1
|
Tokashiki T, Igarashi T, Shiraishi M, Kano R, Ojiri H. Evaluation of the association between osteoporotic vertebral compression fractures and psoas major/paraspinal muscle mass and ADC measured on MRI. Skeletal Radiol 2024; 53:675-682. [PMID: 37831148 DOI: 10.1007/s00256-023-04461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/14/2023]
Abstract
OBJECTIVE Evaluate magnetic resonance imaging factors associated with osteoporotic vertebral compression fractures. MATERIALS AND METHODS We retrospectively reviewed 457 patients' records. Age, sex, and body mass index were recorded. Two blinded readers measured psoas major and paraspinal muscle areas at the L3 vertebral body level on transverse T2-weighted magnetic resonance images and the mean apparent diffusion coefficient values of the non-fractured vertebrae from Th12 to L5. Inter-reader reliability for continuous variables was assessed by intraclass correlation coefficients. RESULTS We evaluated 210 patients (103 [49.0%] men). The osteoporotic vertebral compression fractures group was older and had lower BMI and smaller psoas major and paraspinal muscle areas than the group without vertebral compression fractures (p < 0.001). The mean apparent diffusion coefficient was weakly correlated with paraspinal muscle area in the osteoporotic vertebral compression fractures group. The intraclass correlation coefficient value was 0.83, and the intraclass correlation coefficients of the psoas major and paraspinal muscles were 0.94 and 0.97, respectively. Multivariate analysis revealed that decreased psoas major and paraspinal muscle areas and increased mean apparent diffusion coefficient values were significantly associated with the presence of osteoporotic vertebral compression fractures (all p < 0.05). Psoas major and paraspinal muscle areas showed relatively high predictive accuracy (57%, 61%). CONCLUSION Psoas major and paraspinal muscle areas at the L3 level and the mean apparent diffusion coefficient value of non-fractured vertebrae from the Th12 to L5 level were associated with osteoporotic vertebral compression fractures. This may contribute to detecting the potential risk of healthy individuals developing osteoporotic vertebral compression fractures.
Collapse
Affiliation(s)
- Tadashi Tokashiki
- Department of Radiology, Jikei University School of Medicine, Nishi-Shimbashi, Minato-Ku, Tokyo, Japan.
| | - Takao Igarashi
- Department of Radiology, Jikei University School of Medicine, Nishi-Shimbashi, Minato-Ku, Tokyo, Japan
| | - Megumi Shiraishi
- Department of Radiology, Jikei University School of Medicine, Nishi-Shimbashi, Minato-Ku, Tokyo, Japan
| | - Rui Kano
- Department of Radiology, Jikei University School of Medicine, Nishi-Shimbashi, Minato-Ku, Tokyo, Japan
| | - Hiroya Ojiri
- Department of Radiology, Jikei University School of Medicine, Nishi-Shimbashi, Minato-Ku, Tokyo, Japan
| |
Collapse
|
2
|
Liu D, Kadri A, Hernando D, Binkley N, Anderson PA. MRI-based vertebral bone quality score: relationship with age and reproducibility. Osteoporos Int 2023; 34:2077-2086. [PMID: 37640844 DOI: 10.1007/s00198-023-06893-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Vertebral bone quality (VBQ) score is an opportunistic measure of bone mineral density using routine preoperative MRI in spine surgery. VBQ score positively correlates with age and is reproducible across serial scans. However, extrinsic factors, including MRI machine and protocol, affect the VBQ score and must be standardized. PURPOSE The purposes of this study were to determine whether VBQ score increased with age and whether VBQ remained consistent across serial MRI studies obtained within 3 months. METHODS This retrospective study evaluated 136 patients, age 20-69, who received two T1-weighted lumbar MRI within 3 months of each other between January 2011 and December 2021. VBQ(L1-4) score was calculated as the quotient of L1-L4 signal intensity (SI) and L3 cerebral spinal fluid (CSF) SI. VBQ(L1) score was calculated as the quotient of L1 SI and L1 CSF SI. Regression analysis was performed to determine correlation of VBQ(L1-4) score with age. Coefficient of variation (CV) was used to determine reproducibility between VBQ(L1-4) scores from serial MRI scans. RESULTS One hundred thirty-six patients (mean ± SD age 44.9 ± 12.5 years; 53.7% female) were included in this study. Extrinsic factors affecting the VBQ score included patient age, MRI relaxation time, and specific MRI machine. When controlling for MRI relaxation/echo time, the VBQ(L1-4) score was positively correlated with age and had excellent reproducibility in serial MRI with CV of 0.169. There was excellent agreement (ICC > 0.9) of VBQ scores derived from the two formulas, VBQ(L1) and VBQ(L1-4). CONCLUSION Extrinsic factors, including MRI technical factors and age, can impact the VBQ(L1-4) score and must be considered when using this tool to estimate bone mineral density (BMD). VBQ(L1-4) score was positively correlated with age. Reproducibility of the VBQ(L1-4) score across serial MRI is excellent especially when controlling for technical factors, supporting use of the VBQ score in estimating BMD. The VBQ(L1) score was a reliable alternative to the VBQ(L1-4) score.
Collapse
Affiliation(s)
- Daniel Liu
- Department of Orthopedics and Rehabilitation, School of Medicine and Public Health, University of Wisconsin, 600 Highland Ave, Madison, WI, 53792-3252, USA.
| | - Aamir Kadri
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Diego Hernando
- Department of Radiology and Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Neil Binkley
- Osteoporosis Clinical Research Program, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Paul A Anderson
- Department of Orthopedics and Rehabilitation, School of Medicine and Public Health, University of Wisconsin, 600 Highland Ave, Madison, WI, 53792-3252, USA
| |
Collapse
|
3
|
Wang H, Liu J, Wu Z, Zhao Y, Cao M, Shi B, Chen B, Chen N, Guo H, Li N, Chen J, Xu R. Gut microbiota signatures and fecal metabolites in postmenopausal women with osteoporosis. Gut Pathog 2023; 15:33. [PMID: 37415173 DOI: 10.1186/s13099-023-00553-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/19/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Women suffer from various distress and disturbances after menopause, including osteoporosis, a risk factor associated with multiple diseases. Altered gut microbiota has been implicated in postmenopausal osteoporosis. In this study, to understand gut microbiota signatures and fecal metabolite changes in postmenopausal women with osteoporosis, 108 postmenopausal women were recruited for intestinal microbiota and fecal metabolite detection. Among these participants, 98 patients, who met the inclusion criteria, were divided into postmenopausal osteoporosis (PMO) and non-postmenopausal osteoporosis (non-PMO) groups based on bone mineral density (BMD). The compositions of gut bacteria and fungi were examined by 16 S rRNA gene sequencing and ITS sequencing, respectively. Meanwhile, fecal metabolites were analyzed using liquid chromatography coupled with mass spectrometry (LC-MS). RESULTS We found that bacterial α-diversity and β-diversity were significantly altered in PMO compared to non-PMO patients. Interestingly, fungi composition showed larger changes, and the differences in β-diversity were more significant between PMO and non-PMO patients. Metabolomics analysis revealed that fecal metabolites, such as levulinic acid, N-Acetylneuraminic acid, and the corresponding signaling pathways were also changed significantly, especially in the alpha-Linolenic acid metabolism and selenocompound metabolism. The screened differential bacteria, fungi, and metabolites closely correlated with clinical findings between these two groups, for example, the bacterial genus, Fusobacterium, the fungal genus, Devriesia, and the metabolite, L-pipecolic acid, were significantly associated with BMD. CONCLUSIONS Our findings indicated that there were remarkable changes in gut bacteria, fungi, and fecal metabolites in postmenopausal women, and such changes were notably correlated with patients' BMD and clinical findings. These correlations provide novel insights into the mechanism of PMO development, potential early diagnostic indicators, and new therapeutic approaches to improve bone health in postmenopausal women.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, No. 4221 Xiang'an South Road, Xiang'an District, Xiamen, Fujian Province, 361102, China
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, Xiamen University, Xiamen, 361005, China
| | - Jing Liu
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, No.201-209 Hubinnan Road, Siming District, Xiamen, Fujian Province, 361000, China
| | - Zuoxing Wu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, No. 4221 Xiang'an South Road, Xiang'an District, Xiamen, Fujian Province, 361102, China
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, Xiamen University, Xiamen, 361005, China
| | - Yangyang Zhao
