1
|
Muscogiuri G, Palumbo P, Kitagawa K, Nakamura S, Senatieri A, De Cecco CN, Gershon G, Chierchia G, Usai J, Sferratore D, D'Angelo T, Guglielmo M, Dell'Aversana S, Jankovic S, Salgado R, Saba L, Cau R, Marra P, Di Cesare E, Sironi S. State of the art of CT myocardial perfusion. LA RADIOLOGIA MEDICA 2024:10.1007/s11547-024-01942-4. [PMID: 39704963 DOI: 10.1007/s11547-024-01942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Coronary computed tomography angiography (CCTA) is a powerful tool to rule out coronary artery disease (CAD). In the last decade, myocardial perfusion CT (CTP) technique has been developed for the evaluation of myocardial ischemia, thereby increasing positive predictive value for diagnosis of obstructive CAD. A diagnostic strategy combining CCTA and perfusion acquisitions provides both anatomical coronary evaluation and functional evaluation of the stenosis, increasing the specificity and the positive predictive value of cardiac CT. This could improve risk stratification and guide revascularization procedures, reducing unnecessary diagnostic procedures in invasive coronary angiography. Two different acquisitions protocol have been developed for CTP. Static CTP allows a qualitative or semiquantitative evaluation of myocardial perfusion using a single scan during the first pass of iodinated contrast material in the myocardium. Dynamic CTP is capable of a quantitative evaluation of perfusion through multiple acquisitions, providing direct measure of the myocardial blood flow. For both, CTP acquisition hyperemia is reached using stressor agents such as adenosine or regadenoson. CTP in addition to CCTA acquisition shows good diagnostic accuracy compared to invasive fractional flow reserve (FFR). Furthermore, the evaluation of late iodine enhancement (LIE) could be performed allowing the detection of myocardial infarction.
Collapse
Affiliation(s)
- Giuseppe Muscogiuri
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, Piazza OMS, 1, 24127, Bergamo, Italy.
- School of Medicine, University of Milano-Bicocca, Milan, Italy.
| | - Pierpaolo Palumbo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Kakuya Kitagawa
- Regional Co-Creation Deployment Center, Mie University Mie Regional Plan Co-Creation Organization, Mie, Japan
- Department of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, Mie, Japan
| | - Satoshi Nakamura
- Department of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, Mie, Japan
| | | | - Carlo Nicola De Cecco
- Division of Cardiothoracic Imaging, Department of Radiology and Imaging Sciences, Emory University, Altanta, GA, USA
- Translational Laboratory for Cardiothoracic Imaging and Artificial Intelligence, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Gabrielle Gershon
- Translational Laboratory for Cardiothoracic Imaging and Artificial Intelligence, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | | | - Jessica Usai
- School of Medicine, University of Milano-Bicocca, Milan, Italy
| | | | - Tommaso D'Angelo
- Diagnostic and Interventional Radiology Unit, Department of Dental and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Marco Guglielmo
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Sonja Jankovic
- Center for Radiology, University Clinical Center Nis, Nis, Republic of Serbia
| | - Rodrigo Salgado
- Department of Radiology, Antwerp University Hospital & Holy Heart Lier, Antwerp, Belgium
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, Monserrato, Cagliari, Italy
| | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria, Monserrato, Cagliari, Italy
| | - Paolo Marra
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, Piazza OMS, 1, 24127, Bergamo, Italy
- School of Medicine, University of Milano-Bicocca, Milan, Italy
| | - Ernesto Di Cesare
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Sandro Sironi
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, Piazza OMS, 1, 24127, Bergamo, Italy
- School of Medicine, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
2
|
Fogante M, Esposto Pirani P, Cela F, Balardi L, Piva T, Argalia G, Schicchi N. Ultra-low radiation dose and contrast volume CT protocol and TAVI-CT score for TAVI planning and outcome. Br J Radiol 2023; 96:20221026. [PMID: 37183830 PMCID: PMC10392642 DOI: 10.1259/bjr.20221026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
OBJECTIVE To investigate the feasibility of an ultra-low radiation dose and contrast volume protocol using third-generation dual-source (DS) CT for transcatheter aortic valve implantation (TAVI) planning with coronary artery disease (CAD) assessment, coronary artery calcium score (CACS) and aortic valve calcium score (AVCS) quantification and to evaluate their relationship with TAVI outcome. METHODS In this retrospective study were selected 203 patients (131 males, 79.4 ± 5.4 years) underwent to TAVI and at 30- and 90-day follow-up. All patients had performed a third-generation 2 × 192-slices DSCT. The CT protocol included a non-contrast and a contrast high-pitch aortic acquisition for TAVI planning and CAD assessment. Semi-qualitative and quantitative image analysis were performed; the performance in CAD assessment was compared with ICA; the relationship between AVCS and CACS and paravalvular aortic regurgitation (PAR) and major cardiovascular events (MACEs) were evaluated. Mean radiation dose were calculated. Non-parametric tests were used. RESULTS Semi-qualitative image analysis was good. Contrast enhancement >500 Hounsfield unit (HU) and contrast-to-noise ratio <20 were obtained in all segments. The diagnostic accuracy in CAD was 89.0%. AVCS was significantly higher in patients with 30-day severe PAR. AVCS and CACS were higher in patients with 90-day MACE complications, respectively, 1904.5 ± 621.3 HU (p < 0.0001) and 769.2 ± 365.5 HU (p < 0.0230). Mean radiation dose was 2.8 ± 0.3 mSv. CONCLUSION A TAVI planning ultra-low radiation dose and contrast volume protocol using third-generation DSCT provides highly diagnostic images with CAD assessment, AVCS and CACS quantification and these latter were related with TAVI outcomes. ADVANCES IN KNOWLEDGE The proposed protocol using third-generation 2 × 192-slices DSCT allows with an ultra-low radiation dose and contrast volume the TAVI planning and the coronary artery assessment.
Collapse
Affiliation(s)
- Marco Fogante
- SOD di Radiologia Materno-Infantile, Senologica, Cardiologica ed Ecografia Ambulatoriale, University Hospital of Marche, Ancona, Italy
| | - Paolo Esposto Pirani
- SOD di Radiologia Materno-Infantile, Senologica, Cardiologica ed Ecografia Ambulatoriale, University Hospital of Marche, Ancona, Italy
| | - Fatjon Cela
- SOD di Radiologia Materno-Infantile, Senologica, Cardiologica ed Ecografia Ambulatoriale, University Hospital of Marche, Ancona, Italy
| | - Liliana Balardi
- Direzione Aziendale, University Hospital of Marche, Ancona, Italy
| | - Tommaso Piva
- SOD Cardiologia Ospedaliera e UTIC, University Hospital of Marche, Ancona, Italy
| | - Giulio Argalia
- SOD di Radiologia Materno-Infantile, Senologica, Cardiologica ed Ecografia Ambulatoriale, University Hospital of Marche, Ancona, Italy
| | - Nicolò Schicchi
- SOS Diagnostica Radiologica Cardiovascolare - University Hospital of Marche, Ancona, Italy
| |
Collapse
|
3
|
Poli A, Catapano AL, Corsini A, Manzato E, Werba JP, Catena G, Cetin I, Cicero AFG, Cignarella A, Colivicchi F, Consoli A, Landi F, Lucarelli M, Manfellotto D, Marrocco W, Parretti D, Perrone Filardi P, Pirillo A, Sesti G, Volpe M, Marangoni F. LDL-cholesterol control in the primary prevention of cardiovascular diseases: An expert opinion for clinicians and health professionals. Nutr Metab Cardiovasc Dis 2023; 33:245-257. [PMID: 36566123 DOI: 10.1016/j.numecd.2022.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022]
Abstract
AIMS Although adequate clinical management of patients with hypercholesterolemia without a history of known cardiovascular disease is essential for prevention, these subjects are often disregarded. Furthermore, the scientific literature on primary cardiovascular prevention is not as rich as that on secondary prevention; finally, physicians often lack adequate tools for the effective management of subjects in primary prevention and have to face some unsolved relevant issues. This document aims to discuss and review the evidence available on this topic and provide practical guidance. DATA SYNTHESIS Available algorithms and risk charts represent the main tool for the assessment of cardiovascular risk in patients in primary prevention. The accuracy of such an estimate can be substantially improved considering the potential contribution of some additional risk factors (C-reactive protein, lipoprotein(a), family history of cardiovascular disease) and conditions (environmental pollution, sleep quality, socioeconomic status, educational level) whose impact on the cardiovascular risk has been better understood in recent years. The availability of non-invasive procedures to evaluate subclinical atherosclerosis may help to identify subjects needing an earlier intervention. Unveiling the presence of these conditions will improve cardiovascular risk estimation, granting a more appropriate intervention. CONCLUSIONS The accurate assessment of cardiovascular risk in subjects in primary prevention with the use of algorithms and risk charts together with the evaluation of additional factors will allow physicians to approach each patient with personalized strategies, which should translate into an increased adherence to therapy and, as a consequence, a reduced cardiovascular risk.
Collapse
Affiliation(s)
- Andrea Poli
- NFI - Nutrition Foundation of Italy, Milan, Italy.
