1
|
Gabelloni M, Faggioni L, Fusco R, Simonetti I, De Muzio F, Giacobbe G, Borgheresi A, Bruno F, Cozzi D, Grassi F, Scaglione M, Giovagnoni A, Barile A, Miele V, Gandolfo N, Granata V. Radiomics in Lung Metastases: A Systematic Review. J Pers Med 2023; 13:jpm13020225. [PMID: 36836460 PMCID: PMC9967749 DOI: 10.3390/jpm13020225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/26/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Due to the rich vascularization and lymphatic drainage of the pulmonary tissue, lung metastases (LM) are not uncommon in patients with cancer. Radiomics is an active research field aimed at the extraction of quantitative data from diagnostic images, which can serve as useful imaging biomarkers for a more effective, personalized patient care. Our purpose is to illustrate the current applications, strengths and weaknesses of radiomics for lesion characterization, treatment planning and prognostic assessment in patients with LM, based on a systematic review of the literature.
Collapse
Affiliation(s)
- Michela Gabelloni
- Nuclear Medicine Unit, Department of Translational Research, University of Pisa, 56126 Pisa, Italy
| | - Lorenzo Faggioni
- Academic Radiology, Department of Translational Research, University of Pisa, 56126 Pisa, Italy
- Correspondence: ; Tel.: +39-050-992524
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
| | - Igino Simonetti
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100 Campobasso, Italy
| | - Giuliana Giacobbe
- General and Emergency Radiology Department, “Antonio Cardarelli” Hospital, 80131 Naples, Italy
| | - Alessandra Borgheresi
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, 60126 Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Federico Bruno
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100 L’Aquila, Italy
- Italian Society of Medical and Interventional Radiology, SIRM Foundation, 20122 Milan, Italy
| | - Diletta Cozzi
- Italian Society of Medical and Interventional Radiology, SIRM Foundation, 20122 Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Francesca Grassi
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mariano Scaglione
- Department of Surgery, Medicine and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Andrea Giovagnoni
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, 60126 Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology, SIRM Foundation, 20122 Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, 16149 Genoa, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| |
Collapse
|
2
|
Goodburn RJ, Philippens MEP, Lefebvre TL, Khalifa A, Bruijnen T, Freedman JN, Waddington DEJ, Younus E, Aliotta E, Meliadò G, Stanescu T, Bano W, Fatemi‐Ardekani A, Wetscherek A, Oelfke U, van den Berg N, Mason RP, van Houdt PJ, Balter JM, Gurney‐Champion OJ. The future of MRI in radiation therapy: Challenges and opportunities for the MR community. Magn Reson Med 2022; 88:2592-2608. [PMID: 36128894 PMCID: PMC9529952 DOI: 10.1002/mrm.29450] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/07/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 01/11/2023]
Abstract
Radiation therapy is a major component of cancer treatment pathways worldwide. The main aim of this treatment is to achieve tumor control through the delivery of ionizing radiation while preserving healthy tissues for minimal radiation toxicity. Because radiation therapy relies on accurate localization of the target and surrounding tissues, imaging plays a crucial role throughout the treatment chain. In the treatment planning phase, radiological images are essential for defining target volumes and organs-at-risk, as well as providing elemental composition (e.g., electron density) information for radiation dose calculations. At treatment, onboard imaging informs patient setup and could be used to guide radiation dose placement for sites affected by motion. Imaging is also an important tool for treatment response assessment and treatment plan adaptation. MRI, with its excellent soft tissue contrast and capacity to probe functional tissue properties, holds great untapped potential for transforming treatment paradigms in radiation therapy. The MR in Radiation Therapy ISMRM Study Group was established to provide a forum within the MR community to discuss the unmet needs and fuel opportunities for further advancement of MRI for radiation therapy applications. During the summer of 2021, the study group organized its first virtual workshop, attended by a diverse international group of clinicians, scientists, and clinical physicists, to explore our predictions for the future of MRI in radiation therapy for the next 25 years. This article reviews the main findings from the event and considers the opportunities and challenges of reaching our vision for the future in this expanding field.
Collapse
Affiliation(s)
- Rosie J. Goodburn
- Joint Department of PhysicsInstitute of Cancer Research and Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | | | - Thierry L. Lefebvre
- Department of PhysicsUniversity of CambridgeCambridgeUnited Kingdom
- Cancer Research UK Cambridge Research InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Aly Khalifa
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Tom Bruijnen
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtNetherlands
| | | | - David E. J. Waddington
- Faculty of Medicine and Health, Sydney School of Health Sciences, ACRF Image X InstituteThe University of SydneySydneyNew South WalesAustralia
| | - Eyesha Younus
- Department of Medical Physics, Odette Cancer CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Eric Aliotta
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Gabriele Meliadò
- Unità Operativa Complessa di Fisica SanitariaAzienda Ospedaliera Universitaria Integrata VeronaVeronaItaly
| | - Teo Stanescu
- Department of Radiation Oncology, University of Toronto and Medical Physics, Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioCanada
| | - Wajiha Bano
- Joint Department of PhysicsInstitute of Cancer Research and Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | - Ali Fatemi‐Ardekani
- Department of PhysicsJackson State University (JSU)JacksonMississippiUSA
- SpinTecxJacksonMississippiUSA
- Department of Radiation OncologyCommunity Health Systems (CHS) Cancer NetworkJacksonMississippiUSA
| | - Andreas Wetscherek
- Joint Department of PhysicsInstitute of Cancer Research and Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | - Uwe Oelfke
- Joint Department of PhysicsInstitute of Cancer Research and Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | - Nico van den Berg
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtNetherlands
| | - Ralph P. Mason
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Petra J. van Houdt
- Department of Radiation OncologyNetherlands Cancer InstituteAmsterdamNetherlands
| | - James M. Balter
- Department of Radiation OncologyUniversity of MichiganAnn ArborMichiganUSA
| | - Oliver J. Gurney‐Champion
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam UMCUniversity of AmsterdamAmsterdamNetherlands
| |
Collapse
|
3
|
The status of medical physics in radiotherapy in China. Phys Med 2021; 85:147-157. [PMID: 34010803 DOI: 10.1016/j.ejmp.2021.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/10/2020] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To present an overview of the status of medical physics in radiotherapy in China, including facilities and devices, occupation, education, research, etc. MATERIALS AND METHODS: The information about medical physics in clinics was obtained from the 9-th nationwide survey conducted by the China Society for Radiation Oncology in 2019. The data of medical physics in education and research was collected from the publications of the official and professional organizations. RESULTS By 2019, there were 1463 hospitals or institutes registered to practice radiotherapy and the number of accelerators per million population was 1.5. There were 4172 medical physicists working in clinics of radiation oncology. The ratio between the numbers of radiation oncologists and medical physicists is 3.51. Approximately, 95% of medical physicists have an undergraduate or graduate degrees in nuclear physics and biomedical engineering. 86% of medical physicists have certificates issued by the Chinese Society of Medical Physics. There has been a fast growth of publications by authors from mainland of China in the top international medical physics and radiotherapy journals since 2018. CONCLUSIONS Demand for medical physicists in radiotherapy increased quickly in the past decade. The distribution of radiotherapy facilities in China became more balanced. High quality continuing education and training programs for medical physicists are deficient in most areas. The role of medical physicists in the clinic has not been clearly defined and their contributions have not been fully recognized by the community.
Collapse
|