1
|
Lo Mastro A, Grassi E, Berritto D, Russo A, Reginelli A, Guerra E, Grassi F, Boccia F. Artificial intelligence in fracture detection on radiographs: a literature review. Jpn J Radiol 2024:10.1007/s11604-024-01702-4. [PMID: 39538068 DOI: 10.1007/s11604-024-01702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Fractures are one of the most common reasons of admission to emergency department affecting individuals of all ages and regions worldwide that can be misdiagnosed during radiologic examination. Accurate and timely diagnosis of fracture is crucial for patients, and artificial intelligence that uses algorithms to imitate human intelligence to aid or enhance human performs is a promising solution to address this issue. In the last few years, numerous commercially available algorithms have been developed to enhance radiology practice and a large number of studies apply artificial intelligence to fracture detection. Recent contributions in literature have described numerous advantages showing how artificial intelligence performs better than doctors who have less experience in interpreting musculoskeletal X-rays, and assisting radiologists increases diagnostic accuracy and sensitivity, improves efficiency, and reduces interpretation time. Furthermore, algorithms perform better when they are trained with big data on a wide range of fracture patterns and variants and can provide standardized fracture identification across different radiologist, thanks to the structured report. In this review article, we discuss the use of artificial intelligence in fracture identification and its benefits and disadvantages. We also discuss its current potential impact on the field of radiology and radiomics.
Collapse
Affiliation(s)
- Antonio Lo Mastro
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Enrico Grassi
- Department of Orthopaedics, University of Florence, Florence, Italy
| | - Daniela Berritto
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Anna Russo
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alfonso Reginelli
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Egidio Guerra
- Emergency Radiology Department, "Policlinico Riuniti Di Foggia", Foggia, Italy
| | - Francesca Grassi
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Boccia
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
2
|
Zhang X, Wu S, Zu X, Li X, Zhang Q, Ren Y, Qian X, Tong S, Li H. Ultrasound-based radiomics nomogram for predicting HER2-low expression breast cancer. Front Oncol 2024; 14:1438923. [PMID: 39359429 PMCID: PMC11445231 DOI: 10.3389/fonc.2024.1438923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Purpose Accurate preoperative identification of Human epidermal growth factor receptor 2 (HER2) low expression breast cancer (BC) is critical for clinical decision-making. Our aim was to use machine learning methods to develop and validate an ultrasound-based radiomics nomogram for predicting HER2-low expression in BC. Methods In this retrospective study, 222 patients (108 HER2-0 expression and 114 HER2-low expression) with BC were included. The enrolled patients were randomly divided into a training cohort and a test cohort with a ratio of 8:2. The tumor region of interest was manually delineated from ultrasound image, and radiomics features were subsequently extracted. The features underwent dimension reduction using the least absolute shrinkage and selection operator (LASSO) algorithm, and rad-score were calculated. Five machine learning algorithms were applied for training, and the algorithm demonstrating the best performance was selected to construct a radiomics (USR) model. Clinical risk factors were integrated with rad-score to construct the prediction model, and a nomogram was plotted. The performance of the nomogram was assessed using receiver operating characteristic curve and decision curve analysis. Results A total of 480 radiomics features were extracted, out of which 11 were screened out. The majority of the extracted features were wavelet features. Subsequently, the USR model was established, and rad-scores were computed. The nomogram, incorporating rad-score, tumor shape, border, and microcalcification, achieved the best performance in both the training cohort (AUC 0.89; 95%CI 0.836-0.936) and the test cohort (AUC 0.84; 95%CI 0.722-0.958), outperforming both the USR model and clinical model. The calibration curves showed satisfactory consistency, and DCA confirmed the clinical utility of the nomogram. Conclusion The nomogram model based on ultrasound radiomics exhibited high prediction value for HER2-low BC.
Collapse
Affiliation(s)
- Xueling Zhang
- Department of Ultrasound Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Ultrasound Medicine, Jiangsu University Affiliated People’s Hospital, Zhenjiang, China
| | - Shaoyou Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiao Zu
- Department of Ultrasound Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaojing Li
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qing Zhang
- Department of Ultrasound Medicine, Jiangsu University Affiliated People’s Hospital, Zhenjiang, China
| | - Yongzhen Ren
- Department of Ultrasound Medicine, Jiangsu University Affiliated People’s Hospital, Zhenjiang, China
| | - Xiaoqin Qian
- Department of Ultrasound Medicine, Jiangsu University Affiliated People’s Hospital, Zhenjiang, China
| | - Shan Tong
- Department of Ultrasound Medicine, Jiangsu University Affiliated People’s Hospital, Zhenjiang, China
| | - Hongbo Li
- Department of Ultrasound Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Ultrasound Medicine, People’s Hospital of Longhua, Shenzhen, China
| |
Collapse
|
3
|
Hu L, Jin P, Xu W, Wang C, Huang P. Clinical and radiomics integrated nomogram for preoperative prediction of tumor-infiltrating lymphocytes in patients with triple-negative breast cancer. Front Oncol 2024; 14:1370466. [PMID: 38567151 PMCID: PMC10985173 DOI: 10.3389/fonc.2024.1370466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Objectives The present study aimed to develop a radiomics nomogram based on conventional ultrasound (CUS) to preoperatively distinguish high tumor-infiltrating lymphocytes (TILs) and low TILs in triple-negative breast cancer (TNBC) patients. Methods In the present study, 145 TNBC patients were retrospectively included. Pathological evaluation of TILs in the hematoxylin and eosin sections was set as the gold standard. The patients were randomly allocated into training dataset and validation dataset with a ratio of 7:3. Clinical features (age and CUS features) and radiomics features were collected. Then, the Rad-score model was constructed after the radiomics feature selection. The clinical features model and clinical features plus Rad-score (Clin+RS) model were built using logistic regression analysis. Furthermore, the performance of the models was evaluated by analyzing the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA). Results Univariate analysis and LASSO regression were employed to identify a subset of 25 radiomics features from a pool of 837 radiomics features, followed by the calculation of Rad-score. The Clin+RS integrated model, which combined posterior echo and Rad-score, demonstrated better predictive performance compared to both the Rad-score model and clinical model, achieving AUC values of 0.848 in the training dataset and 0.847 in the validation dataset. Conclusion The Clin+RS integrated model, incorporating posterior echo and Rad-score, demonstrated an acceptable preoperative evaluation of the TIL level. The Clin+RS integrated nomogram holds tremendous potential for preoperative individualized prediction of the TIL level in TNBC.
Collapse
Affiliation(s)
- Ling Hu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Ultrasound in Medicine, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| | - Peile Jin
- Department of Ultrasound in Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Wen Xu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Wang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Fusco R, Granata V, Simonetti I, Setola SV, Iasevoli MAD, Tovecci F, Lamanna CMP, Izzo F, Pecori B, Petrillo A. An Informative Review of Radiomics Studies on Cancer Imaging: The Main Findings, Challenges and Limitations of the Methodologies. Curr Oncol 2024; 31:403-424. [PMID: 38248112 PMCID: PMC10814313 DOI: 10.3390/curroncol31010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The aim of this informative review was to investigate the application of radiomics in cancer imaging and to summarize the results of recent studies to support oncological imaging with particular attention to breast cancer, rectal cancer and primitive and secondary liver cancer. This review also aims to provide the main findings, challenges and limitations of the current methodologies. Clinical studies published in the last four years (2019-2022) were included in this review. Among the 19 studies analyzed, none assessed the differences between scanners and vendor-dependent characteristics, collected images of individuals at additional points in time, performed calibration statistics, represented a prospective study performed and registered in a study database, conducted a cost-effectiveness analysis, reported on the cost-effectiveness of the clinical application, or performed multivariable analysis with also non-radiomics features. Seven studies reached a high radiomic quality score (RQS), and seventeen earned additional points by using validation steps considering two datasets from two distinct institutes and open science and data domains (radiomics features calculated on a set of representative ROIs are open source). The potential of radiomics is increasingly establishing itself, even if there are still several aspects to be evaluated before the passage of radiomics into routine clinical practice. There are several challenges, including the need for standardization across all stages of the workflow and the potential for cross-site validation using real-world heterogeneous datasets. Moreover, multiple centers and prospective radiomics studies with more samples that add inter-scanner differences and vendor-dependent characteristics will be needed in the future, as well as the collecting of images of individuals at additional time points, the reporting of calibration statistics and the performing of prospective studies registered in a study database.
Collapse
Affiliation(s)
- Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy;
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy (S.V.S.); (M.A.D.I.); (F.T.); (C.M.P.L.); (A.P.)
| | - Igino Simonetti
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy (S.V.S.); (M.A.D.I.); (F.T.); (C.M.P.L.); (A.P.)
| | - Sergio Venanzio Setola
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy (S.V.S.); (M.A.D.I.); (F.T.); (C.M.P.L.); (A.P.)
| | - Maria Assunta Daniela Iasevoli
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy (S.V.S.); (M.A.D.I.); (F.T.); (C.M.P.L.); (A.P.)
| | - Filippo Tovecci
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy (S.V.S.); (M.A.D.I.); (F.T.); (C.M.P.L.); (A.P.)
| | - Ciro Michele Paolo Lamanna
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy (S.V.S.); (M.A.D.I.); (F.T.); (C.M.P.L.); (A.P.)
| | - Francesco Izzo
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy;
| | - Biagio Pecori
- Division of Radiation Protection and Innovative Technology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy;
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy (S.V.S.); (M.A.D.I.); (F.T.); (C.M.P.L.); (A.P.)
| |
Collapse
|