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, No.201-209 Hubinnan Road, Siming District, Xiamen, Fujian Province, 361000, China
| | - Man Cao
- Xiamen Treatgut Biotechnology Co., Ltd, Xiamen, Fujian Province, 361001, China
| | - Baohong Shi
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, No. 4221 Xiang'an South Road, Xiang'an District, Xiamen, Fujian Province, 361102, China
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, Xiamen University, Xiamen, 361005, China
| | - Baolong Chen
- Xiamen Treatgut Biotechnology Co., Ltd, Xiamen, Fujian Province, 361001, China
| | - Ning Chen
- Department of Endocrinology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361000, China
| | - Hao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Na Li
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, No. 4221 Xiang'an South Road, Xiang'an District, Xiamen, Fujian Province, 361102, China
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, Xiamen University, Xiamen, 361005, China
| | - Jian Chen
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, No.201-209 Hubinnan Road, Siming District, Xiamen, Fujian Province, 361000, China.
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, No. 4221 Xiang'an South Road, Xiang'an District, Xiamen, Fujian Province, 361102, China.
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
4
|
Imaging of metabolic and overload disorders in tissues and organs. Jpn J Radiol 2023; 41:571-595. [PMID: 36680702 DOI: 10.1007/s11604-022-01379-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/24/2022] [Indexed: 01/22/2023]
Abstract
Metabolic and overload disorders are a heterogeneous group of relatively uncommon but important diseases. While imaging plays a key role in the early detection and accurate diagnosis in specific organs with a pivotal role in several metabolic pathways, most of these diseases affect different tissues as part of a systemic syndromes. Moreover, since the symptoms are often vague and phenotypes similar, imaging alterations can present as incidental findings, which must be recognized and interpreted in the light of further biochemical and histological investigations. Among imaging modalities, MRI allows, thanks to its multiparametric properties, to obtain numerous information on tissue composition, but many metabolic and accumulation alterations require a multimodal evaluation, possibly using advanced imaging techniques and sequences, not only for the detection but also for accurate characterization and quantification. The purpose of this review is to describe the different alterations resulting from metabolic and overload pathologies in organs and tissues throughout the body, with particular reference to imaging findings.
Collapse
|
5
|
Hammood SMA, Ali Talib M, Al-Baghdadi FA, Dehghani S. The role of Fast spin-echo T2-weighted and diffusion-weighted imaging for spine bone marrow changes evaluation in postmenopausal women with osteoporosis. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2022. [DOI: 10.1186/s43055-022-00834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
To prospectively investigate the role of Fast spin-echo T2-weighted (FSE T2-w) and diffusion-weighted imaging (DWI) in magnetic resonance imaging (MRI) for detecting spine bone marrow changes in postmenopausal women with osteoporosis (OP). A total of 101 postmenopausal women, mean age of 60.97 ± 7.41 (range 52–68) years old, who underwent dual-energy X-ray absorptiometry of the spine, were invited to this study and divided into three bone density (normal, osteopenic, and osteoporotic) groups based on T-score. After that MRI scan with both FSE T2-w and DWI of the vertebral body was done to calculate the signal-to-noise ratio (SNR) and apparent diffusion coefficient (ADC). Finally, MRI findings were compared in patients, between three groups and correlated with bone marrow density.
