1
|
Lv J, Ma W. Delay induced stability switch in a mathematical model of CD8 T-cell response to SARS-CoV-2 mediated by receptor ACE2. CHAOS (WOODBURY, N.Y.) 2024; 34:043135. [PMID: 38608314 DOI: 10.1063/5.0187872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/18/2024] [Indexed: 04/14/2024]
Abstract
The pathogen SARS-CoV-2 binds to the receptor angiotensin-converting enzyme 2 (ACE2) of the target cells and then replicates itself through the host, eventually releasing free virus particles. After infection, the CD8 T-cell response is triggered and appears to play a critical role in the defense against virus infections. Infected cells and their activated CD8 T-cells can cause tissue damage. Here, we established a mathematical model of within-host SARS-CoV-2 infection that incorporates the receptor ACE2, the CD8 T-cell response, and the damaged tissues. According to this model, we can get the basic reproduction number R0 and the immune reproduction number R1. We provide the theoretical proof for the stability of the disease-free equilibrium, immune-inactivated equilibrium, and immune-activated equilibrium. Finally, our numerical simulations show that the time delay in CD8 T-cell production can induce complex dynamics such as stability switching. These results provide insights into the mechanisms of SARS-CoV-2 infection and may help in the development of effective drugs against COVID-19.
Collapse
Affiliation(s)
- Jinlong Lv
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Wanbiao Ma
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| |
Collapse
|
2
|
de León UAP, Resendis-Antonio O. Macrophage Boolean networks in the time of SARS-CoV-2. Front Immunol 2022; 13:997434. [DOI: 10.3389/fimmu.2022.997434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
|
3
|
Sanche S, Cassidy T, Chu P, Perelson AS, Ribeiro RM, Ke R. A simple model of COVID-19 explains disease severity and the effect of treatments. Sci Rep 2022; 12:14210. [PMID: 35988008 PMCID: PMC9392071 DOI: 10.1038/s41598-022-18244-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/08/2022] [Indexed: 12/23/2022] Open
Abstract
Considerable effort has been made to better understand why some people suffer from severe COVID-19 while others remain asymptomatic. This has led to important clinical findings; people with severe COVID-19 generally experience persistently high levels of inflammation, slower viral load decay, display a dysregulated type-I interferon response, have less active natural killer cells and increased levels of neutrophil extracellular traps. How these findings are connected to the pathogenesis of COVID-19 remains unclear. We propose a mathematical model that sheds light on this issue by focusing on cells that trigger inflammation through molecular patterns: infected cells carrying pathogen-associated molecular patterns (PAMPs) and damaged cells producing damage-associated molecular patterns (DAMPs). The former signals the presence of pathogens while the latter signals danger such as hypoxia or lack of nutrients. Analyses show that SARS-CoV-2 infections can lead to a self-perpetuating feedback loop between DAMP expressing cells and inflammation, identifying the inability to quickly clear PAMPs and DAMPs as the main contributor to hyperinflammation. The model explains clinical findings and reveal conditions that can increase the likelihood of desired clinical outcome from treatment administration. In particular, the analysis suggest that antivirals need to be administered early during infection to have an impact on disease severity. The simplicity of the model and its high level of consistency with clinical findings motivate its use for the formulation of new treatment strategies.
Collapse
|
4
|
Mochan E, Sego TJ, Ermentrout B. Age-Related Changes to the Immune System Exacerbate the Inflammatory Response to Pandemic H1N1 Infection. Bull Math Biol 2022; 84:88. [PMID: 35829841 PMCID: PMC9278316 DOI: 10.1007/s11538-022-01045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
Age-induced dysregulation of the immune response is a major contributor to the morbidity and mortality related to influenza a virus infections. Experimental data have shown substantial changes to the activation and maintenance of the immune response will occur with age, but it remains unclear which of these many interrelated changes are most critical to controlling the survival of the host during infection. To ascertain which mechanisms are predominantly responsible for the increased morbidity in elderly hosts, we developed an ordinary differential equation model to simulate the immune response to pandemic H1N1 infection. We fit this model to experimental data measured in young and old macaques. We determined that the severity of the infection in the elderly hosts is caused by a dysregulation in the innate immune response. We also simulated CD8+ T cell exhaustion, a common consequence of chronic and extensive infections. Our simulations indicate that while T cell exhaustion is possible in both age groups, its effects are more severe in the elderly population, as their dysregulated immune response cannot easily compensate for the exhausted T cells. Finally, we explore a therapeutic approach to reversing T cell exhaustion through an inflammatory stimulus. A controlled increase in inflammatory signals can lead to a higher chance of surviving the infection, but excess inflammation will likely lead to septic death. These results indicate that our model captures distinctions in the predominant mechanisms controlling the immune response in younger and older hosts and allows for simulations of clinically relevant therapeutic strategies post-infection.
Collapse
Affiliation(s)
- Ericka Mochan
- Department of Analytical, Physical, and Social Sciences, Carlow University, Pittsburgh, PA, 15213, USA.
| | - T J Sego
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47408, USA
| | - Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
5
|
Chatterjee B, Singh Sandhu H, Dixit NM. Modeling recapitulates the heterogeneous outcomes of SARS-CoV-2 infection and quantifies the differences in the innate immune and CD8 T-cell responses between patients experiencing mild and severe symptoms. PLoS Pathog 2022; 18:e1010630. [PMID: 35759522 PMCID: PMC9269964 DOI: 10.1371/journal.ppat.1010630] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/08/2022] [Accepted: 06/01/2022] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 infection results in highly heterogeneous outcomes, from cure without symptoms to acute respiratory distress and death. Empirical evidence points to the prominent roles of innate immune and CD8 T-cell responses in determining the outcomes. However, how these immune arms act in concert to elicit the outcomes remains unclear. Here, we developed a mathematical model of within-host SARS-CoV-2 infection that incorporates the essential features of the innate immune and CD8 T-cell responses. Remarkably, by varying the strengths and timings of the two immune arms, the model recapitulated the entire spectrum of outcomes realized. Furthermore, model predictions offered plausible explanations of several confounding clinical observations, including the occurrence of multiple peaks in viral load, viral recrudescence after symptom loss, and prolonged viral positivity. We applied the model to analyze published datasets of longitudinal viral load measurements from patients exhibiting diverse outcomes. The model provided excellent fits to the data. The best-fit parameter estimates indicated a nearly 80-fold stronger innate immune response and an over 200-fold more sensitive CD8 T-cell response in patients with mild compared to severe infection. These estimates provide quantitative insights into the likely origins of the dramatic inter-patient variability in the outcomes of SARS-CoV-2 infection. The insights have implications for interventions aimed at preventing severe disease and for understanding the differences between viral variants.
Collapse
Affiliation(s)
- Budhaditya Chatterjee
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | | | - Narendra M. Dixit
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
6
|
Frank TD. Eigenvalue analysis of SARS-CoV-2 viral load data: illustration for eight COVID-19 patients. INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS 2022; 15:281-290. [PMID: 35399335 PMCID: PMC8978770 DOI: 10.1007/s41060-022-00319-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/09/2022] [Indexed: 12/19/2022]
Abstract
Eigenvalue analysis is an important tool in economics and nonlinear physics to analyze industrial processes and instability phenomena, respectively. A model-based eigenvalue analysis of viral load data from eight symptomatic COVID-19 patients was conducted. The eigenvalues and eigenvectors of the instabilities were determined that give rise to COVID-19. For all eight patients, it was found that the virus dynamics followed the unstable eigenvectors until the viral load reached the respective peak values. At the peak virus values, the virus dynamics branched off from the directions specified by the eigenvectors. The temporal course of the unstable eigenvalues was determined as well. For all patients, it was found that the eigenvalues switched from positive to negative values just when the virus load reached peak values. These findings suggest that the fixed, instability-related eigenvalues and eigenvectors determine initial stages of SARS-CoV-2 infections during which virus load increases. In contrast, the time-dependent eigenvalues show a sign-switching phenomenon that indicates when the virus dynamics switches from the growth stage (increasing virus load) to the decay stage (decreasing virus load). The virus dynamics model was a standard three-variable virus dynamics model frequently used in the literature.
Collapse
Affiliation(s)
- Till D. Frank
- Department of Psychological Sciences, University of Connecticut, 406 Babbidge Road, Storrs, CT 06269 USA
- Department of Physics, University of Connecticut, 196 Auditorium Road, Storrs, CT 06269 USA
| |
Collapse
|
7
|
Frank T. SARS-coronavirus-2 infections: biological instabilities characterized by order parameters. Phys Biol 2022; 19. [PMID: 35108687 DOI: 10.1088/1478-3975/ac5155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/02/2022] [Indexed: 11/12/2022]
Abstract
A four-variable virus dynamics TIIV model was considered that involves infected cells in an eclipse phase. The state space description of the model was transferred into an amplitude space description which is the appropriate general, nonlinear physics framework to describe instabilities. In this context, the unstable eigenvector or order parameter of the model was determined. Subsequently, a model-based analysis of viral load data from eight symptomatic COVID-19 patients was conducted. For all patients, it was found that the initial SARS-CoV-2 infection evolved along the respective patient-specific order parameter, as expected by theoretical considerations. The order parameter amplitude that described the initial virus multiplication showed doubling times between 30 minutes and 3 hours. Peak viral loads of patients were linearly related to the amplitudes of the patient order parameters. Finally, it was found that the patient order parameters determined qualitatively and quantitatively the relationships between the increases in virus-producing infected cells and infected cells in the eclipse phase. Overall, the study echoes the 40 years old suggestion by Mackey and Glass to consider diseases as instabilities.
Collapse
Affiliation(s)
- Till Frank
- University of Connecticut, 406 Babbidge Road, Storrs, Connecticut, 06269, UNITED STATES
| |
Collapse
|
8
|
Ghosh I. Within Host Dynamics of SARS-CoV-2 in Humans: Modeling Immune Responses and Antiviral Treatments. SN COMPUTER SCIENCE 2021; 2:482. [PMID: 34661166 PMCID: PMC8506088 DOI: 10.1007/s42979-021-00919-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/02/2021] [Indexed: 01/04/2023]
Abstract
In December 2019, a newly discovered SARS-CoV-2 virus was emerged from China and propagated worldwide as a pandemic, resulting in about 3-5% mortality. Mathematical models can provide useful scientific insights about transmission patterns and targets for drug development. In this study, we propose a within-host mathematical model of SARS-CoV-2 infection considering innate and adaptive immune responses. We analyze the equilibrium points of the proposed model and obtain an expression of the basic reproduction number. We then numerically show the existence of a transcritical bifurcation. The proposed model is calibrated to real viral load data of two COVID-19 patients. Using the estimated parameters, we perform global sensitivity analysis with respect to the peak of viral load. Finally, we study the efficacy of antiviral drugs and vaccination on the dynamics of SARS-CoV-2 infection. Results suggest that blocking the virus production from infected cells can be an effective target for antiviral drug development. Finally, it is found that vaccination is more effective intervention as compared to the antiviral treatments.
Collapse
Affiliation(s)
- Indrajit Ghosh
- Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012 India
| |
Collapse
|
9
|
Zarnitsyna VI, Gianlupi JF, Hagar A, Sego TJ, Glazier JA. Advancing therapies for viral infections using mechanistic computational models of the dynamic interplay between the virus and host immune response. Curr Opin Virol 2021; 50:103-109. [PMID: 34450519 PMCID: PMC8384423 DOI: 10.1016/j.coviro.2021.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022]
Abstract
The COVID-19 pandemic has highlighted a need for improved frameworks for drug discovery, repurposing, clinical trial design and therapy optimization and personalization. Mechanistic computational models can play an important role in developing these frameworks. We discuss how mechanistic models, which consider viral entry, replication in target cells, viral spread in the body, immune response, and the complex factors involved in tissue and organ damage and recovery, can clarify the mechanisms of humoral and cellular immune responses to the virus, viral distribution and replication in tissues, the origins of pathogenesis and patient-to-patient heterogeneity in responses. These models are already improving our understanding of the mechanisms of action of antivirals and immune modulators. We discuss how closer collaboration between the experimentalists, clinicians and modelers could result in more predictive models which may guide therapies for viral infections, improving survival and leading to faster and more complete recovery.
Collapse
Affiliation(s)
- Veronika I Zarnitsyna
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Juliano Ferrari Gianlupi
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA; Biocomplexity Institute, Indiana University, Bloomington, IN, USA
| | - Amit Hagar
- Department of History and Philosophy of Science, Indiana University, Bloomington, IN, USA
| | - T J Sego
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA; Biocomplexity Institute, Indiana University, Bloomington, IN, USA
| | - James A Glazier
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA; Biocomplexity Institute, Indiana University, Bloomington, IN, USA.
| |
Collapse
|