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Center for the Study of Dyslipidaemias, IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Enzo Manzato
- Department of Medicine, University of Padova, Padova, Italy; SISA - Italian Society for the Study of Atherosclerosis, Italy
| | - José Pablo Werba
- Unit of Atherosclerosis Prevention, Monzino Cardiology Center, IRCCS, Milan, Italy
| | | | - Irene Cetin
- Department of Woman, Mother and Neonate Hospital Buzzi, Milan, University of Milan, Italy; SIGO - Italian Society of Gynecology and Obstetrics, Italy
| | - Arrigo F G Cicero
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, IRCCS AOU di Bologna, Bologna, Italy; SINut - Italian Nutraceutical Society, Italy
| | - Andrea Cignarella
- Department of Medicine, University of Padova, Padova, Italy; Italian Research Center for Gender Health and Medicine, Italy
| | - Furio Colivicchi
- Division of Clinical Cardiology, San Filippo Neri Hospital, Rome, Italy; ANMCO - Italian National Association of Hospital Cardiologists, Italy
| | - Agostino Consoli
- Department of Medicine and Aging Sciences, University G. D'Annunzio, Chieti, Italy; SID - Italian Society of Diabetology, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy; SIGG - Italian Society of Gerontology and Geriatrics, Italy
| | - Maurizio Lucarelli
- SNaMID - National Society of Medical Education in General Practice, Italy
| | - Dario Manfellotto
- Department of Internal Medicine, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy; FADOI - Federation of Associations of Hospital Internists, Italy
| | - Walter Marrocco
- SIMPeSV and FIMMG - Italian Society of Preventive and Lifestyle Medicine and Italian Federation of General Practitioners, Italy
| | | | - Pasquale Perrone Filardi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy; SIC - Italian Society of Cardiology, Italy
| | - Angela Pirillo
- Center for the Study of Dyslipidaemias, IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy; Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy; SIMI - Italian Society of Internal Medicine, Italy
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Italy; SIPREC - Italian Society for Cardiovascular Prevention, Italy
| | | |
Collapse
|
4
|
Multimodality Imaging Assessment of Desmoid Tumors: The Great Mime in the Era of Multidisciplinary Teams. J Pers Med 2022; 12:jpm12071153. [PMID: 35887650 PMCID: PMC9319486 DOI: 10.3390/jpm12071153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Desmoid tumors (DTs), also known as desmoid fibromatosis or aggressive fibromatosis, are rare, locally invasive, non-metastatic soft tissue tumors. Although histological results represent the gold standard diagnosis, imaging represents the fundamental tool for the diagnosis of these tumors. Although histological analysis represents the gold standard for diagnosis, imaging represents the fundamental tool for the diagnosis of these tumors. DTs represent a challenge for the radiologist, being able to mimic different pathological conditions. A proper diagnosis is required to establish an adequate therapeutic approach. Multimodality imaging, including ultrasound (US), computed tomography (CT) and Magnetic Resonance Imaging (MRI), should be preferred. Different imaging techniques can also guide minimally invasive treatments and monitor their effectiveness. The purpose of this review is to describe the state-of-the-art multidisciplinary imaging of DTs; and its role in patient management.
Collapse
|
5
|
Granata V, Fusco R, Villanacci A, Magliocchetti S, Urraro F, Tetaj N, Marchioni L, Albarello F, Campioni P, Cristofaro M, Di Stefano F, Fusco N, Petrone A, Schininà V, Grassi F, Girardi E, Ianniello S. Imaging Severity COVID-19 Assessment in Vaccinated and Unvaccinated Patients: Comparison of the Different Variants in a High Volume Italian Reference Center. J Pers Med 2022; 12:955. [PMID: 35743740 PMCID: PMC9224665 DOI: 10.3390/jpm12060955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose: To analyze the vaccine effect by comparing five groups: unvaccinated patients with Alpha variant, unvaccinated patients with Delta variant, vaccinated patients with Delta variant, unvaccinated patients with Omicron variant, and vaccinated patients with Omicron variant, assessing the “gravity” of COVID-19 pulmonary involvement, based on CT findings in critically ill patients admitted to Intensive Care Unit (ICU). Methods: Patients were selected by ICU database considering the period from December 2021 to 23 March 2022, according to the following inclusion criteria: patients with proven Omicron variant COVID-19 infection with known COVID-19 vaccination with at least two doses and with chest Computed Tomography (CT) study during ICU hospitalization. Wee also evaluated the ICU database considering the period from March 2020 to December 2021, to select unvaccinated consecutive patients with Alpha variant, subjected to CT study, consecutive unvaccinated and vaccinated patients with Delta variant, subjected to CT study, and, consecutive unvaccinated patients with Omicron variant, subjected to CT study. CT images were evaluated qualitatively using a severity score scale of 5 levels (none involvement, mild: ≤25% of involvement, moderate: 26−50% of involvement, severe: 51−75% of involvement, and critical involvement: 76−100%) and quantitatively, using the Philips IntelliSpace Portal clinical application CT COPD computer tool. For each patient the lung volumetry was performed identifying the percentage value of aerated residual lung volume. Non-parametric tests for continuous and categorical variables were performed to assess statistically significant differences among groups. Results: The patient study group was composed of 13 vaccinated patients affected by the Omicron variant (Omicron V). As control groups we identified: 20 unvaccinated patients with Alpha variant (Alpha NV); 20 unvaccinated patients with Delta variant (Delta NV); 18 vaccinated patients with Delta variant (Delta V); and 20 unvaccinated patients affected by the Omicron variant (Omicron NV). No differences between the groups under examination were found (p value > 0.05 at Chi square test) in terms of risk factors (age, cardiovascular diseases, diabetes, immunosuppression, chronic kidney, cardiac, pulmonary, neurologic, and liver disease, etc.). A different median value of aerated residual lung volume was observed in the Delta variant groups: median value of aerated residual lung volume was 46.70% in unvaccinated patients compared to 67.10% in vaccinated patients. In addition, in patients with Delta variant every other extracted volume by automatic tool showed a statistically significant difference between vaccinated and unvaccinated group. Statistically significant differences were observed for each extracted volume by automatic tool between unvaccinated patients affected by Alpha variant and vaccinated patients affected by Delta variant of COVID-19. Good statistically significant correlations among volumes extracted by automatic tool for each lung lobe and overall radiological severity score were obtained (ICC range 0.71−0.86). GGO was the main sign of COVID-19 lesions on CT images found in 87 of the 91 (95.6%) patients. No statistically significant differences were observed in CT findings (ground glass opacities (GGO), consolidation or crazy paving sign) among patient groups. Conclusion: In our study, we showed that in critically ill patients no difference were observed in terms of severity of disease or exitus, between unvaccinated and vaccinated patients. The only statistically significant differences were observed, with regard to the severity of COVID-19 pulmonary parenchymal involvement, between unvaccinated patients affected by Alpha variant and vaccinated patients affected by Delta variant, and between unvaccinated patients with Delta variant and vaccinated patients with Delta variant.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy;
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Napoli, Italy
| | - Alberta Villanacci
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| | - Simona Magliocchetti
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy; (S.M.); (F.U.); (F.G.)
| | - Fabrizio Urraro
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy; (S.M.); (F.U.); (F.G.)
| | - Nardi Tetaj
- Intensive Care Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (N.T.); (L.M.)
| | - Luisa Marchioni
- Intensive Care Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (N.T.); (L.M.)
| | - Fabrizio Albarello
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| | - Paolo Campioni
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| | - Massimo Cristofaro
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| | - Federica Di Stefano
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| | - Nicoletta Fusco
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| | - Ada Petrone
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| | - Vincenzo Schininà
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| | - Francesca Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy; (S.M.); (F.U.); (F.G.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122 Milan, Italy
| | - Enrico Girardi
- Department of Epidemiology and Research, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy;
| | - Stefania Ianniello
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| |
Collapse
|
6
|
Imaging Features of Main Posthepatectomy Complications: A Radiologist’s Challenge. Diagnostics (Basel) 2022; 12:diagnostics12061323. [PMID: 35741133 PMCID: PMC9221607 DOI: 10.3390/diagnostics12061323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
In the recent years, the number of liver resections has seen an impressive growth. Usually, hepatic resections remain the treatment of various liver diseases, such as malignant tumors, benign tumors, hydatid disease, and abscesses. Despite technical advancements and tremendous experience in the field of liver resection of specialized centers, there are moderately high rates of postoperative morbidity and mortality, especially in high-risk and older patient populations. Although ultrasonography is usually the first-line imaging examination for postoperative complications, Computed Tomography (CT) is the imaging tool of choice in emergency settings due to its capability to assess the whole body in a few seconds and detect all possible complications. Magnetic resonance cholangiopancreatography (MRCP) is the imaging modality of choice for delineating early postoperative bile duct injuries and ischemic cholangitis that may arise in the late postoperative phase. Moreover, both MDCT and MRCP can precisely detect tumor recurrence. Consequently, radiologists should have knowledge of these surgical procedures for better comprehension of postoperative changes and recognition of the radiological features of various postoperative complications.
Collapse
|
7
|
Analysis of a monocentric computed tomography dosimetric database using a radiation dose index monitoring software: dose levels and alerts before and after the implementation of the adaptive statistical iterative reconstruction on CT images. Radiol Med 2022; 127:733-742. [PMID: 35579854 DOI: 10.1007/s11547-022-01481-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To analyze dosimetric data of a single center by a radiation dose index monitoring software evaluating quantitatively the dose reduction obtained with the implementation of the adaptive statistical iterative reconstruction (ASIR) on Computed Tomography in terms of both the value of the dose length product (DLP) and the alerts provided by the dose tool. METHODS Dosimetric quantities were acquired using Qaelum DOSE tool (QAELUM NV, Leuven-Heverlee, Belgium). Dose data pertaining to CT examinations were performed using a General Electric Healthcare CT tomography with 64 detectors. CT dose data were collected over 4 years (January 1, 2017 to December 31, 2020) and included CT dose length product (DLP). Moreover, all CT examinations that triggered a high radiation dose (twice the median for that study description), termed alerts on Dose tool, were retrieved for the analysis. Two radiologists retrospectively assessed CT examinations in consensus for the images quality and for the causes of the alerts issued. A Chi-square test was used to assess whether there were any statistically significant differences among categorical variable while a Kruskal Wallis test was considered to assess differences statistically significant for continuous variables. RESULTS Differences statistically significant were found for the DLP median values between the dosimetric data recorded on 2017-2018 versus 2019-2020. The differences were linked to the implementation of ASIR technique at the end of 2018 on the CT scanner. The highest percentage of alerts was reported in the CT study group "COMPLETE ABDOMEN + CHEST + HEAD" (range from 1.26% to 2.14%). A reduction year for year was relieved linked to the CT protocol optimization with a difference statistically significant. The highest percentage of alerts was linked to wrong study label/wrong study protocol selection with a range from 29 to 40%. CONCLUSIONS Automated methods of radiation dose data collection allowed for detailed radiation dose analysis according to protocol and equipment over time. The use of CT ASIR technique could determine considerable reduction in radiation dose.
Collapse
|
8
|
Granata V, Fusco R, De Muzio F, Cutolo C, Setola SV, Simonetti I, Dell’Aversana F, Grassi F, Bruno F, Belli A, Patrone R, Pilone V, Petrillo A, Izzo F. Complications Risk Assessment and Imaging Findings of Thermal Ablation Treatment in Liver Cancers: What the Radiologist Should Expect. J Clin Med 2022; 11:2766. [PMID: 35628893 PMCID: PMC9147303 DOI: 10.3390/jcm11102766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
One of the major fields of application of ablation treatment is liver tumors. With respect to HCC, ablation treatments are considered as upfront treatments in patients with early-stage disease, while in colorectal liver metastases (CLM), they can be employed as an upfront treatment or in association with surgical resection. The main prognostic feature of ablation is the tumor size, since the goal of the treatment is the necrosis of all viable tumor tissue with an adequate tumor-free margin. Radiofrequency ablation (RFA) and microwave ablation (MWA) are the most employed ablation techniques. Ablation therapies in HCC and liver metastases have presented a challenge to radiologists, who need to assess response to determine complication-related treatment. Complications, defined as any unexpected variation from a procedural course, and adverse events, defined as any actual or potential injury related to the treatment, could occur either during the procedure or afterwards. To date, RFA and MWA have shown no statistically significant differences in mortality rates or major or minor complications. To reduce the rate of major complications, patient selection and risk assessment are essential. To determine the right cost-benefit ratio for the ablation method to be used, it is necessary to identify patients at high risk of infections, coagulation disorders and previous abdominal surgery interventions. Based on risk assessment, during the procedure as part of surveillance, the radiologists should pay attention to several complications, such as vascular, biliary, mechanical and infectious. Multiphase CT is an imaging tool chosen in emergency settings. The radiologist should report technical success, treatment efficacy, and complications. The complications should be assessed according to well-defined classification systems, and these complications should be categorized consistently according to severity and time of occurrence.
Collapse
Affiliation(s)
- Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (S.V.S.); (I.S.); (A.P.)
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy;
| | - Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100 Campobasso, Italy;
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy; (C.C.); (V.P.)
| | - Sergio Venanzio Setola
- Radiology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (S.V.S.); (I.S.); (A.P.)
| | - Igino Simonetti
- Radiology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (S.V.S.); (I.S.); (A.P.)
| | - Federica Dell’Aversana
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.); (F.G.)
| | - Francesca Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.); (F.G.)
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy;
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, 67100 L’Aquila, Italy
| | - Andrea Belli
- Hepatobiliary Surgical Oncology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (A.B.); (R.P.); (F.I.)
| | - Renato Patrone
- Hepatobiliary Surgical Oncology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (A.B.); (R.P.); (F.I.)
| | - Vincenzo Pilone
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy; (C.C.); (V.P.)
| | - Antonella Petrillo
- Radiology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (S.V.S.); (I.S.); (A.P.)
| | - Francesco Izzo
- Hepatobiliary Surgical Oncology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (A.B.); (R.P.); (F.I.)
| |
Collapse
|
9
|
Fusco R, Simonetti I, Ianniello S, Villanacci A, Grassi F, Dell’Aversana F, Grassi R, Cozzi D, Bicci E, Palumbo P, Borgheresi A, Giovagnoni A, Miele V, Barile A, Granata V. Pulmonary Lymphangitis Poses a Major Challenge for Radiologists in an Oncological Setting during the COVID-19 Pandemic. J Pers Med 2022; 12:624. [PMID: 35455740 PMCID: PMC9024504 DOI: 10.3390/jpm12040624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/17/2022] Open
Abstract
Due to the increasing number of COVID-19-infected and vaccinated individuals, radiologists continue to see patients with COVID-19 pneumonitis and recall pneumonitis, which could result in additional workups and false-positive results. Moreover, cancer patients undergoing immunotherapy may show therapy-related pneumonitis during imaging management. This is otherwise known as immune checkpoint inhibitor-related pneumonitis. Following on from this background, radiologists should seek to know their patients' COVID-19 infection and vaccination history. Knowing the imaging features related to COVID-19 infection and vaccination is critical to avoiding misleading results and alarmism in patients and clinicians.
Collapse
Affiliation(s)
- Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Napoli, Italy;
| | - Igino Simonetti
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy;
| | - Stefania Ianniello
- Diagnostica per Immagini nelle Malattie Infettive INMI Spallanzani IRCCS, 00161 Rome, Italy; (S.I.); (A.V.)
| | - Alberta Villanacci
- Diagnostica per Immagini nelle Malattie Infettive INMI Spallanzani IRCCS, 00161 Rome, Italy; (S.I.); (A.V.)
| | - Francesca Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80127 Naples, Italy; (F.G.); (F.D.); (R.G.)
| | - Federica Dell’Aversana
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80127 Naples, Italy; (F.G.); (F.D.); (R.G.)
| | - Roberta Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80127 Naples, Italy; (F.G.); (F.D.); (R.G.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy; (D.C.); (E.B.); (A.B.); (A.G.); (V.M.)
| | - Diletta Cozzi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy; (D.C.); (E.B.); (A.B.); (A.G.); (V.M.)
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Eleonora Bicci
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy; (D.C.); (E.B.); (A.B.); (A.G.); (V.M.)
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Pierpaolo Palumbo
- Abruzzo Health Unit 1, Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, 67100 L’Aquila, Italy;
| | - Alessandra Borgheresi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy; (D.C.); (E.B.); (A.B.); (A.G.); (V.M.)
- Department of Clinical, Special and Dental Sciences, Marche Polytechnic University, 60126 Ancona, Italy
| | - Andrea Giovagnoni
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy; (D.C.); (E.B.); (A.B.); (A.G.); (V.M.)
- Department of Clinical, Special and Dental Sciences, Marche Polytechnic University, 60126 Ancona, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy; (D.C.); (E.B.); (A.B.); (A.G.); (V.M.)
