeelov TE, Curtius K, Al Bakir I, Wodarz D, Komarova N, Aparicio L, Bordyuh M, Rabadan R, Finley SD, Enderling H, Caudell J, Moros EG, Anderson ARA, Gatenby RA, Kaznatcheev A, Jeavons P, Krishnan N, Pelesko J, Wadhwa RR, Yoon N, Nichol D, Marusyk A, Hinczewski M, Scott JG. The 2019 mathematical oncology roadmap. Phys Biol 2019; 16:041005. [PMID: 30991381 PMCID: PMC6655440 DOI: 10.1088/1478-3975/ab1a09] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Whether the nom de guerre is Mathematical Oncology, Computational or Systems Biology, Theoretical Biology, Evolutionary Oncology, Bioinformatics, or simply Basic Science, there is no denying that mathematics continues to play an increasingly prominent role in cancer research. Mathematical Oncology-defined here simply as the use of mathematics in cancer research-complements and overlaps with a number of other fields that rely on mathematics as a core methodology. As a result, Mathematical Oncology has a broad scope, ranging from theoretical studies to clinical trials designed with mathematical models. This Roadmap differentiates Mathematical Oncology from related fields and demonstrates specific areas of focus within this unique field of research. The dominant theme of this Roadmap is the personalization of medicine through mathematics, modelling, and simulation. This is achieved through the use of patient-specific clinical data to: develop individualized screening strategies to detect cancer earlier; make predictions of response to therapy; design adaptive, patient-specific treatment plans to overcome therapy resistance; and establish domain-specific standards to share model predictions and to make models and simulations reproducible. The cover art for this Roadmap was chosen as an apt metaphor for the beautiful, strange, and evolving relationship between mathematics and cancer.
Collapse
Affiliation(s)
- Russell C Rockne
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Alexander R A Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, Oxford, UK.
| |
Collapse
|
23
|
Sunassee ED, Tan D, Ji N, Brady R, Moros EG, Caudell JJ, Yartsev S, Enderling H. Proliferation saturation index in an adaptive Bayesian approach to predict patient-specific radiotherapy responses. Int J Radiat Biol 2019; 95:1421-1426. [PMID: 30831050 DOI: 10.1080/09553002.2019.1589013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose: Radiotherapy prescription dose and dose fractionation protocols vary little between individual patients having the same tumor grade and stage. To personalize radiotherapy a predictive model is needed to simulate radiation response. Previous modeling attempts with multiple variables and parameters have been shown to yield excellent data fits at the cost of non-identifiability and clinically unrealistic results. Materials and methods: We develop a mathematical model based on a proliferation saturation index (PSI) that is a measurement of pre-treatment tumor volume-to-carrying capacity ratio that modulates intrinsic tumor growth and radiation response rates. In an adaptive Bayesian approach, we utilize an increasing number of data points for individual patients to predict patient-specific responses to subsequent radiation doses. Results: Model analysis shows that using PSI as the only patient-specific parameter, model simulations can fit longitudinal clinical data with high accuracy (R2=0.84). By analyzing tumor response to radiation using daily CT scans early in the treatment, response to the remaining treatment fractions can be predicted after two weeks with high accuracy (c-index = 0.89). Conclusion: The PSI model may be suited to forecast treatment response for individual patients and offers actionable decision points for mid-treatment protocol adaptation. The presented work provides an actionable image-derived biomarker prior to and during therapy to personalize and adapt radiotherapy.
Collapse
Affiliation(s)
- Enakshi D Sunassee
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute , Tampa , FL , USA
| | - Dean Tan
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute , Tampa , FL , USA
| | - Nathan Ji
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute , Tampa , FL , USA
| | - Renee Brady
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute , Tampa , FL , USA
| | - Eduardo G Moros
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute , Tampa , FL , USA.,Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute , Tampa , FL , USA
| | - Jimmy J Caudell
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute , Tampa , FL , USA
| | - Slav Yartsev
- London Health Sciences Centre, London Regional Cancer Program , London , ON , Canada
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute , Tampa , FL , USA.,Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute , Tampa , FL , USA
| |
Collapse
|
24
|
Poleszczuk J, Enderling H. The Optimal Radiation Dose to Induce Robust Systemic Anti-Tumor Immunity. Int J Mol Sci 2018; 19:ijms19113377. [PMID: 30380596 PMCID: PMC6275030 DOI: 10.3390/ijms19113377] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/08/2018] [Accepted: 10/23/2018] [Indexed: 01/24/2023] Open
Abstract
The synergy of radiation and the immune system is currently receiving significant attention in oncology as numerous studies have shown that cancer irradiation can induce strong anti-tumor immune responses. It remains unclear, however, what are the best radiation fractionation protocols to maximize the therapeutic benefits of this synergy. Here, we present a novel mathematical model that can be used to predict and dissect the complexity of the immune-mediated response at multiple tumor sites after applying focal irradiation and systemic immunotherapy. We successfully calibrate the proposed framework with published experimental data, in which two tumors were grown in mice at two spatially-separated sites from which only one was irradiated using various radiation fractionation protocols with and without concurrent systemic immunotherapy. The proposed model is calibrated to fit the temporal dynamics of tumor volume at both sites and can predict changes in immune infiltration in the non-irradiated tumors. The model was then used to investigate additional radiation fractionation protocols. Model simulations suggest that the optimal radiation doses per fraction to maximize anti-tumor immunity are between 10 and 13 Gy, at least for the experimental setting used for model calibration. This work provides the framework for evaluating radiation fractionation protocols for radiation-induced immune-mediated systemic anti-tumor responses.
Collapse
Affiliation(s)
- Jan Poleszczuk
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland.
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA.
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| |
Collapse
|