Results
The osteoporotic group showed significantly lower mean ADC values, compared to osteopenic and normal groups (0.58 ± 0.02 vs. 0.36 ± 0.05 vs. 0.24 ± 0.06 × 10–3 mm2/s, p < 0.001). According to these results, a significant positive correlation was found between T-scores and ADC values (r = 0.652, p < 0.001). The mean SNR in FSE T2-w images for normal, osteopenic, and osteoporotic groups was calculated 5.61 ± 0.32, 5.48 ± 0.55, and 6.63 ± 0.67, respectively. No significant correlation was found between the mean SNR and T-score for all groups (r = − 0.304, p > 0.05).
Conclusions
DWI can be used as a noninvasive, quantitative, and valuable technique for OP evaluation. While, routine MRI needs more investigation to be demonstrated as a reliable diagnostic indicator for OP.
Collapse
|
6
|
Multimodality Imaging Assessment of Desmoid Tumors: The Great Mime in the Era of Multidisciplinary Teams. J Pers Med 2022; 12:jpm12071153. [PMID: 35887650 PMCID: PMC9319486 DOI: 10.3390/jpm12071153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Desmoid tumors (DTs), also known as desmoid fibromatosis or aggressive fibromatosis, are rare, locally invasive, non-metastatic soft tissue tumors. Although histological results represent the gold standard diagnosis, imaging represents the fundamental tool for the diagnosis of these tumors. Although histological analysis represents the gold standard for diagnosis, imaging represents the fundamental tool for the diagnosis of these tumors. DTs represent a challenge for the radiologist, being able to mimic different pathological conditions. A proper diagnosis is required to establish an adequate therapeutic approach. Multimodality imaging, including ultrasound (US), computed tomography (CT) and Magnetic Resonance Imaging (MRI), should be preferred. Different imaging techniques can also guide minimally invasive treatments and monitor their effectiveness. The purpose of this review is to describe the state-of-the-art multidisciplinary imaging of DTs; and its role in patient management.
Collapse
|
7
|
Trentadue M, Sozzi C, Idolazzi L, Lazzarini G, Murano RS, Gatti D, Rossini M, Piovan E. Magnetic resonance imaging at 3.0-T in postmenopausal osteoporosis: a prospective study and review of the literature. Radiol Bras 2022; 55:216-224. [PMID: 35983340 PMCID: PMC9380604 DOI: 10.1590/0100-3984.2021.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/07/2021] [Indexed: 12/03/2022] Open
Abstract
Objective To promote advanced research using magnetic resonance imaging (MRI) in the diagnosis of and screening for osteoporosis by looking for correlations among the T-scores measured by dual-energy X-ray absorptiometry (DEXA), the apparent diffusion coefficient (ADC) values on diffusion-weighted imaging (DWI), and the T1-weighted signal intensity values. Materials and Methods This was a prospective study of postmenopausal women with no contraindications to MRI and no history of cancer who underwent DEXA within 30 days before or after the MRI examination. A 3.0-T scanner was used in order to acquire sagittal sequences targeting the lumbar spine. Results Thirteen women underwent DEXA and MRI. In two cases, the MRI was discontinued early. Therefore, the final sample comprised 11 patients. The ADC values and T1-weighted signal intensity were found to be higher in patients with osteoporosis. However, among the patients > 60 years of age with osteoporosis, ADC values were lower and T1-weighted signal intensity was even higher. Conclusion It is unlikely that MRI will soon replace DEXA for the diagnostic workup of osteoporosis. Although DWI and ADC mapping are useful for understanding the pathophysiology of osteoporosis, we believe that T1-weighted sequences are more sensitive than is DWI as a means of performing a qualitative analysis of vertebral alterations.
Collapse
Affiliation(s)
- Mirko Trentadue
- Radiology Unit, Azienda ULSS 9 Scaligera, Hospital M. Magalini, Villafranca di Verona, Italy
| | - Carlo Sozzi
- SC Neuroradiology, ASST Carlo Poma, Mantova, Italy
| | - Luca Idolazzi
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Gianluigi Lazzarini
- Independent Researcher, self-employed Occupational Medicine specialist, Peschiera del Garda, Italy
| | - Riccardo Sante Murano
- Radiology Unit, Azienda ULSS 9 Scaligera, Hospital M. Magalini, Villafranca di Verona, Italy
| | - Davide Gatti
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Maurizio Rossini
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
8
|
Borgheresi A, De Muzio F, Agostini A, Ottaviani L, Bruno A, Granata V, Fusco R, Danti G, Flammia F, Grassi R, Grassi F, Bruno F, Palumbo P, Barile A, Miele V, Giovagnoni A. Lymph Nodes Evaluation in Rectal Cancer: Where Do We Stand and Future Perspective. J Clin Med 2022; 11:2599. [PMID: 35566723 PMCID: PMC9104021 DOI: 10.3390/jcm11092599] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022] Open
Abstract
The assessment of nodal involvement in patients with rectal cancer (RC) is fundamental in disease management. Magnetic Resonance Imaging (MRI) is routinely used for local and nodal staging of RC by using morphological criteria. The actual dimensional and morphological criteria for nodal assessment present several limitations in terms of sensitivity and specificity. For these reasons, several different techniques, such as Diffusion Weighted Imaging (DWI), Intravoxel Incoherent Motion (IVIM), Diffusion Kurtosis Imaging (DKI), and Dynamic Contrast Enhancement (DCE) in MRI have been introduced but still not fully validated. Positron Emission Tomography (PET)/CT plays a pivotal role in the assessment of LNs; more recently PET/MRI has been introduced. The advantages and limitations of these imaging modalities will be provided in this narrative review. The second part of the review includes experimental techniques, such as iron-oxide particles (SPIO), and dual-energy CT (DECT). Radiomics analysis is an active field of research, and the evidence about LNs in RC will be discussed. The review also discusses the different recommendations between the European and North American guidelines for the evaluation of LNs in RC, from anatomical considerations to structured reporting.
Collapse
Affiliation(s)
- Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
| | - Federica De Muzio
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Andrea Agostini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
| | - Letizia Ottaviani
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
| | - Alessandra Bruno
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale IRCCS di Napoli, 80131 Naples, Italy;
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Napoli, Italy
| | - Ginevra Danti
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Federica Flammia
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Roberta Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy
| | - Francesca Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Abruzzo Health Unit 1, Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, 67100 L’Aquila, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
| |
Collapse
|
9
|
Advanced Magnetic Resonance Imaging (MRI) Techniques: Technical Principles and Applications in Nanomedicine. Cancers (Basel) 2022; 14:cancers14071626. [PMID: 35406399 PMCID: PMC8997011 DOI: 10.3390/cancers14071626] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Magnetic Resonance Imaging (MRI) is a consolidated imaging tool for the multiparametric assessment of tissues in various pathologies from degenerative and inflammatory diseases to cancer. In recent years, the continuous technological evolution of the equipment has led to the development of sequences that provide not only anatomical but also functional and metabolic information. In addition, there is a growing and emerging field of research in clinical applications using MRI to exploit the diagnostic and therapeutic capabilities of nanocompounds. This review illustrates the application of the most advanced magnetic resonance techniques in the field of nanomedicine. Abstract In the last decades, nanotechnology has been used in a wide range of biomedical applications, both diagnostic and therapeutic. In this scenario, imaging techniques represent a fundamental tool to obtain information about the properties of nanoconstructs and their interactions with the biological environment in preclinical and clinical settings. This paper reviews the state of the art of the application of magnetic resonance imaging in the field of nanomedicine, as well as the use of nanoparticles as diagnostic and therapeutic tools, especially in cancer, including the characteristics that hinder the use of nanoparticles in clinical practice.
Collapse
|
10
|
Identification of abnormal BMD and osteoporosis in postmenopausal women with T2*-corrected Q-Dixon and reduced-FOV IVIM: correlation with QCT. Eur Radiol 2022; 32:4707-4717. [DOI: 10.1007/s00330-021-08531-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
|
11
|
Yang H, Cui X, Zheng X, Li J, Yao Q, Li X, Qin J. Preliminary quantitative analysis of vertebral microenvironment changes in type 2 diabetes mellitus using FOCUS IVIM-DWI and IDEAL-IQ sequences. Magn Reson Imaging 2021; 84:84-91. [PMID: 34560231 DOI: 10.1016/j.mri.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE To explore the application of intravoxel incoherent motion diffusion-weighted imaging(IVIM-DWI) on account of field-of-view optimized and constrained undistorted single shot (FOCUS) and iteraterative decomposition of water and fat with echo asymmetry and least-squares estimation quantitation(IDEAL-IQ) sequences in evaluating the vertebral microenvironment changes of type 2 diabetes mellitus(T2DM) patients and the correlation with bone mineral density(BMD). METHOD 128 T2DM patients (mean age 63.4 ± 5.28 years) underwent both dual-energy X-ray absorptiometry (DEXA) and spine MRI. The FOCUS IVIM-DWI and IDEAL-IQ derived parameters of the vertebral body(L1, L2, L3, L4)were measured on corresponding maps of the lumbar spine. The subjects were divided into 3 groups according to T-scores as follows: normal (n = 37), osteopenia (n = 43), and osteoporosis(n = 48) group.One-way analysis of variance (ANOVA) were used to compare the vertebral parameters(ADCslow, ADCfast, f, FF, R2*) among three BMD cohorts.Receiver operating characteristic (ROC) analyses and Spearman's rank correlation were performed to test the diagnostic performance and the correlation between them respectively. RESULTS There were significant differences in vertebral ADCslow, ADCfast, FF and R2* between the three groups (P < 0.05).Statistically, BMD was moderately negatively correlated with FF (r = -0.584, P < 0.001) and weakly positively with ADCslow (r = 0.334, P < 0.001), meanwhile moderately positively correlated with R2*(r = 0.509, P < 0.001) and ADCfast(0.545, P < 0.001).ADCfast was moderately negatively correlated with FF (r = -0.417, P < 0.001), weakly positively correlated with R2*(0.359, P < 0.001).Compared with the area under the curve (AUC) of ADCslow, ADCfast, FF and R2*, the AUC of ADCfast was higher in identifying between normal and abnormal(osteopenia and osteoporosis), normal from osteopenia, while the AUC of FF was higher in identifying osteopenia from osteoporosis. CONCLUSIONS FOCUS IVIM-DWI and IDEAL-IQ of lumbar spine might be useful to evaluate the vertebral microenvironment changes of T2DM patients.
Collapse
Affiliation(s)
- Hui Yang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Xiaojie Cui
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Xiuzhu Zheng
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Jiang Li
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Qianqian Yao
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Xiaoqian Li
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Jian Qin
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China.
| |
Collapse
|
12
|
Cobianchi Bellisari F, De Marino L, Arrigoni F, Mariani S, Bruno F, Palumbo P, De Cataldo C, Sgalambro F, Catallo N, Zugaro L, Di Cesare E, Splendiani A, Masciocchi C, Giovagnoni A, Barile A. T2-mapping MRI evaluation of patellofemoral cartilage in patients submitted to intra-articular platelet-rich plasma (PRP) injections. LA RADIOLOGIA MEDICA 2021; 126:1085-1094. [PMID: 34008045 PMCID: PMC8292236 DOI: 10.1007/s11547-021-01372-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
This study evaluated the ability of T2 mapping magnetic resonance imaging at 3 T, in addition to morphological sequences, to assess efficacy of platelet-rich plasma (PRP) injections, characterizing qualitatively and quantitatively the grade of knee cartilage repair in patients with patellofemoral chondropathy. We retrospectively studied 34 patients (22 men, 12 women, mean age 41.8 years, including 22 men) with patellofemoral knee chondropathy, who underwent intra-articular PRP injections and completed a clinical and instrumental follow-up. As control group, we evaluated 34 patients who underwent non-operative therapy. All patients were submitted to clinical (using VAS and WOMAC index) and imaging studies with 3 T magnetic resonance with cartilage analysis with T2 mapping sequences for cartilage analysis before and after treatment. In the study group, mean pre-treatment T2 relaxation time values were 44.2 ± 2.5 ms, considering all articular cartilage compartments, with significant reduction at the follow-up (p < 0.001). At the index compartment, mean pre-treatment T2 relaxation times values were 47.8 ± 3.6 ms, with statistically significant reduction at the follow-up (p < 0.001). Evaluation of focal cartilage lesions reported pre-treatment mean T2 value of 70.1 ± 13.0 ms and post-treatment mean value of 59.9 ± 4.6 ms (p < 0.001). From a clinical point of view, the pre-treatment WOMAC and VAS scores were 18.3 ± 4.5 and 7 (IQR:6-7.2), respectively; the post-treatment values were 7.3 ± 3.2 and 2 (IQR: 1.7-3.0), respectively (p < 0.001). In the control group, despite clinical improvement, we didn't find significant T2 values change during the follow-up period. In conclusion, T2 mapping is a valuable indicator for chondropathy and treatment-related changes over time.
Collapse
Affiliation(s)
- Flavia Cobianchi Bellisari
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 1, 67100, L'Aquila, Italy.
| | - Luigi De Marino
- Department of Radiologic Sciences, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica Delle Marche, Ancona, Italy
| | - Francesco Arrigoni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 1, 67100, L'Aquila, Italy
| | - Silvia Mariani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 1, 67100, L'Aquila, Italy
| | - Federico Bruno
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 1, 67100, L'Aquila, Italy
| | - Pierpaolo Palumbo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 1, 67100, L'Aquila, Italy
| | - Camilla De Cataldo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 1, 67100, L'Aquila, Italy
| | - Ferruccio Sgalambro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 1, 67100, L'Aquila, Italy
| | - Nadia Catallo
- Department of Health Sciences, University of L'Aquila, L'Aquila, Italy
| | - Luigi Zugaro
- Radiology Department, S. Salvatore Hospital, L'Aquila, Italy
| | - Ernesto Di Cesare
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 1, 67100, L'Aquila, Italy
| | - Alessandra Splendiani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 1, 67100, L'Aquila, Italy
| | - Carlo Masciocchi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 1, 67100, L'Aquila, Italy
| | - Andrea Giovagnoni
- Department of Radiologic Sciences, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica Delle Marche, Ancona, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 1, 67100, L'Aquila, Italy
| |
Collapse
|
13
|
Diffusion-weighted magnetic resonance imaging of mandibular bone marrow: do apparent diffusion coefficient values of the cervical vertebrae and mandible correlate with age? Oral Radiol 2021; 38:72-79. [PMID: 33877509 DOI: 10.1007/s11282-021-00528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES The objective of this investigation was to assess the correlation between the mandible and cervical vertebrae bone marrow apparent diffusion coefficient (ADC), obtained by diffusion-weighted magnetic resonance imaging (DWI), with age; to verify the correlation between ADC values from the mandible and the cervical vertebrae; to describe and assess the differences between ADC values obtained from DWI examinations of distinct mandible areas as well as cervical vertebrae. METHODS Thirty imaging examinations with DWI for that included the mandible and C1, C2, C3, and C4 vertebrae in the same examination were included. ADC values were collected from 7 distinct areas in the mandible and the cervical vertebrae. Differences between ADC values and non-parametric correlations were performed. RESULTS A total of 270 regions were assessed. No significant difference was found between ADC values of all areas tested. An inverse correlation was found between C2, C3, and C4 vertebrae ADC values and age. The significant correlation of anatomic area ADC values and age were presented as graphics to verify if the linear trend of ADC values and age are in accordance with the literature CONCLUSIONS: The mandible area that most correlates with the cervical vertebrae, using ADC values, is the posterior trabecular area, below the inferior molars. Also, C2, C3, and C4 vertebrae ADC values inversely correlate with age, which demonstrates the bone qualitative changes in bone composition. ADC values may be useful for the qualitative assessment of bone quality to screen patients at osteoporosis risk.
Collapse
|