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Antonio Barile
- Department of Applied Clinical Science and Biotechnology, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy;
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy;
| |
Collapse
|
10
|
Stress Perfusion Cardiac Magnetic Resonance in Long-Standing Non-Infarcted Chronic Coronary Syndrome with Preserved Systolic Function. Diagnostics (Basel) 2022; 12:diagnostics12040786. [PMID: 35453834 PMCID: PMC9031407 DOI: 10.3390/diagnostics12040786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: The impact of imaging-derived ischemia is still under debate and the role of stress perfusion cardiac magnetic resonance (spCMR) in non-high-risk patient still needs to be clarified. The aim of this study was to evaluate the impact of spCMR in a case series of stable long-standing chronic coronary syndrome (CCS) patients with ischemia and no other risk factor. (2) Methods: This is a historical prospective study including 35 patients with history of long-standing CCS who underwent coronary CT angiography (CCTA) and additional adenosine spCMR. Clinical and imaging findings were included in the analysis. Primary outcomes were HF (heart failure) and all major cardiac events (MACE) including death from cardiovascular causes, myocardial infarction, or hospitalization for unstable angina, or resuscitated cardiac arrest. (3) Results: Mean follow-up was 3.7 years (IQR: from 1 to 6). Mean ejection fraction was 61 ± 8%. Twelve patients (31%) referred primary outcomes. Probability of experiencing primary outcomes based on symptoms was 62% and increased to 67% and 91% when multivessel disease and ischemia, respectively, were considered. Higher ischemic burden was predictive of disease progression (OR: 1.59, 95%CI: 1.18–2.14; p-value = 0.002). spCMR model resulted non inferior to the model comprising all variables (4) Conclusions: In vivo spCMR-modeling including perfusion and strain anomalies could represent a powerful tool in long-standing CCS, even when conventional imaging predictors are missing.
Collapse
|
11
|
Granata V, Fusco R, Vallone P, Setola SV, Picone C, Grassi F, Patrone R, Belli A, Izzo F, Petrillo A. Not only lymphadenopathy: case of chest lymphangitis assessed with MRI after COVID 19 vaccine. Infect Agent Cancer 2022; 17:8. [PMID: 35300727 PMCID: PMC8929244 DOI: 10.1186/s13027-022-00419-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND To date, no paper reports cases of lymphangitis after COVID 19 vaccination. We present a case of lymphangitis after vaccination from COVID 19, in a patient with colorectal liver metastases. METHODS We described the case of a 56-year-old woman with history of a surgical resection of colorectal cancer and liver metastases, without any kind of drug therapy for about a month. In addition, a recent administration (2 days ago) of Spikevax (mRNA-1273, Moderna vaccine), as a booster dose, on the right arm was reported. RESULTS The magnetic resonance (MR) examination showed the effects of the previous surgical resection and five new hepatic metastases, located in the VIII, VI, V, IV and II hepatic segments. As an accessory finding the presence of lymphadenopathy in the axillary area and lymphangitis of the right breast and chest were identified. The computed tomography scan performed a week earlier, and re-evaluated in light of the MR data, did not identify the presence of lymphadenopathy in the axillary area and lymphangitis signs. CONCLUSIONS Lymphangitis could occur after COVID 19 vaccine and it is important to know this data to avoid alarmism in patients and clinicians and economic waste linked to the execution of various radiological investigations for the search for a tumour that probably does not exist. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy.
| | | | - Paolo Vallone
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| | - Carmine Picone
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| | - Francesca Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122, Milan, Italy.,Division of Radiology, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Renato Patrone
- Division of Hepatobiliary Surgical Oncology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| | - Andrea Belli
- Division of Hepatobiliary Surgical Oncology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| | - Francesco Izzo
- Division of Hepatobiliary Surgical Oncology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| |
Collapse
|
12
|
Albano D, Bruno F, Agostini A, Angileri SA, Benenati M, Bicchierai G, Cellina M, Chianca V, Cozzi D, Danti G, De Muzio F, Di Meglio L, Gentili F, Giacobbe G, Grazzini G, Grazzini I, Guerriero P, Messina C, Micci G, Palumbo P, Rocco MP, Grassi R, Miele V, Barile A. Dynamic contrast-enhanced (DCE) imaging: state of the art and applications in whole-body imaging. Jpn J Radiol 2021; 40:341-366. [PMID: 34951000 DOI: 10.1007/s11604-021-01223-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
Dynamic contrast-enhanced (DCE) imaging is a non-invasive technique used for the evaluation of tissue vascularity features through imaging series acquisition after contrast medium administration. Over the years, the study technique and protocols have evolved, seeing a growing application of this method across different imaging modalities for the study of almost all body districts. The main and most consolidated current applications concern MRI imaging for the study of tumors, but an increasing number of studies are evaluating the use of this technique also for inflammatory pathologies and functional studies. Furthermore, the recent advent of artificial intelligence techniques is opening up a vast scenario for the analysis of quantitative information deriving from DCE. The purpose of this article is to provide a comprehensive update on the techniques, protocols, and clinical applications - both established and emerging - of DCE in whole-body imaging.
Collapse
Affiliation(s)
- Domenico Albano
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento Di Biomedicina, Neuroscienze E Diagnostica Avanzata, Sezione Di Scienze Radiologiche, Università Degli Studi Di Palermo, via Vetoio 1L'Aquila, 67100, Palermo, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy.
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Andrea Agostini
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Clinical, Special and Dental Sciences, Department of Radiology, University Politecnica delle Marche, University Hospital "Ospedali Riuniti Umberto I - G.M. Lancisi - G. Salesi", Ancona, Italy
| | - Salvatore Alessio Angileri
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Radiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Benenati
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Dipartimento di Diagnostica per Immagini, Fondazione Policlinico Universitario A. Gemelli IRCCS, Oncologia ed Ematologia, RadioterapiaRome, Italy
| | - Giulia Bicchierai
- Diagnostic Senology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Michaela Cellina
- Department of Radiology, ASST Fatebenefratelli Sacco, Ospedale Fatebenefratelli, Milan, Italy
| | - Vito Chianca
- Ospedale Evangelico Betania, Naples, Italy
- Clinica Di Radiologia, Istituto Imaging Della Svizzera Italiana - Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Diletta Cozzi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Ginevra Danti
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Letizia Di Meglio
- Postgraduation School in Radiodiagnostics, University of Milan, Milan, Italy
| | - Francesco Gentili
- Unit of Diagnostic Imaging, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Giuliana Giacobbe
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Giulia Grazzini
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Irene Grazzini
- Department of Radiology, Section of Neuroradiology, San Donato Hospital, Arezzo, Italy
| | - Pasquale Guerriero
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | | | - Giuseppe Micci
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Dipartimento Di Biomedicina, Neuroscienze E Diagnostica Avanzata, Sezione Di Scienze Radiologiche, Università Degli Studi Di Palermo, via Vetoio 1L'Aquila, 67100, Palermo, Italy
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Abruzzo Health Unit 1, Department of diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, L'Aquila, Italy
| | - Maria Paola Rocco
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Roberto Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Antonio Barile
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
13
|
Fusco R, Grassi R, Granata V, Setola SV, Grassi F, Cozzi D, Pecori B, Izzo F, Petrillo A. Artificial Intelligence and COVID-19 Using Chest CT Scan and Chest X-ray Images: Machine Learning and Deep Learning Approaches for Diagnosis and Treatment. J Pers Med 2021; 11:993. [PMID: 34683133 PMCID: PMC8540782 DOI: 10.3390/jpm11100993] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE To report an overview and update on Artificial Intelligence (AI) and COVID-19 using chest Computed Tomography (CT) scan and chest X-ray images (CXR). Machine Learning and Deep Learning Approaches for Diagnosis and Treatment were identified. METHODS Several electronic datasets were analyzed. The search covered the years from January 2019 to June 2021. The inclusion criteria were studied evaluating the use of AI methods in COVID-19 disease reporting performance results in terms of accuracy or precision or area under Receiver Operating Characteristic (ROC) curve (AUC). RESULTS Twenty-two studies met the inclusion criteria: 13 papers were based on AI in CXR and 10 based on AI in CT. The summarized mean value of the accuracy and precision of CXR in COVID-19 disease were 93.7% ± 10.0% of standard deviation (range 68.4-99.9%) and 95.7% ± 7.1% of standard deviation (range 83.0-100.0%), respectively. The summarized mean value of the accuracy and specificity of CT in COVID-19 disease were 89.1% ± 7.3% of standard deviation (range 78.0-99.9%) and 94.5 ± 6.4% of standard deviation (range 86.0-100.0%), respectively. No statistically significant difference in summarized accuracy mean value between CXR and CT was observed using the Chi square test (p value > 0.05). CONCLUSIONS Summarized accuracy of the selected papers is high but there was an important variability; however, less in CT studies compared to CXR studies. Nonetheless, AI approaches could be used in the identification of disease clusters, monitoring of cases, prediction of the future outbreaks, mortality risk, COVID-19 diagnosis, and disease management.
Collapse
Affiliation(s)
- Roberta Fusco
- IGEA SpA Medical Division—Oncology, Via Casarea 65, Casalnuovo di Napoli, 80013 Naples, Italy;
| | - Roberta Grassi
- Division of Radiology, Università Degli Studi Della Campania Luigi Vanvitelli, 80138 Naples, Italy; (R.G.); (F.G.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy; (S.V.S.); (A.P.)
| | - Sergio Venanzio Setola
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy; (S.V.S.); (A.P.)
| | - Francesca Grassi
- Division of Radiology, Università Degli Studi Della Campania Luigi Vanvitelli, 80138 Naples, Italy; (R.G.); (F.G.)
| | - Diletta Cozzi
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy;
| | - Biagio Pecori
- Division of Radiotherapy and Innovative Technologies, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy;
| | - Francesco Izzo
- Division of Hepatobiliary Surgery, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy;
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy; (S.V.S.); (A.P.)
| |
Collapse
|
14
|
Pradella S, Zantonelli G, Grazzini G, Cozzi D, Danti G, Acquafresca M, Miele V. The Radiologist as a Gatekeeper in Chest Pain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6677. [PMID: 34205792 PMCID: PMC8296491 DOI: 10.3390/ijerph18126677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022]
Abstract
Chest pain is a symptom that can be found in life-threatening conditions such as acute coronary syndrome (ACS). Those patients requiring invasive coronary angiography treatment or surgery should be identified. Often the clinical setting and laboratory tests are not sufficient to rule out a coronary or aortic syndrome. Cardiac radiological imaging has evolved in recent years both in magnetic resonance (MR) and in computed tomography (CT). CT, in particular, due to its temporal and spatial resolution, the quickness of the examination, and the availability of scanners, is suitable for the evaluation of these patients. In particular, the latest-generation CT scanners allow the exclusion of diagnoses such as coronary artery disease and aortic pathology, thereby reducing the patient's stay in hospital and safely selecting patients by distinguishing those who do not need further treatment from those who will need more- or less-invasive therapies. CT additionally reduces costs by improving long-term patient outcome. The limitations related to patient characteristics and those related to radiation exposure are weakening with the improvement of CT technology.
Collapse
Affiliation(s)
- Silvia Pradella
- Department of Emergency Radiology, University Hospital Careggi, Largo Brambilla 3, 50134 Florence, Italy; (G.Z.); (G.G.); (D.C.); (G.D.); (M.A.); (V.M.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Giulia Zantonelli
- Department of Emergency Radiology, University Hospital Careggi, Largo Brambilla 3, 50134 Florence, Italy; (G.Z.); (G.G.); (D.C.); (G.D.); (M.A.); (V.M.)
| | - Giulia Grazzini
- Department of Emergency Radiology, University Hospital Careggi, Largo Brambilla 3, 50134 Florence, Italy; (G.Z.); (G.G.); (D.C.); (G.D.); (M.A.); (V.M.)
| | - Diletta Cozzi
- Department of Emergency Radiology, University Hospital Careggi, Largo Brambilla 3, 50134 Florence, Italy; (G.Z.); (G.G.); (D.C.); (G.D.); (M.A.); (V.M.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Ginevra Danti
- Department of Emergency Radiology, University Hospital Careggi, Largo Brambilla 3, 50134 Florence, Italy; (G.Z.); (G.G.); (D.C.); (G.D.); (M.A.); (V.M.)
| | - Manlio Acquafresca
- Department of Emergency Radiology, University Hospital Careggi, Largo Brambilla 3, 50134 Florence, Italy; (G.Z.); (G.G.); (D.C.); (G.D.); (M.A.); (V.M.)
| | - Vittorio Miele
- Department of Emergency Radiology, University Hospital Careggi, Largo Brambilla 3, 50134 Florence, Italy; (G.Z.); (G.G.); (D.C.); (G.D.); (M.A.); (V.M.)
| |
Collapse
|
15
|
Schicchi N, Fogante M, Palumbo P, Agliata G, Esposto Pirani P, Di Cesare E, Giovagnoni A. The sub-millisievert era in CTCA: the technical basis of the new radiation dose approach. Radiol Med 2020; 125:1024-1039. [PMID: 32930945 DOI: 10.1007/s11547-020-01280-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022]
Abstract
Computed tomography coronary angiography (CTCA) has become a cornerstone in the diagnostic process of the heart disease. Although the cardiac imaging with interventional procedures is responsible for approximately 40% of the cumulative effective dose in medical imaging, a relevant radiation dose reduction over the last decade was obtained, with the beginning of the sub-mSv era in CTCA. The main technical basis to obtain a radiation dose reduction in CTCA is the use of a low tube voltage, the adoption of a prospective electrocardiogram-triggering spiral protocol and the application of the tube current modulation with the iterative reconstruction technique. Nevertheless, CTCA examinations are characterized by a wide range of radiation doses between different radiology departments. Moreover, the dose exposure in CTCA is extremely important because the benefit-risk calculus in comparison with other modalities also depends on it. Finally, because anatomical evaluation not adequately predicts the hemodynamic relevance of coronary stenosis, a low radiation dose in routine CTCA would allow the greatest use of the myocardial CT perfusion, fractional flow reserve-CT, dual-energy CT and artificial intelligence, to shift focus from morphological assessment to a comprehensive morphological and functional evaluation of the stenosis. Therefore, the aim of this work is to summarize the correct use of the technical basis in order that CTCA becomes an established examination for assessment of the coronary artery disease with low radiation dose.
Collapse
Affiliation(s)
- Nicolò Schicchi
- Radiology Department, Azienda Ospedaliero Universitaria "Ospedali Riuniti", 60126, Ancona, Italy
| | - Marco Fogante
- Radiology Department, Azienda Ospedaliero Universitaria "Ospedali Riuniti", 60126, Ancona, Italy.
| | - Pierpaolo Palumbo
- Radiology Department, Azienda Ospedaliero Universitaria "San Salvatore", 60126, L'Aquila, Italy
| | - Giacomo Agliata
- Radiology Department, Azienda Ospedaliero Universitaria "Ospedali Riuniti", 60126, Ancona, Italy
| | - Paolo Esposto Pirani
- Radiology Department, Azienda Ospedaliero Universitaria "Ospedali Riuniti", 60126, Ancona, Italy
| | - Ernesto Di Cesare
- Radiology Department, Azienda Ospedaliero Universitaria "San Salvatore", 60126, L'Aquila, Italy
| | - Andrea Giovagnoni
- Radiology Department, Azienda Ospedaliero Universitaria "Ospedali Riuniti", 60126, Ancona, Italy
| |
Collapse
|