1
|
Spirin V, Runnel K, Vlasák J, Viner I, Barrett M, Ryvarden L, Bernicchia A, Rivoire B, Ainsworth A, Grebenc T, Cartabia M, Niemelä T, Larsson KH, Miettinen O. The genus Fomitopsis ( Polyporales, Basidiomycota) reconsidered. Stud Mycol 2024; 107:149-249. [PMID: 38600960 PMCID: PMC11003443 DOI: 10.3114/sim.2024.107.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/10/2023] [Indexed: 04/12/2024] Open
Abstract
Based on seven- and three-gene datasets, we discuss four alternative approaches for a reclassification of Fomitopsidaceae (Polyporales, Basidiomycota). After taking into account morphological diversity in the family, we argue in favour of distinguishing three genera only, viz. Anthoporia, Antrodia and Fomitopsis. Fomitopsis becomes a large genus with 128 accepted species, containing almost all former Fomitopsis spp. and most species formerly placed in Antrodia, Daedalea and Laccocephalum. Genera Buglossoporus, Cartilosoma, Daedalea, Melanoporia, Neolentiporus, alongside twenty others, are treated as synonyms of Fomitopsis. This generic scheme allows for morphologically distinct genera in Fomitopsidaceae, unlike other schemes we considered. We provide arguments for retaining Fomitopsis and suppressing earlier (Daedalea, Caloporus) or simultaneously published generic names (Piptoporus) considered here as its synonyms. Taxonomy of nine species complexes in the genus is revised based on ITS, ITS + TEF1, ITS + TEF1 + RPB1 and ITS + TEF1 + RPB2 datasets. In total, 17 species are described as new to science, 26 older species are reinstated and 26 currently accepted species names are relegated to synonymy. A condensed identification key for all accepted species in the genus is provided. Taxonomic novelties: New species: Fomitopsis algumicola Grebenc & Spirin, F. caseosa Vlasák & Spirin, F. cupressicola Vlasák, J. Vlasák Jr. & Spirin, F. derelicta Vlasák & Spirin, F. dollingeri Vlasák & Spirin, F. fissa Vlasák & Spirin, F. lapidosa Miettinen & Spirin, F. lignicolor Vlasák & Spirin, F. maculosa Miettinen & Spirin, F. pannucea Runnel & Spirin, F. perhiemata Viner & Spirin, F. purpurea Spirin & Ryvarden, F. retorrida Spirin & Kotiranta, F. solaris Rivoire, A.M. Ainsworth & Vlasák, F. tristis Miettinen & Spirin, F. tunicata Miettinen & Spirin, F. visenda Miettinen & Spirin. New combinations: Fomitopsis aculeata (Cooke) Spirin & Miettinen, F. aethalodes (Mont.) Spirin, F. alaskana (D.V. Baxter) Spirin & Vlasák, F. albidoides (A. David & Dequatre) Bernicchia & Vlasák, F. amygdalina (Berk. & Ravenel) Spirin & Vlasák, F. angusta (Spirin & Vlasák) Spirin & Vlasák, F. atypa (Lév.) Spirin & Vlasák, F. caespitosa (Murrill) Spirin & Miettinen, F. calcitrosa (Spirin & Miettinen) Spirin & Miettinen, F. circularis (B.K. Cui & Hai J. Li) Spirin, F. concentrica (G. Cunn.) M.D. Barrett, F. cyclopis (Miettinen & Spirin) Miettinen & Spirin, F. dickinsii (Berk. ex Cooke) Spirin, F. elevata (Corner) Spirin & Miettinen, F. eucalypti (Kalchbr.) Spirin, F. ferrea (Cooke) Spirin & Viner, F. flavimontis (Vlasák & Spirin) Vlasák & Spirin, F. foedata (Berk.) Spirin & Miettinen, F. gilvidula (Bres.) Spirin & Miettinen, F. glabricystidia (Ipulet & Ryvarden) Miettinen & Ryvarden, F. globispora (Ryvarden & Aime) Spirin, F. hartmannii (Cooke) M.D. Barrett & Spirin, F. hyalina (Spirin, Miettinen & Kotir.) Spirin & Miettinen, F. hypoxantha (Bres.) Spirin & Miettinen, F. incana (Lév.) Spirin & V. Malysheva, F. infirma (Renvall & Niemelä) Miettinen & Niemelä, F. juniperina (Murrill) Spirin & Vlasák, F. kuzyana (Pilát ex Pilát) Spirin & Vlasák, F. leioderma (Mont.) Spirin & Vlasak, F. leucaena (Y.C. Dai & Niemelä) Spirin & Miettinen, F. luzonensis (Murrill) Spirin & Miettinen, F. maculatissima (Lloyd) Spirin, F. madronae (Vlasák & Ryvarden) Vlasák & Ryvarden, F. malicola (Berk. & M.A. Curtis) Spirin, F. marchionica (Mont.) Spirin & Miettinen, F. marianii (Bres.) Spirin, Vlasák & Cartabia, F. mellita (Niemelä & Penttilä) Niemelä & Miettinen, F. microcarpa (B.K. Cui & Shun Liu) Spirin, F. micropora (B.K. Cui & Shun Liu) Spirin, F. modesta (Kuntze ex Fr.) Vlasák & Spirin, F. monomitica (Yuan Y. Chen) Spirin & Viner, F. morganii (Lloyd) Spirin & Vlasák, F. moritziana (Lév.) Spirin & Miettinen, F. neotropica (D.L. Lindner, Ryvarden & T.J. Baroni) Vlasák, F. nigra (Berk.) Spirin & Miettinen, F. nivosella (Murrill) Spirin & Vlasák, F. oboensis (Decock, Amalfi & Ryvarden) Spirin, F. oleracea (R.W. Davidson & Lombard) Spirin & Vlasák, F. philippinensis (Murrill) Spirin & Vlasák, F. primaeva (Renvall & Niemelä) Miettinen & Niemelä, F. psilodermea (Berk. & Mont.) Spirin & Vlasák, F. pulverulenta (Rivoire) Rivoire, F. pulvina (Pers.) Spirin & Vlasák, F. pulvinascens (Pilát ex Pilát) Niemelä & Miettinen, F. quercina (L.) Spirin & Miettinen, F. ramentacea (Berk. & Broome) Spirin & Vlasák, F. renehenticii (Rivoire, Trichies & Vlasák) Rivoire & Vlasák, F. roseofusca (Romell) Spirin & Vlasák, F. sagraeana (Mont.) Vlasák & Spirin, F. sandaliae (Bernicchia & Ryvarden) Bernicchia & Vlasák, F. sclerotina (Rodway) M.D. Barrett & Spirin, F. serialiformis (Kout & Vlasák) Vlasák, F. serialis (Fr.) Spirin & Runnel, F. serrata (Vlasák & Spirin) Vlasák & Spirin, F. squamosella (Bernicchia & Ryvarden) Bernicchia & Ryvarden, F. stereoides (Fr.) Spirin, F. subectypa (Murrill) Spirin & Vlasák, F. substratosa (Malençon) Spirin & Miettinen, F. tropica (B.K. Cui) Spirin, F. tumulosa (Cooke) M.D. Barrett & Spirin, F. tuvensis (Spirin, Vlasák & Kotir.) Spirin & Vlasák, F. uralensis (Pilát) Spirin & Miettinen, F. ussuriensis (Bondartsev & Ljub.) Spirin & Miettinen, F. variiformis (Peck) Vlasák & Spirin, F. yunnanensis (M.L. Han & Q. An) Spirin, Daedaleopsis candicans (P. Karst.) Spirin, Megasporoporia eutelea (Har. & Pat.) Spirin & Viner, Neofomitella hemitephra (Berk.) M.D. Barrett, Pseudophaeolus soloniensis (Dubois) Spirin & Rivoire, P. trichrous (Berk. & M.A. Curtis) Vlasák & Spirin. New synonyms: Antrodia bondartsevae Spirin, A. huangshanensis Y.C. Dai & B.K. Cui, A. taxa T.T. Chang & W.N. Chou, A. wangii Y.C. Dai & H.S. Yuan, Antrodiella subnigra Oba, Mossebo & Ryvarden, Antrodiopsis Audet, Boletus quercinus Schrad., Brunneoporus Audet, Buglossoporus Kotl. & Pouzar, Buglossoporus eucalypticola M.L. Han, B.K. Cui & Y.C. Dai, Caloporus P. Karst., Cartilosoma Kotlaba & Pouzar, Coriolus clemensiae Murrill, C. cuneatiformis Murrill, C. hollickii Murrill, C. parthenius Hariot & Pat., C. rubritinctus Murrill, Daedalea Pers., Daedalea allantoidea M.L. Han, B.K. Cui & Y.C. Dai, D. americana M.L. Han, Vlasák & B.K. Cui, D. radiata B.K. Cui & Hai J. Li, D. rajchenbergiana Kossmann & Drechsler-Santos, D. sinensis Lloyd, Daedalella B.K. Cui & Shun Liu, Dentiporus Audet, Flavidoporia Audet, Fomes subferreus Murrill, Fomitopsis cana B.K. Cui, Hai J. Li & M.L. Han, F. caribensis B.K. Cui & Shun Liu, F. cystidiata B.K. Cui & M.L. Han, F. ginkgonis B.K. Cui & Shun Liu, F. iberica Melo & Ryvarden, F. incarnata K.M. Kim, J.S. Lee & H.S. Jung, F. subfeei B.K. Cui & M.L. Han, F. subtropica B.K. Cui & Hai J. Li, Fragifomes B.K. Cui, M.L. Han & Y.C. Dai, Leptoporus epileucinus Pilát, Melanoporia Murrill, Neoantrodia Audet, Neolentiporus Rajchenb., Nigroporus macroporus Ryvarden & Iturr., Niveoporofomes B.K. Cui, M.L. Han & Y.C. Dai, Pilatoporus Kotl. & Pouzar, Piptoporus P. Karst., Polyporus aurora Ces., P. durescens Overh. ex J. Lowe, P. griseodurus Lloyd, Poria incarnata Pers., Pseudoantrodia B.K. Cui, Y.Y. Chen & Shun Liu, Pseudofomitopsis B.K. Cui & Shun Liu, Ranadivia Zmitr., Rhizoporia Audet, Rhodofomes Kotl. & Pouzar, Rhodofomitopsis B.K. Cui, M.L. Han & Y.C. Dai, Rhodofomitopsis pseudofeei B.K. Cui & Shun Liu, R. roseomagna Nogueira-Melo, A.M.S. Soares & Gibertoni, Rubellofomes B.K. Cui, M.L. Han & Y.C. Dai, Subantrodia Audet, Trametes fulvirubida Corner, T. lignea Murrill, T. lusor Corner, T. pseudodochmia Corner, T. subalutacea Bourdot & Galzin, T. supermodesta Ryvarden & Iturr., T. tuberculata Bres., Tyromyces multipapillatus Corner, T. ochraceivinosus Corner, T. palmarum Murrill, T. singularis Corner, T. squamosellus Núñez & Ryvarden, Ungulidaedalea B.K. Cui, M.L. Han & Y.C. Dai. Lectotypes: Hexagonia sulcata Berk., Polyporus castaneae Bourdot & Galzin, Poria incarnata Pers., Trametes subalutacea Bourdot & Galzin, Ungulina substratosa Malençon. Neotypes: Agaricus soloniensis Dubois, Boletus pulvinus Pers. Citation: Spirin V, Runnel K, Vlasák J, Viner I, Barrett MD, Ryvarden L, Bernicchia A, Rivoire B, Ainsworth AM, Grebenc T, Cartabia M, Niemelä T, Larsson K-H, Miettinen O (2024). The genus Fomitopsis (Polyporales, Basidiomycota) reconsidered. Studies in Mycology 107: 149-249. doi: 10.3114/sim.2024.107.03.
Collapse
Affiliation(s)
- V. Spirin
- Botany Unit (Mycology), Finnish Museum of Natural History, P.O. Box 7, FI-00014 University of Helsinki, Finland
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Gothenburg, Sweden
| | - K. Runnel
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - J. Vlasák
- Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 31, CZ 37005, České Budějovice, Czech Republic
| | - I. Viner
- Botany Unit (Mycology), Finnish Museum of Natural History, P.O. Box 7, FI-00014 University of Helsinki, Finland
| | - M.D. Barrett
- Australian Tropical Herbarium, Sir Robert Norman Building, James Cook University Cairns Campus, McGregor Road, Smithfield, QLD 4878, Australia
| | - L. Ryvarden
- Institute of Biological Sciences, University of Oslo, P.O. Box 1045, Blindern, N-0316 Oslo, Norway
| | | | - B. Rivoire
- Société Linnéenne de Lyon, 33 rue Bossuet, 69006 Lyon, France
| | - A.M. Ainsworth
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE UK
| | - T. Grebenc
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| | | | - T. Niemelä
- Botany Unit (Mycology), Finnish Museum of Natural History, P.O. Box 7, FI-00014 University of Helsinki, Finland
| | - K.-H. Larsson
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, 0318 Oslo, Norway
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Box 461, 40530 Gothenburg, Sweden
| | - O. Miettinen
- Botany Unit (Mycology), Finnish Museum of Natural History, P.O. Box 7, FI-00014 University of Helsinki, Finland
| |
Collapse
|
2
|
Olou B, Krah FS, Piepenbring M, Yorou N. Phylloporia mutabilissp. nov. from Benin, West Africa. Fungal Syst Evol 2023; 12:81-89. [PMID: 38533479 PMCID: PMC10964571 DOI: 10.3114/fuse.2023.12.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/22/2023] [Indexed: 03/28/2024] Open
Abstract
Phylloporia is a widespread genus of Hymenochaetales (Basidiomycota) with polyporoid basidiomata found mainly in the tropics. Species of Phylloporia are predominantly parasitic of woody plant hosts, while some species grow as saprotrophs. Data on the genus is still scarce for tropical Africa, where we expect a high diversity given the high plant diversity in this area. Two specimens of this genus were collected in Benin (West Africa) and analysed morphologically and phylogenetically based on a multigene dataset (ITS, LSU, EF1α). Strong support for a species new to science was found, described here as Phylloporia mutabilis. It differs from other Phylloporia species by stipitate, coriaceous basidiomata, earth coloured to dark brown when fresh and changing upon drying from golden to yellowish brown, the margin being large in young specimens, becoming narrower with maturity. Basidiomata of Phylloporia mutabilis grow on the soil under angiosperm trees in a dense dry forest, so its lifestyle (saprotrophic, parasitic or mycorrhizal) is not evident, and future ecological studies will be required to elucidate this aspect. Citation: Olou BA, Krah F-S, Piepenbring M, Yorou NS (2023). Phylloporia mutabilis sp. nov. from Benin, West Africa. Fungal Systematics and Evolution 12: 81-89. doi: 10.3114/fuse.2023.12.06.
Collapse
Affiliation(s)
- B.A. Olou
- Research Unit Tropical Mycology and Plant-Soil Fungi Interactions (MyTIPS), Faculty of Agronomy, University of Parakou, BP 123 Parakou, Benin
| | - F.-S. Krah
- Fungal Ecology and Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - M. Piepenbring
- Mycology Research Group, Faculty of Biological Sciences, Goethe University Frankfurt am Main, Biologicum, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - N.S. Yorou
- Research Unit Tropical Mycology and Plant-Soil Fungi Interactions (MyTIPS), Faculty of Agronomy, University of Parakou, BP 123 Parakou, Benin
| |
Collapse
|
3
|
Fryar S, Catcheside D. Freshwater ascomycetes from southern Australia : Melanascomaceae fam. nov., Melanascoma panesporagen. et. sp. nov., and Pleurotheciumbruniussp. nov. Fungal Syst Evol 2023; 11:85-93. [PMID: 38532935 PMCID: PMC10964405 DOI: 10.3114/fuse.2023.11.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 03/28/2024] Open
Abstract
During a survey of freshwater fungi in temperate southern Australia, two new taxa were found, Melanascoma panespora and Pleurothecium brunius. Morphological and molecular data place Melanascoma panespora in the Diaporthomycetidae representing a new genus. Melanascoma, along with Proliferophorum and Paraproliferophorum, form a new lineage and the family Melanascomaceae is introduced. Phylogenetic analyses using ITS, 28S, and 18S nrRNA gene sequences,, along with morphological examination revealed Pleurothecium brunius to be a new species of Pleurothecium, sister to P. aquaticum. Citation: Fryar SC, Catcheside DEA (2023). Freshwater ascomycetes from southern Australia: Melanascomaceae fam. nov., Melanascoma panespora gen. et. sp. nov., and Pleurothecium brunius sp. nov. Fungal Systematics and Evolution 11: 85-93. doi: 10.3114/fuse.2023.11.07.
Collapse
Affiliation(s)
- S.C. Fryar
- College of Science and Engineering, Flinders University, G.P.O. Box 2100, Adelaide SA 5001, Australia
| | - D.E.A. Catcheside
- College of Science and Engineering, Flinders University, G.P.O. Box 2100, Adelaide SA 5001, Australia
| |
Collapse
|
4
|
Torres-Garcia D, García D, Réblová M, Jurjević Ž, Hubka V, Gené J. Diversity and novel lineages of black yeasts in Chaetothyriales from freshwater sediments in Spain. PERSOONIA 2023; 51:194-228. [PMID: 38665982 PMCID: PMC11041900 DOI: 10.3767/persoonia.2023.51.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/19/2023] [Indexed: 04/28/2024]
Abstract
Black yeasts comprise a group of Ascomycota of the order Chaetothyriales with highly variable morphology, a great diversity of ecological niches and life cycles. Despite the ubiquity of these fungi, their diversity in freshwater sediments is still poorly understood. During a survey of culturable Ascomycota from river and stream sediments in various sampling sites in Spain, we obtained 47 isolates of black yeasts by using potato dextrose agar supplemented with cycloheximide. A preliminary morphological study and sequence analyses of the internal transcribed spacer region (ITS) and the large subunit (LSU) of the nuclear rDNA revealed that most of the isolates belonged to the family Herpotrichiellaceae. We have confidently identified 30 isolates representing the following species: Capronia pulcherrima, Cladophialophora emmonsii, Exophiala equina, Exophiala pisciphila, Exophiala radicis, and Phialophora americana. However, we encountered difficulty in assigning 17 cultures to any known species within Chaetothyriales. Combining phenotypic and multi-locus phylogenetic analyses based on the ITS, LSU, β-tubulin (tub2) and translation elongation factor 1-α (tef1-α) gene markers, we propose the new genus Aciculomyces in the Herpotrichiellaceae to accommodate the novel species Aciculomyces restrictus. Other novel species in this family include Cladophialophora denticulata, Cladophialophora heterospora, Cladophialophora irregularis, Exophiala candelabrata, Exophiala dehoogii, Exophiala ramosa, Exophiala verticillata and Phialophora submersa. The new species Cyphellophora spiralis, closely related to Cyphellophora suttonii, is described, and the phylogeny of the genus Anthopsis in the family Cyphellophoraceae is discussed. By utilizing these four markers, we were able to strengthen the phylogenetic resolution and provide more robust taxonomic assessments within the studied group. Our findings indicate that freshwater sediments may serve as a reservoir for intriguing black yeasts, which warrant further investigation to address gaps in phylogenetic relationships, particularly within Herpotrichiellaceae. Citation: Torres-Garcia D, García D, Réblová M, et al. 2023. Diversity and novel lineages of black yeasts in Chaetothyriales from freshwater sediments in Spain. Persoonia 51: 194-228. doi: 10.3767/persoonia.2023.51.05.
Collapse
Affiliation(s)
- D. Torres-Garcia
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut and IU-RESCAT, Unitat de Micologia i Microbiologia Ambiental, Reus, Catalonia, Spain
| | - D. García
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut and IU-RESCAT, Unitat de Micologia i Microbiologia Ambiental, Reus, Catalonia, Spain
| | - M. Réblová
- The Czech Academy of Sciences, Institute of Botany, Department of Taxonomy, Průhonice, Czech Republic
| | - Ž. Jurjević
- EMSL Analytical, Cinnaminson, New Jersey, USA
| | - V. Hubka
- Charles University, Faculty of Science, Department of Botany, Prague, Czech Republic
- The Czech Academy of Sciences, Institute of Microbiology, Laboratory of Fungal Genetics and Metabolism, Prague, Czech Republic
| | - J. Gené
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut and IU-RESCAT, Unitat de Micologia i Microbiologia Ambiental, Reus, Catalonia, Spain
| |
Collapse
|
5
|
Voglmayr H, Tello S, Jaklitsch WM, Friebes G, Baral HO, Fournier J. About spirals and pores: Xylariaceae with remarkable germ loci. PERSOONIA 2022; 49:58-98. [PMID: 38234381 PMCID: PMC10792227 DOI: 10.3767/persoonia.2022.49.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/13/2022] [Indexed: 01/19/2024]
Abstract
Based on phylogenetic analyses of a multi-gene matrix of nuITS-LSU rDNA, RPB2 and TUB2 sequences and morphology, xylariaceous species with uni- to pauciperitheciate stromata and ascospores having a spirally coiling (helicoid) germ slit are revised and reclassified, including detailed descriptions and illustrations. The genus Helicogermslita is redefined and restricted to seven species with massive, erumpent, clypeus-like carbonaceous stromata, and Rosellinia somala is combined in Helicogermslita. Within the core Xylariaceae, the poorly known Leptomassaria simplex is shown to be closely related to Anthostoma insidiosum, for which the new genus Oligostoma is established, and Anthostoma rhenanum is demonstrated to be synonymous with O. insidiosum. The new genus Albicollum, characterised by immersed ascomata and a collar of white pseudostromatic tissues surrounding the ostioles, is established for Amphisphaeria canicollis, Anthostoma chionostomum, Sordaria (= Helicogermslita) fleischhakii and Anthostoma vincensii. Anthostoma ostropoides is synomymised with Albicollum canicolle, and Al. berberidicola, Al. longisporum and Al. novomexicanum are described as new species. Rosellinia (= Helicogermslita) gaudefroyi is transferred to the new genus Spiririma. Anthostoma amoenum and Euepixylon udum, both with a poroid germ locus, are shown to be only distantly related, and An. amoenum is reclassified within the asexual genus Digitodochium. Based on phylogeny, the genus Euepixylon is treated as a synonym of Nemania. A new species, Nemania ethancrensonii, which is closely related to the two formerly accepted Euepixylon species (E. sphaeriostomum, E. udum) but strongly deviates from the morphological concept of Euepixylon and Nemania, is described from the eastern USA. The genera Anthostomelloides, Clypeosphaeria, Digitodochium, Emarcaea, Induratia, Linosporopsis, Magnostiolata, Occultitheca and Spiririma are revealed to form a morphologically heterogeneous lineage in a basal position of Xylariaceae. Anthostoma vincensii, Quaternaria simplex and Rosellinia gaudefroyi are lectotypified, and Amphisphaeria canicollis, Anthostoma amoenum, An. rhenanum, An. vincensii, Quaternaria simplex, Rosellinia gaudefroyi and Valsa insidiosa are epitypified. Keys to uni- to pauciperitheciate xylariaceous genera with sigmoid to helicoid germ slits and to species of Albicollum are provided. Citation: Voglmayr H, Tello S, Jaklitsch WM, et al. 2022. About spirals and pores: Xylariaceae with remarkable germ loci. Persoonia 49: 58-98. https://doi.org/10.3767/persoonia.2022.49.02.
Collapse
Affiliation(s)
- H Voglmayr
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Dept. of Forest and Soil Sciences, BOKU-University of Natural Resources and Life Sciences, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - S Tello
- Paseo del Obispo 7, 23150 Valdepeñas de Jaén, Jaén, Spain
| | - W M Jaklitsch
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria
| | - G Friebes
- Universalmuseum Joanneum, Centre of Natural History, Botany & Mycology, Weinzöttlstraße 16, 8045 Graz, Austria
| | - H-O Baral
- Blaihofstraße 42, 72074 Tübingen, Germany
| | | |
Collapse
|
6
|
Combination of Bacillus velezensis RC218 and Chitosan to Control Fusarium Head Blight on Bread and Durum Wheat under Greenhouse and Field Conditions. Toxins (Basel) 2022; 14:toxins14070499. [PMID: 35878237 PMCID: PMC9323812 DOI: 10.3390/toxins14070499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Fusarium graminearum sensu stricto is, worldwide, the main causal agent of Fusarium head blight in small cereal crops such as wheat, barley, and oat. The pathogen causes not only reductions in yield and grain quality but also contamination with type-B trichothecenes such as deoxynivalenol. Prevention strategies include the use of less susceptible cultivars through breeding programs, cultural practices, crop rotation, fungicide application, or a combination of them through an integrated pest management. Additionally, the use of more eco-friendly strategies by the evaluation of microorganisms and natural products is increasing. The effect of combining Bacillus velezensis RC218 and chitosan on Fusarium Head Blight (FHB) and deoxynivalenol accumulation under greenhouse and field conditions in bread and durum wheat was evaluated. Under greenhouse conditions, both B. velezensis RC218 and chitosan (0.1%) demonstrated FHB control, diminishing the severity by 38 and 27%, respectively, while the combined treatment resulted in an increased reduction of 54% on bread wheat. Field trials on bread wheat showed a biocontrol reduction in FHB by 18 to 53%, and chitosan was effective only during the first year (48% reduction); surprisingly, the combination of these active principles allowed the control of FHB disease severity by 39 and 36.7% during the two harvest seasons evaluated (2017/18, 2018/19). On durum wheat, the combined treatment showed a 54.3% disease severity reduction. A reduction in DON accumulation in harvested grains was observed for either bacteria, chitosan, or their combination, with reductions of 50.3, 68, and 64.5%, respectively, versus the control.
Collapse
|
7
|
Arata GJ, Martínez M, Elguezábal C, Rojas D, Cristos D, Dinolfo MI, Arata AF. Effects of sowing date, nitrogen fertilization, and Fusarium graminearum in an Argentinean bread wheat: Integrated analysis of disease parameters, mycotoxin contamination, grain quality, and seed deterioration. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Fragoso de Souza CA, Lima DX, Pae da Costa D, Lima da Cunha GC, Valente de Medeiros É, Azevedo de Santiago ALCM. Mucor septatiphorus nom. nov. and other Mucor species recorded from the Brazilian upland forest. MYCOTAXON 2022. [DOI: 10.5248/137.495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
During a survey of mucoralean diversity in three different fragments of upland forest located in the semi-arid region of Pernambuco, Brazil, 14 species of Mucor were recorded; twelve of them reported for the first time from upland forest areas. We propose a replacement
name for Mucor septatus nom. illeg. and present detailed descriptions and illustrations of the specimens isolated.
Collapse
|
9
|
de Arruda MHM, Schwab EDP, Zchonski FL, da Cruz JDF, Tessmann DJ, Da-Silva PR. Production of type-B trichothecenes by Fusarium meridionale, F. graminearum, and F. austroamericanum in wheat plants and rice medium. Mycotoxin Res 2022; 38:1-11. [PMID: 35001349 DOI: 10.1007/s12550-021-00445-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/30/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022]
Abstract
Food security goes beyond food being available; the food needs to be free of contaminants. Trichothecenes mycotoxins, produced by Fusarium fungus, are. among the most frequently found contaminants of wheat. In this study, we evaluated the production of trichothecenes Deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-AcDON), 15-acetyldeoxynivalenol (15-AcDON), and nivalenol (NIV) by Fusarium meridionale, F. austroamericanum, and F. graminearum grown in wheat plants and rice medium. Fusarim meridionale was efficient only in the production of NIV (production range (pr) from 1340 to 2864 µg kg-1 in wheat plant), and F. austroamericanum in the production of 3-AcDON (pr from 50 to 192 µg kg-1 in wheat plant, and from 986 to 7045 µg kg-1 in rice medium) and DON (pr from 4076 to 13,701 µg kg-1 in wheat plant, and from 184 to 43,395 µg kg-1 in rice medium). Already, F. graminearum was efficient in the production of 3-AcDON only in rice medium (pr from 81 to 2342 µg kg-1), 15-AcDON in wheat plant (pr from 80 to 295 µg kg-1) and in rice medium (pr from 436 to 8597 µg kg-1), and DON also in wheat plant (pr from 7746 to 12,046 µg kg-1) and in rice medium (pr from 695 to 49,624 µg kg-1). The specificity of F. meridionale in the production of NIV but not the production of DON could generate a food security problem in regions where this species occurs and the amounts of NIV in grains and derivatives are not regulated in the food chain, as in Brazil.
Collapse
Affiliation(s)
| | | | - Felipe Liss Zchonski
- DNA Laboratory, Universidade Estadual Do Centro-Oeste, UNICENTRO, Guarapuava, PR, 85040-167, Brazil
| | | | - Dauri José Tessmann
- Departamento de Agronomia, Universidade Estadual de Maringá, UEM, Maringá, PR, 87020-900, Brazil
| | - Paulo Roberto Da-Silva
- DNA Laboratory, Universidade Estadual Do Centro-Oeste, UNICENTRO, Guarapuava, PR, 85040-167, Brazil.
| |
Collapse
|
10
|
Larran S, Santamarina Siurana MP, Roselló Caselles J, Simón MR, Perelló A. In Vitro Antagonistic Activity of Trichoderma harzianum against Fusarium sudanense Causing Seedling Blight and Seed Rot on Wheat. ACS OMEGA 2020; 5:23276-23283. [PMID: 32954178 PMCID: PMC7495787 DOI: 10.1021/acsomega.0c03090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/14/2020] [Indexed: 06/02/2023]
Abstract
Fusarium sudanense is a novel fungus recently isolated from asymptomatic samples of wheat grains in Argentina. The fungus caused symptoms of seedling blight and seed rot on wheat after artificial inoculations. It is known that the production of mycotoxins by pathogens belonging to the Fusarium genus is harmful to human and animal health. