1
|
Zhang Z, Li N, Ding Y, Sun H, Cheng H. Establishment and validation of a ResNet-based radiomics model for predicting prognosis in cervical spinal cord injury patients. Sci Rep 2025; 15:9163. [PMID: 40097664 PMCID: PMC11914052 DOI: 10.1038/s41598-025-94358-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/13/2025] [Indexed: 03/19/2025] Open
Abstract
Cervical spinal cord injury (cSCI) poses a significant challenge due to the unpredictable nature of recovery, which ranges from mild paralysis to severe long-term disability. Accurate prognostic models are crucial for guiding treatment and rehabilitation but are often limited by their reliance on clinical observations alone. Recent advancements in radiomics and deep learning have shown promise in enhancing prognostic accuracy by leveraging detailed imaging data. However, integrating these imaging features with clinical data remains an underexplored area. This study aims to develop a combined model using imaging and clinical signatures to predict the prognosis of cSCI patients six months post-injury, helping clinical decisions and improving rehabilitation plans. We retrospectively analyzed 168 cSCI patients treated at Zhongda Hospital from January 1, 2018, to June 30, 2023. The retrospective cohort was divided into training (134 patients) and testing sets (34 patients) to construct the model. An additional prospective cohort of 43 cSCI patients treated from July 1, 2023, to November 30, 2023, was used as a validation set. Radiomics features were extracted using Pyradiomics and ResNet deep learning from MR images. Clinical factors such as age, smoking history, drinking history, hypertension, diabetes, cardiovascular disease, traumatic brain injury, injury site, and treatment type were analyzed. The LASSO algorithm selected features for model building. Multiple machine learning models, including SVM, LR, NaiveBayes, KNN, RF, ExtraTrees, XGBoost, LightGBM, GradientBoosting, AdaBoosting, and MLP, were used. Receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) assessed the models' performance. A nomogram was created to visualize the combined model. In Radiomics models, the SVM classifier achieved the highest area under the curve (AUC) of 1.000 in the training set and 0.915 in the testing set. Age, diabetes, and treatment were found clinical risk factors to develop a clinical model. The combined model, integrating radiomics and clinical features, showed strong performance with AUCs of 1.000 in the training set, 0.952 in the testing set and 0.815 in the validation set. And calibration curves and DCA confirmed the model's accuracy and clinical usefulness. This study shows the potential of a combined radiomics and clinical model to predict the prognosis of cSCI patients.
Collapse
Affiliation(s)
- Zifeng Zhang
- School of Medicine, Southeast University, Nanjing, China
| | - Ning Li
- Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yi Ding
- Department of Neurosurgery, Nanjing medical university affiliated Suzhou Municipal Hospital, Suzhou, China
| | - Haowei Sun
- School of Medicine, Southeast University, Nanjing, China
| | - Huilin Cheng
- School of Medicine, Southeast University, Nanjing, China.
- Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Rai HM, Yoo J, Dashkevych S. Transformative Advances in AI for Precise Cancer Detection: A Comprehensive Review of Non-Invasive Techniques. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING 2025. [DOI: 10.1007/s11831-024-10219-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 12/07/2024] [Indexed: 03/02/2025]
|
3
|
Wei C, Liu Z, Zhang Y, Fan L. Enhancing prostate cancer segmentation in bpMRI: Integrating zonal awareness into attention-guided U-Net. Digit Health 2025; 11:20552076251314546. [PMID: 39866889 PMCID: PMC11758924 DOI: 10.1177/20552076251314546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025] Open
Abstract
Purpose Prostate cancer (PCa) is the second most common cancer in males worldwide, requiring improvements in diagnostic imaging to identify and treat it at an early stage. Bi-parametric magnetic resonance imaging (bpMRI) is recognized as an essential diagnostic technique for PCa, providing shorter acquisition times and cost-effectiveness. Nevertheless, accurate diagnosis using bpMRI images is difficult due to the inconspicuous and diverse characteristics of malignant tumors and the intricate structure of the prostate gland. An automated system is required to assist the medical professionals in accurate and early diagnosis with less effort. Method This study recognizes the impact of zonal features on the advancement of the disease. The aim is to improve the diagnostic performance through a novel automated approach of a two-step mechanism using bpMRI images. First, pretraining a convolutional neural network (CNN)-based attention-guided U-Net model for segmenting the region of interest which is carried out in the prostate zone. Secondly, pretraining the same type of Attention U-Net is performed for lesion segmentation. Results The performance of the pretrained models and training an attention-guided U-Net from the scratch for segmenting tumors on the prostate region is analyzed. The proposed attention-guided U-Net model achieved an area under the curve (AUC) of 0.85 and a dice similarity coefficient value of 0.82, outperforming some other pretrained deep learning models. Conclusion Our approach greatly enhances the identification and categorization of clinically significant PCa by including zonal data. Our approach exhibits exceptional performance in the accurate segmentation of bpMRI images compared to current techniques, as evidenced by thorough validation of a diverse dataset. This research not only enhances the field of medical imaging for oncology but also underscores the potential of deep learning models to progress PCa diagnosis and personalized patient care.
Collapse
Affiliation(s)
- Chao Wei
- Department of Urology, General Hospital of Northern Theater Command, Shenyang, China
| | - Zheng Liu
- Department of Urology, General Hospital of Northern Theater Command, Shenyang, China
- Department of Graduate School, China Medical University, Shenyang, China
| | - Yibo Zhang
- Nanomage Research Institute, Beijing, China
- Gezhi AI Research Institute, Beijing, China
- School of systems and Computing, University of New South Wales, Kensington, Australia
| | - Lianhui Fan
- Department of Urology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
4
|
Rai HM, Yoo J, Razaque A. Comparative analysis of machine learning and deep learning models for improved cancer detection: A comprehensive review of recent advancements in diagnostic techniques. EXPERT SYSTEMS WITH APPLICATIONS 2024; 255:124838. [DOI: 10.1016/j.eswa.2024.124838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
5
|
Hu L, Zhou D, Xu J, Lu C, Han C, Shi Z, Zhu Q, Gao X, Wang N, Liu Z. Protecting Prostate Cancer Classification From Rectal Artifacts via Targeted Adversarial Training. IEEE J Biomed Health Inform 2024; 28:3997-4009. [PMID: 38954559 DOI: 10.1109/jbhi.2024.3384970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Magnetic resonance imaging (MRI)-based deep neural networks (DNN) have been widely developed to perform prostate cancer (PCa) classification. However, in real-world clinical situations, prostate MRIs can be easily impacted by rectal artifacts, which have been found to lead to incorrect PCa classification. Existing DNN-based methods typically do not consider the interference of rectal artifacts on PCa classification, and do not design specific strategy to address this problem. In this study, we proposed a novel Targeted adversarial training with Proprietary Adversarial Samples (TPAS) strategy to defend the PCa classification model against the influence of rectal artifacts. Specifically, based on clinical prior knowledge, we generated proprietary adversarial samples with rectal artifact-pattern adversarial noise, which can severely mislead PCa classification models optimized by the ordinary training strategy. We then jointly exploited the generated proprietary adversarial samples and original samples to train the models. To demonstrate the effectiveness of our strategy, we conducted analytical experiments on multiple PCa classification models. Compared with ordinary training strategy, TPAS can effectively improve the single- and multi-parametric PCa classification at patient, slice and lesion level, and bring substantial gains to recent advanced models. In conclusion, TPAS strategy can be identified as a valuable way to mitigate the influence of rectal artifacts on deep learning models for PCa classification.
Collapse
|
6
|
Talyshinskii A, Hameed BMZ, Ravinder PP, Naik N, Randhawa P, Shah M, Rai BP, Tokas T, Somani BK. Catalyzing Precision Medicine: Artificial Intelligence Advancements in Prostate Cancer Diagnosis and Management. Cancers (Basel) 2024; 16:1809. [PMID: 38791888 PMCID: PMC11119252 DOI: 10.3390/cancers16101809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The aim was to analyze the current state of deep learning (DL)-based prostate cancer (PCa) diagnosis with a focus on magnetic resonance (MR) prostate reconstruction; PCa detection/stratification/reconstruction; positron emission tomography/computed tomography (PET/CT); androgen deprivation therapy (ADT); prostate biopsy; associated challenges and their clinical implications. METHODS A search of the PubMed database was conducted based on the inclusion and exclusion criteria for the use of DL methods within the abovementioned areas. RESULTS A total of 784 articles were found, of which, 64 were included. Reconstruction of the prostate, the detection and stratification of prostate cancer, the reconstruction of prostate cancer, and diagnosis on PET/CT, ADT, and biopsy were analyzed in 21, 22, 6, 7, 2, and 6 studies, respectively. Among studies describing DL use for MR-based purposes, datasets with magnetic field power of 3 T, 1.5 T, and 3/1.5 T were used in 18/19/5, 0/1/0, and 3/2/1 studies, respectively, of 6/7 studies analyzing DL for PET/CT diagnosis which used data from a single institution. Among the radiotracers, [68Ga]Ga-PSMA-11, [18F]DCFPyl, and [18F]PSMA-1007 were used in 5, 1, and 1 study, respectively. Only two studies that analyzed DL in the context of DT met the inclusion criteria. Both were performed with a single-institution dataset with only manual labeling of training data. Three studies, each analyzing DL for prostate biopsy, were performed with single- and multi-institutional datasets. TeUS, TRUS, and MRI were used as input modalities in two, three, and one study, respectively. CONCLUSION DL models in prostate cancer diagnosis show promise but are not yet ready for clinical use due to variability in methods, labels, and evaluation criteria. Conducting additional research while acknowledging all the limitations outlined is crucial for reinforcing the utility and effectiveness of DL-based models in clinical settings.
Collapse
Affiliation(s)
- Ali Talyshinskii
- Department of Urology and Andrology, Astana Medical University, Astana 010000, Kazakhstan;
| | | | - Prajwal P. Ravinder
- Department of Urology, Kasturba Medical College, Mangaluru, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Nithesh Naik
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Princy Randhawa
- Department of Mechatronics, Manipal University Jaipur, Jaipur 303007, India;
| | - Milap Shah
- Department of Urology, Aarogyam Hospital, Ahmedabad 380014, India;
| | - Bhavan Prasad Rai
- Department of Urology, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK;
| | - Theodoros Tokas
- Department of Urology, Medical School, University General Hospital of Heraklion, University of Crete, 14122 Heraklion, Greece;
| | - Bhaskar K. Somani
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India;
- Department of Urology, University Hospital Southampton NHS Trust, Southampton SO16 6YD, UK
| |
Collapse
|
7
|
Mehmood M, Abbasi SH, Aurangzeb K, Majeed MF, Anwar MS, Alhussein M. A classifier model for prostate cancer diagnosis using CNNs and transfer learning with multi-parametric MRI. Front Oncol 2023; 13:1225490. [PMID: 38023149 PMCID: PMC10666634 DOI: 10.3389/fonc.2023.1225490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Prostate cancer (PCa) is a major global concern, particularly for men, emphasizing the urgency of early detection to reduce mortality. As the second leading cause of cancer-related male deaths worldwide, precise and efficient diagnostic methods are crucial. Due to high and multiresolution MRI in PCa, computer-aided diagnostic (CAD) methods have emerged to assist radiologists in identifying anomalies. However, the rapid advancement of medical technology has led to the adoption of deep learning methods. These techniques enhance diagnostic efficiency, reduce observer variability, and consistently outperform traditional approaches. Resource constraints that can distinguish whether a cancer is aggressive or not is a significant problem in PCa treatment. This study aims to identify PCa using MRI images by combining deep learning and transfer learning (TL). Researchers have explored numerous CNN-based Deep Learning methods for classifying MRI images related to PCa. In this study, we have developed an approach for the classification of PCa using transfer learning on a limited number of images to achieve high performance and help radiologists instantly identify PCa. The proposed methodology adopts the EfficientNet architecture, pre-trained on the ImageNet dataset, and incorporates three branches for feature extraction from different MRI sequences. The extracted features are then combined, significantly enhancing the model's ability to distinguish MRI images accurately. Our model demonstrated remarkable results in classifying prostate cancer, achieving an accuracy rate of 88.89%. Furthermore, comparative results indicate that our approach achieve higher accuracy than both traditional hand-crafted feature techniques and existing deep learning techniques in PCa classification. The proposed methodology can learn more distinctive features in prostate images and correctly identify cancer.
Collapse
Affiliation(s)
- Mubashar Mehmood
- Department of Computer Science, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | | | - Khursheed Aurangzeb
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Musaed Alhussein
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
He M, Cao Y, Chi C, Yang X, Ramin R, Wang S, Yang G, Mukhtorov O, Zhang L, Kazantsev A, Enikeev M, Hu K. Research progress on deep learning in magnetic resonance imaging-based diagnosis and treatment of prostate cancer: a review on the current status and perspectives. Front Oncol 2023; 13:1189370. [PMID: 37546423 PMCID: PMC10400334 DOI: 10.3389/fonc.2023.1189370] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/30/2023] [Indexed: 08/08/2023] Open
Abstract
Multiparametric magnetic resonance imaging (mpMRI) has emerged as a first-line screening and diagnostic tool for prostate cancer, aiding in treatment selection and noninvasive radiotherapy guidance. However, the manual interpretation of MRI data is challenging and time-consuming, which may impact sensitivity and specificity. With recent technological advances, artificial intelligence (AI) in the form of computer-aided diagnosis (CAD) based on MRI data has been applied to prostate cancer diagnosis and treatment. Among AI techniques, deep learning involving convolutional neural networks contributes to detection, segmentation, scoring, grading, and prognostic evaluation of prostate cancer. CAD systems have automatic operation, rapid processing, and accuracy, incorporating multiple sequences of multiparametric MRI data of the prostate gland into the deep learning model. Thus, they have become a research direction of great interest, especially in smart healthcare. This review highlights the current progress of deep learning technology in MRI-based diagnosis and treatment of prostate cancer. The key elements of deep learning-based MRI image processing in CAD systems and radiotherapy of prostate cancer are briefly described, making it understandable not only for radiologists but also for general physicians without specialized imaging interpretation training. Deep learning technology enables lesion identification, detection, and segmentation, grading and scoring of prostate cancer, and prediction of postoperative recurrence and prognostic outcomes. The diagnostic accuracy of deep learning can be improved by optimizing models and algorithms, expanding medical database resources, and combining multi-omics data and comprehensive analysis of various morphological data. Deep learning has the potential to become the key diagnostic method in prostate cancer diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Mingze He
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Yu Cao
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Changliang Chi
- Department of Urology, The First Hospital of Jilin University (Lequn Branch), Changchun, Jilin, China
| | - Xinyi Yang
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Rzayev Ramin
- Department of Radiology, The Second University Clinic, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Shuowen Wang
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Guodong Yang
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Otabek Mukhtorov
- Regional State Budgetary Health Care Institution, Kostroma Regional Clinical Hospital named after Korolev E.I. Avenue Mira, Kostroma, Russia
| | - Liqun Zhang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, China
| | - Anton Kazantsev
- Regional State Budgetary Health Care Institution, Kostroma Regional Clinical Hospital named after Korolev E.I. Avenue Mira, Kostroma, Russia
| | - Mikhail Enikeev
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Kebang Hu
- Department of Urology, The First Hospital of Jilin University (Lequn Branch), Changchun, Jilin, China
| |
Collapse
|
9
|
Canellas R, Kohli MD, Westphalen AC. The Evidence for Using Artificial Intelligence to Enhance Prostate Cancer MR Imaging. Curr Oncol Rep 2023; 25:243-250. [PMID: 36749494 DOI: 10.1007/s11912-023-01371-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the current status of artificial intelligence applied to prostate cancer MR imaging. RECENT FINDINGS Artificial intelligence has been applied to prostate cancer MR imaging to improve its diagnostic accuracy and reproducibility of interpretation. Multiple models have been tested for gland segmentation and volume calculation, automated lesion detection, localization, and characterization, as well as prediction of tumor aggressiveness and tumor recurrence. Studies show, for example, that very robust automated gland segmentation and volume calculations can be achieved and that lesions can be detected and accurately characterized. Although results are promising, we should view these with caution. Most studies included a small sample of patients from a single institution and most models did not undergo proper external validation. More research is needed with larger and well-design studies for the development of reliable artificial intelligence tools.
Collapse
Affiliation(s)
- Rodrigo Canellas
- Department of Radiology, University of Washington, 1959 NE Pacific St., 2nd Floor, Seattle, WA, 98195, USA
| | - Marc D Kohli
- Clinical Informatics, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA.,Imaging Informatics, UCSF Health, 500 Parnassus Ave, 3rd Floor, San Francisco, CA, 94143, USA
| | - Antonio C Westphalen
- Department of Radiology, University of Washington, 1959 NE Pacific St., 2nd Floor, Seattle, WA, 98195, USA. .,Department of Urology, University of Washington, 1959 NE Pacific St., 2nd Floor, Seattle, WA, 98195, USA. .,Department Radiation Oncology, University of Washington, 1959 NE Pacific St., 2nd Floor, Seattle, WA, 98195, USA.
| |
Collapse
|
10
|
Belue MJ, Harmon SA, Lay NS, Daryanani A, Phelps TE, Choyke PL, Turkbey B. The Low Rate of Adherence to Checklist for Artificial Intelligence in Medical Imaging Criteria Among Published Prostate MRI Artificial Intelligence Algorithms. J Am Coll Radiol 2023; 20:134-145. [PMID: 35922018 PMCID: PMC9887098 DOI: 10.1016/j.jacr.2022.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the rigor, generalizability, and reproducibility of published classification and detection artificial intelligence (AI) models for prostate cancer (PCa) on MRI using the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) guidelines, a 42-item checklist that is considered a measure of best practice for presenting and reviewing medical imaging AI research. MATERIALS AND METHODS This review searched English literature for studies proposing PCa AI detection and classification models on MRI. Each study was evaluated with the CLAIM checklist. The additional outcomes for which data were sought included measures of AI model performance (eg, area under the curve [AUC], sensitivity, specificity, free-response operating characteristic curves), training and validation and testing group sample size, AI approach, detection versus classification AI, public data set utilization, MRI sequences used, and definition of gold standard for ground truth. The percentage of CLAIM checklist fulfillment was used to stratify studies into quartiles. Wilcoxon's rank-sum test was used for pair-wise comparisons. RESULTS In all, 75 studies were identified, and 53 studies qualified for analysis. The original CLAIM items that most studies did not fulfill includes item 12 (77% no): de-identification methods; item 13 (68% no): handling missing data; item 15 (47% no): rationale for choosing ground truth reference standard; item 18 (55% no): measurements of inter- and intrareader variability; item 31 (60% no): inclusion of validated interpretability maps; item 37 (92% no): inclusion of failure analysis to elucidate AI model weaknesses. An AUC score versus percentage CLAIM fulfillment quartile revealed a significant difference of the mean AUC scores between quartile 1 versus quartile 2 (0.78 versus 0.86, P = .034) and quartile 1 versus quartile 4 (0.78 versus 0.89, P = .003) scores. Based on additional information and outcome metrics gathered in this study, additional measures of best practice are defined. These new items include disclosure of public dataset usage, ground truth definition in comparison to other referenced works in the defined task, and sample size power calculation. CONCLUSION A large proportion of AI studies do not fulfill key items in CLAIM guidelines within their methods and results sections. The percentage of CLAIM checklist fulfillment is weakly associated with improved AI model performance. Additions or supplementations to CLAIM are recommended to improve publishing standards and aid reviewers in determining study rigor.
Collapse
Affiliation(s)
- Mason J Belue
- Medical Research Scholars Program Fellow, Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie A Harmon
- Staff Scientist, Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Nathan S Lay
- Staff Scientist, Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Asha Daryanani
- Intramural Research Training Program Fellow, Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Tim E Phelps
- Postdoctoral Fellow, Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Peter L Choyke
- Artificial Intelligence Resource, Chief of Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Baris Turkbey
- Senior Clinician/Director, Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
11
|
Petmezas G, Stefanopoulos L, Kilintzis V, Tzavelis A, Rogers JA, Katsaggelos AK, Maglaveras N. State-of-the-art Deep Learning Methods on Electrocardiogram Data: A Systematic Review (Preprint). JMIR Med Inform 2022; 10:e38454. [PMID: 35969441 PMCID: PMC9425174 DOI: 10.2196/38454] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/03/2022] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Electrocardiogram (ECG) is one of the most common noninvasive diagnostic tools that can provide useful information regarding a patient’s health status. Deep learning (DL) is an area of intense exploration that leads the way in most attempts to create powerful diagnostic models based on physiological signals. Objective This study aimed to provide a systematic review of DL methods applied to ECG data for various clinical applications. Methods The PubMed search engine was systematically searched by combining “deep learning” and keywords such as “ecg,” “ekg,” “electrocardiogram,” “electrocardiography,” and “electrocardiology.” Irrelevant articles were excluded from the study after screening titles and abstracts, and the remaining articles were further reviewed. The reasons for article exclusion were manuscripts written in any language other than English, absence of ECG data or DL methods involved in the study, and absence of a quantitative evaluation of the proposed approaches. Results We identified 230 relevant articles published between January 2020 and December 2021 and grouped them into 6 distinct medical applications, namely, blood pressure estimation, cardiovascular disease diagnosis, ECG analysis, biometric recognition, sleep analysis, and other clinical analyses. We provide a complete account of the state-of-the-art DL strategies per the field of application, as well as major ECG data sources. We also present open research problems, such as the lack of attempts to address the issue of blood pressure variability in training data sets, and point out potential gaps in the design and implementation of DL models. Conclusions We expect that this review will provide insights into state-of-the-art DL methods applied to ECG data and point to future directions for research on DL to create robust models that can assist medical experts in clinical decision-making.
Collapse
Affiliation(s)
- Georgios Petmezas
- Lab of Computing, Medical Informatics and Biomedical-Imaging Technologies, The Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Leandros Stefanopoulos
- Lab of Computing, Medical Informatics and Biomedical-Imaging Technologies, The Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vassilis Kilintzis
- Lab of Computing, Medical Informatics and Biomedical-Imaging Technologies, The Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Tzavelis
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - John A Rogers
- Department of Material Science, Northwestern University, Evanston, IL, United States
| | - Aggelos K Katsaggelos
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, United States
| | - Nicos Maglaveras
- Lab of Computing, Medical Informatics and Biomedical-Imaging Technologies, The Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
12
|
Current Value of Biparametric Prostate MRI with Machine-Learning or Deep-Learning in the Detection, Grading, and Characterization of Prostate Cancer: A Systematic Review. Diagnostics (Basel) 2022; 12:diagnostics12040799. [PMID: 35453847 PMCID: PMC9027206 DOI: 10.3390/diagnostics12040799] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Prostate cancer detection with magnetic resonance imaging is based on a standardized MRI-protocol according to the PI-RADS guidelines including morphologic imaging, diffusion weighted imaging, and perfusion. To facilitate data acquisition and analysis the contrast-enhanced perfusion is often omitted resulting in a biparametric prostate MRI protocol. The intention of this review is to analyze the current value of biparametric prostate MRI in combination with methods of machine-learning and deep learning in the detection, grading, and characterization of prostate cancer; if available a direct comparison with human radiologist performance was performed. PubMed was systematically queried and 29 appropriate studies were identified and retrieved. The data show that detection of clinically significant prostate cancer and differentiation of prostate cancer from non-cancerous tissue using machine-learning and deep learning is feasible with promising results. Some techniques of machine-learning and deep-learning currently seem to be equally good as human radiologists in terms of classification of single lesion according to the PIRADS score.
Collapse
|
13
|
Pellicer-Valero OJ, Marenco Jiménez JL, Gonzalez-Perez V, Casanova Ramón-Borja JL, Martín García I, Barrios Benito M, Pelechano Gómez P, Rubio-Briones J, Rupérez MJ, Martín-Guerrero JD. Deep learning for fully automatic detection, segmentation, and Gleason grade estimation of prostate cancer in multiparametric magnetic resonance images. Sci Rep 2022; 12:2975. [PMID: 35194056 PMCID: PMC8864013 DOI: 10.1038/s41598-022-06730-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
Although the emergence of multi-parametric magnetic resonance imaging (mpMRI) has had a profound impact on the diagnosis of prostate cancers (PCa), analyzing these images remains still complex even for experts. This paper proposes a fully automatic system based on Deep Learning that performs localization, segmentation and Gleason grade group (GGG) estimation of PCa lesions from prostate mpMRIs. It uses 490 mpMRIs for training/validation and 75 for testing from two different datasets: ProstateX and Valencian Oncology Institute Foundation. In the test set, it achieves an excellent lesion-level AUC/sensitivity/specificity for the GGG[Formula: see text]2 significance criterion of 0.96/1.00/0.79 for the ProstateX dataset, and 0.95/1.00/0.80 for the IVO dataset. At a patient level, the results are 0.87/1.00/0.375 in ProstateX, and 0.91/1.00/0.762 in IVO. Furthermore, on the online ProstateX grand challenge, the model obtained an AUC of 0.85 (0.87 when trained only on the ProstateX data, tying up with the original winner of the challenge). For expert comparison, IVO radiologist's PI-RADS 4 sensitivity/specificity were 0.88/0.56 at a lesion level, and 0.85/0.58 at a patient level. The full code for the ProstateX-trained model is openly available at https://github.com/OscarPellicer/prostate_lesion_detection . We hope that this will represent a landmark for future research to use, compare and improve upon.
Collapse
Affiliation(s)
- Oscar J Pellicer-Valero
- Intelligent Data Analysis Laboratory, Department of Electronic Engineering, ETSE (Engineering School), Universitat de València (UV), Av. Universitat, sn, 46100, Bujassot, Valencia, Spain.
| | - José L Marenco Jiménez
- Department of Urology, Fundación Instituto Valenciano de Oncología (FIVO), Beltrán Báguena, 8, 46009, Valencia, Spain
| | - Victor Gonzalez-Perez
- Department of Medical Physics, Fundación Instituto, Valenciano de Oncología (FIVO), Beltrán Báguena, 8, 46009, Valencia, Spain
| | | | - Isabel Martín García
- Department of Radiodiagnosis, Fundación Instituto, Valenciano de Oncología (FIVO), Beltrán Báguena, 8, 46009, Valencia, Spain
| | - María Barrios Benito
- Department of Radiodiagnosis, Fundación Instituto, Valenciano de Oncología (FIVO), Beltrán Báguena, 8, 46009, Valencia, Spain
| | - Paula Pelechano Gómez
- Department of Radiodiagnosis, Fundación Instituto, Valenciano de Oncología (FIVO), Beltrán Báguena, 8, 46009, Valencia, Spain
| | - José Rubio-Briones
- Department of Urology, Fundación Instituto Valenciano de Oncología (FIVO), Beltrán Báguena, 8, 46009, Valencia, Spain
| | - María José Rupérez
- Instituto de Ingeniería Mecánica y Biomecánica, Universitat Politècnica de València (UPV), Camino de Vera, sn, 46022, Valencia, Spain
| | - José D Martín-Guerrero
- Intelligent Data Analysis Laboratory, Department of Electronic Engineering, ETSE (Engineering School), Universitat de València (UV), Av. Universitat, sn, 46100, Bujassot, Valencia, Spain
| |
Collapse
|
14
|
Yu H, Yang LT, Zhang Q, Armstrong D, Deen MJ. Convolutional neural networks for medical image analysis: State-of-the-art, comparisons, improvement and perspectives. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.04.157] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Twilt JJ, van Leeuwen KG, Huisman HJ, Fütterer JJ, de Rooij M. Artificial Intelligence Based Algorithms for Prostate Cancer Classification and Detection on Magnetic Resonance Imaging: A Narrative Review. Diagnostics (Basel) 2021; 11:diagnostics11060959. [PMID: 34073627 PMCID: PMC8229869 DOI: 10.3390/diagnostics11060959] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
Due to the upfront role of magnetic resonance imaging (MRI) for prostate cancer (PCa) diagnosis, a multitude of artificial intelligence (AI) applications have been suggested to aid in the diagnosis and detection of PCa. In this review, we provide an overview of the current field, including studies between 2018 and February 2021, describing AI algorithms for (1) lesion classification and (2) lesion detection for PCa. Our evaluation of 59 included studies showed that most research has been conducted for the task of PCa lesion classification (66%) followed by PCa lesion detection (34%). Studies showed large heterogeneity in cohort sizes, ranging between 18 to 499 patients (median = 162) combined with different approaches for performance validation. Furthermore, 85% of the studies reported on the stand-alone diagnostic accuracy, whereas 15% demonstrated the impact of AI on diagnostic thinking efficacy, indicating limited proof for the clinical utility of PCa AI applications. In order to introduce AI within the clinical workflow of PCa assessment, robustness and generalizability of AI applications need to be further validated utilizing external validation and clinical workflow experiments.
Collapse
|
16
|
Abdelmaksoud IR, Shalaby A, Mahmoud A, Elmogy M, Aboelfetouh A, Abou El-Ghar M, El-Melegy M, Alghamdi NS, El-Baz A. Precise Identification of Prostate Cancer from DWI Using Transfer Learning. SENSORS (BASEL, SWITZERLAND) 2021; 21:3664. [PMID: 34070290 PMCID: PMC8197382 DOI: 10.3390/s21113664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022]
Abstract
Background and Objective: The use of computer-aided detection (CAD) systems can help radiologists make objective decisions and reduce the dependence on invasive techniques. In this study, a CAD system that detects and identifies prostate cancer from diffusion-weighted imaging (DWI) is developed. Methods: The proposed system first uses non-negative matrix factorization (NMF) to integrate three different types of features for the accurate segmentation of prostate regions. Then, discriminatory features in the form of apparent diffusion coefficient (ADC) volumes are estimated from the segmented regions. The ADC maps that constitute these volumes are labeled by a radiologist to identify the ADC maps with malignant or benign tumors. Finally, transfer learning is used to fine-tune two different previously-trained convolutional neural network (CNN) models (AlexNet and VGGNet) for detecting and identifying prostate cancer. Results: Multiple experiments were conducted to evaluate the accuracy of different CNN models using DWI datasets acquired at nine distinct b-values that included both high and low b-values. The average accuracy of AlexNet at the nine b-values was 89.2±1.5% with average sensitivity and specificity of 87.5±2.3% and 90.9±1.9%. These results improved with the use of the deeper CNN model (VGGNet). The average accuracy of VGGNet was 91.2±1.3% with sensitivity and specificity of 91.7±1.7% and 90.1±2.8%. Conclusions: The results of the conducted experiments emphasize the feasibility and accuracy of the developed system and the improvement of this accuracy using the deeper CNN.
Collapse
Affiliation(s)
- Islam R. Abdelmaksoud
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (I.R.A.); (A.S.); (A.M.); (A.E.-B.)
- Faculty of Computers and Information, Mansoura University, Dakahlia 35516, Egypt; (M.E.); (A.A.)
| | - Ahmed Shalaby
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (I.R.A.); (A.S.); (A.M.); (A.E.-B.)
| | - Ali Mahmoud
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (I.R.A.); (A.S.); (A.M.); (A.E.-B.)
| | - Mohammed Elmogy
- Faculty of Computers and Information, Mansoura University, Dakahlia 35516, Egypt; (M.E.); (A.A.)
| | - Ahmed Aboelfetouh
- Faculty of Computers and Information, Mansoura University, Dakahlia 35516, Egypt; (M.E.); (A.A.)
| | - Mohamed Abou El-Ghar
- Radiology Department, Urology and Nephrology Center, University of Mansoura, Dakahlia 35516, Egypt;
| | - Moumen El-Melegy
- Electrical Engineering Department, Assiut University, Assiut 71515, Egypt;
| | - Norah Saleh Alghamdi
- College of Computer and Information Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (I.R.A.); (A.S.); (A.M.); (A.E.-B.)
| |
Collapse
|
17
|
Bardis MD, Houshyar R, Chang PD, Ushinsky A, Glavis-Bloom J, Chahine C, Bui TL, Rupasinghe M, Filippi CG, Chow DS. Applications of Artificial Intelligence to Prostate Multiparametric MRI (mpMRI): Current and Emerging Trends. Cancers (Basel) 2020; 12:E1204. [PMID: 32403240 PMCID: PMC7281682 DOI: 10.3390/cancers12051204] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 01/13/2023] Open
Abstract
Prostate carcinoma is one of the most prevalent cancers worldwide. Multiparametric magnetic resonance imaging (mpMRI) is a non-invasive tool that can improve prostate lesion detection, classification, and volume quantification. Machine learning (ML), a branch of artificial intelligence, can rapidly and accurately analyze mpMRI images. ML could provide better standardization and consistency in identifying prostate lesions and enhance prostate carcinoma management. This review summarizes ML applications to prostate mpMRI and focuses on prostate organ segmentation, lesion detection and segmentation, and lesion characterization. A literature search was conducted to find studies that have applied ML methods to prostate mpMRI. To date, prostate organ segmentation and volume approximation have been well executed using various ML techniques. Prostate lesion detection and segmentation are much more challenging tasks for ML and were attempted in several studies. They largely remain unsolved problems due to data scarcity and the limitations of current ML algorithms. By contrast, prostate lesion characterization has been successfully completed in several studies because of better data availability. Overall, ML is well situated to become a tool that enhances radiologists' accuracy and speed.
Collapse
Affiliation(s)
- Michelle D. Bardis
- Department of Radiology, University of California, Irvine, Orange, CA 92868-3201, USA; (R.H.); (P.D.C.); (J.G.-B.); (C.C.); (T.-L.B.); (M.R.); (D.S.C.)
| | - Roozbeh Houshyar
- Department of Radiology, University of California, Irvine, Orange, CA 92868-3201, USA; (R.H.); (P.D.C.); (J.G.-B.); (C.C.); (T.-L.B.); (M.R.); (D.S.C.)
| | - Peter D. Chang
- Department of Radiology, University of California, Irvine, Orange, CA 92868-3201, USA; (R.H.); (P.D.C.); (J.G.-B.); (C.C.); (T.-L.B.); (M.R.); (D.S.C.)
| | - Alexander Ushinsky
- Mallinckrodt Institute of Radiology, Washington University Saint Louis, St. Louis, MO 63110, USA;
| | - Justin Glavis-Bloom
- Department of Radiology, University of California, Irvine, Orange, CA 92868-3201, USA; (R.H.); (P.D.C.); (J.G.-B.); (C.C.); (T.-L.B.); (M.R.); (D.S.C.)
| | - Chantal Chahine
- Department of Radiology, University of California, Irvine, Orange, CA 92868-3201, USA; (R.H.); (P.D.C.); (J.G.-B.); (C.C.); (T.-L.B.); (M.R.); (D.S.C.)
| | - Thanh-Lan Bui
- Department of Radiology, University of California, Irvine, Orange, CA 92868-3201, USA; (R.H.); (P.D.C.); (J.G.-B.); (C.C.); (T.-L.B.); (M.R.); (D.S.C.)
| | - Mark Rupasinghe
- Department of Radiology, University of California, Irvine, Orange, CA 92868-3201, USA; (R.H.); (P.D.C.); (J.G.-B.); (C.C.); (T.-L.B.); (M.R.); (D.S.C.)
| | | | - Daniel S. Chow
- Department of Radiology, University of California, Irvine, Orange, CA 92868-3201, USA; (R.H.); (P.D.C.); (J.G.-B.); (C.C.); (T.-L.B.); (M.R.); (D.S.C.)
| |
Collapse
|