1
|
Kim J, Yang GH. Manipulator Control of the Robotized TMS System with Incurved TMS Coil Case. APPLIED SCIENCES 2024; 14:11441. [DOI: 10.3390/app142311441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This paper proposes the force/torque control strategy for the robotized transcranial magnetic stimulation (TMS) system, considering the shape of the TMS coil case. Hybrid position/force control is used to compensate for the error between the current and target position of the coil and to maintain the contact between the coil and the subject’s head. The desired force magnitude of the force control part of the hybrid controller is scheduled by the error between the current and target position of the TMS coil for fast error reduction and the comfort of the subject. Additionally, the torque proportional to the torque acting on the coil’s center is generated to stabilize the contact. Compliance control, which makes the robot adaptive to the environment, stabilizes the coil and head interaction during force/torque control. The experimental results showed that the force controller made the coil generate a relatively large force for a short time (less than 10 s) for the fast error reduction, and a relatively small interaction force was maintained for the contact. They showed that the torque controller made the contact area inside the coil. The experiment also showed that the proposed strategy could be used for tracking a new target point estimated by the neuronavigation system when the head moved slightly.
Collapse
Affiliation(s)
- Jaewoo Kim
- Industrial Technology (Robotics), University of Science and Technology, Daejeon 34113, Republic of Korea
- Human-Centric Robotics R&D Department, Korea Insitute of Industrial Technology, Ansan 15588, Republic of Korea
| | - Gi-Hun Yang
- Industrial Technology (Robotics), University of Science and Technology, Daejeon 34113, Republic of Korea
- Human-Centric Robotics R&D Department, Korea Insitute of Industrial Technology, Ansan 15588, Republic of Korea
| |
Collapse
|
2
|
Wang H, Cui D, Jin J, Wang X, Li Y, Liu Z, Yin T. 3D-printed helmet-type neuro-navigation approach (I-Helmet) for transcranial magnetic stimulation. Front Neurosci 2023; 17:1224800. [PMID: 37609452 PMCID: PMC10442160 DOI: 10.3389/fnins.2023.1224800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023] Open
Abstract
Neuro-navigation is a key technology to ensure the clinical efficacy of TMS. However, the neuro-navigation system based on positioning sensor is currently unable to be promoted and applied in clinical practice due to its time-consuming and high-cost. In the present study, we designed I-Helmet system to promote an individualized and clinically friendly neuro-navigation approach to TMS clinical application. I-Helmet system is based on C++ with a graphical user interface that allows users to design a 3D-printed helmet model for coil navigation. Besides, a dedicated coil positioning accuracy detection method was promoted based on three-dimensional (3D) printing and 3D laser scanning for evaluation. T1 images were collected from 24 subjects, and based on each image, phantom were created to simulate skin and hair. Six 3D-printed helmets with the head positioning hole enlarged by 0-5% tolerance in 1% increments were designed to evaluate the influences of skin, hair, and helmet-tolerance on the positioning accuracy and contact force of I-Helmet. Finally, I-Helmet system was evaluated by comparing its positioning accuracy with three skin hardnesses, three hair styles, three operators, and with or without landmarks. The accuracy of the proposed coil positioning accuracy detection method was about 0.30 mm in position and 0.22° in orientation. Skin and hair had significant influences on positioning accuracy (p < 0.0001), whereas different skin hardnesses, hair styles, and operators did not (p > 0.05). The tolerance of the helmet presented significant influences on positioning accuracy (p < 0.0001) and contact force (p < 0.0001). The positioning accuracy significantly increased (p < 0.0001) with landmark guided I-Helmet. 3D-printed helmet-type Neuro-navigation approach (I-Helmet) with 3% tolerance and landmarks met the positioning requirements for TMS in clinical practice with less than 5 N mean contact force, 3-5 mm positioning accuracy, 65.7 s mean operation time, and 50-yuan material cost. All the results suggest that the cost of I-Helmet system may be much less than the that of training clinical doctors to position the coil of TMS operation during short period of time.
Collapse
Affiliation(s)
- He Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Dong Cui
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China
| | - Jingna Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Ying Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- Neuroscience Center, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Giuffre A, Kahl CK, Zewdie E, Wrightson JG, Bourgeois A, Condliffe EG, Kirton A. Reliability of robotic transcranial magnetic stimulation motor mapping. J Neurophysiol 2020; 125:74-85. [PMID: 33146067 DOI: 10.1152/jn.00527.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Robotic transcranial magnetic stimulation (TMS) is a noninvasive and safe tool that produces cortical motor maps using neuronavigational and neuroanatomical images. Motor maps are individualized representations of the primary motor cortex (M1) topography that may reflect developmental and interventional plasticity. Results of TMS motor map reliability testing have been variable, and robotic measures are undefined. We aimed to determine the short- and long-term reliability of robotic TMS motor maps. Twenty healthy participants underwent motor mapping at baseline, 24 h, and 4 wk. A 12 × 12 grid (7-mm spacing) was placed over the left M1, centered over the hand knob area. Four suprathreshold stimulations were delivered at each grid point. First dorsal interosseous (FDI) motor-evoked potentials (MEPs) were analyzed offline to generate map characteristics of area, volume, center of gravity (COG), and hotspot magnitude. Subsets of each outcome corresponding to 75%, 50%, and 25% of each map were determined. Reliability measures including intraclass correlation coefficient (ICC), minimal detectable change (MDC), and standard error of measure (SEM) were calculated. Map volume, COG, and hotspot magnitude were the most reliable measures (good-to-excellent) over both short- and long-term sessions. Map area reliability was poor-to-moderate for short- and long-term sessions. Smaller map percentile subsets showed decreased variability but only minimal improvements in reliability. MDC for most outcomes was >50%. Procedures were well tolerated with no serious adverse events. Robotic TMS motor mapping is relatively reliable over time, but careful consideration of specific outcomes is required for this method to interrogate plasticity in the human motor system.NEW & NOTEWORTHY Robotic transcranial magnetic stimulation (TMS) is a noninvasive and safe tool that produces cortical motor maps-individualized representations of the primary motor cortex (M1) topography-that may reflect developmental and interventional plasticity. This study is the first to evaluate short- and long-term relative and absolute reliability of TMS mapping outcomes at various M1 excitability levels using novel robotic neuronavigated TMS.
Collapse
Affiliation(s)
- Adrianna Giuffre
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, Alberta, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cynthia K Kahl
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ephrem Zewdie
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, Alberta, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - James G Wrightson
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anna Bourgeois
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Elizabeth G Condliffe
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, Alberta, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Wang H, Jin J, Wang X, Li Y, Liu Z, Yin T. Non-orthogonal one-step calibration method for robotized transcranial magnetic stimulation. Biomed Eng Online 2018; 17:137. [PMID: 30285787 PMCID: PMC6167805 DOI: 10.1186/s12938-018-0570-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Robotized transcranial magnetic stimulation (TMS) combines the benefits of neuro-navigation with automation and provides a precision brain stimulation method. Since the coil will normally remain unmounted between different clinical uses, hand/eye calibration and coil calibration are required before each experiment. Today, these two steps are still separate: hand/eye calibration is performed using methods proposed by Tsai/Lenz or Floris Ernst, and then the coil calibration is carried out based on the traditional TMS experimental step. The process is complex and time-consuming, and traditional coil calibration using a handheld probe is susceptible to greater calibration error. METHODS A novel one-step calibration method has been developed to confirm hand/eye and coil calibration results by formulating a matrix equation system and estimating its solution. Hand/eye calibration and coil calibration are performed to confirm the pose relationships of the marker/end effector 'X', probe/end effector 'Y', and robot/world 'Z'. First, the coil is fixed on the end effector of the robot. During the one-step calibration process, a marker is mounted on the top of the coil and a calibration probe is fixed at the actual effective position of the coil. Next, the robot end effector is moved to a series of random positions 'A', the tracking data of marker 'B' and probe 'C' is obtained correspondingly. Then, a matrix equation system AX = ZB and AY = ZC can be acquired, and it is computed using a least-squares approach. Finally, the calibration probe is removed after calibration, while the marker remains fixed to the coil during the TMS experiment. The methods were evaluated based on simulation data and on experimental data from an optical tracking device. We compared our methods with two classical methods: the QR24 method proposed by Floris Ernst and the handheld coil calibration method. RESULTS The new methods outperform the QR24 method in the aspect of translational accuracy and performs similarly in the aspect of rotational accuracy, the total translational error decreased more than fifty percent. The new approach also outperforms traditional handheld coil calibration of navigated TMS systems, the total translational error decreased three- to fourfold, and the rotational error decreased six- to eightfold. Furthermore, the convergence speed is improved 16- to 27-fold for the new algorithms. CONCLUSION These results suggest that the new method can be used for hand/eye and coil calibration of a robotized TMS system. Two complex steps can be simplified using a least-squares approach.
Collapse
Affiliation(s)
- He Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Jingna Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Ying Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China. .,Neuroscience Center, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
5
|
Abstract
Trends in brain stimulation include becoming less invasive, more focal, and more durable with less toxicity. Several of the more interesting new potentially disruptive technologies that are just making their way through basic and sometimes clinical research studies include low-intensity focused ultrasound and temporally interfering electric fields. It is possible, and even likely, that noninvasive brain stimulation may become the dominant form of brain treatments over the next 20 years. The future of brain stimulation therapeutics is bright.
Collapse
Affiliation(s)
- Kevin A Caulfield
- Brain Stimulation Laboratory, Medical University of South Carolina, 67 President Street, 502 North, Charleston, SC 29425, USA; Ralph H. Johnson VA Medical Center, 109 Bee Street, Charleston, SC 29401, USA.
| | - Mark S George
- Brain Stimulation Laboratory, Medical University of South Carolina, 67 President Street, 502 North, Charleston, SC 29425, USA; Ralph H. Johnson VA Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| |
Collapse
|
6
|
Richter L, Bruder R. Design, implementation and evaluation of an independent real-time safety layer for medical robotic systems using a force-torque-acceleration (FTA) sensor. Int J Comput Assist Radiol Surg 2012; 8:429-36. [PMID: 23001337 DOI: 10.1007/s11548-012-0791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/21/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE Most medical robotic systems require direct interaction or contact with the robot. Force-Torque (FT) sensors can easily be mounted to the robot to control the contact pressure. However, evaluation is often done in software, which leads to latencies. METHODS To overcome that, we developed an independent safety system, named FTA sensor, which is based on an FT sensor and an accelerometer. An embedded system (ES) runs a real-time monitoring system for continuously checking of the readings. In case of a collision or error, it instantaneously stops the robot via the robot's external emergency stop. RESULTS We found that the ES implementing the FTA sensor has a maximum latency of [Formula: see text] ms to trigger the robot's emergency stop. For the standard settings in the application of robotized transcranial magnetic stimulation, the robot will stop after at most 4 mm. CONCLUSION Therefore, it works as an independent safety layer preventing patient and/or operator from serious harm.
Collapse
Affiliation(s)
- Lars Richter
- Institute for Robotics and Cognitive Systems, University of Lübeck, Ratzeburger Allee 160, 23562 , Lüebeck, Germany.
| | | |
Collapse
|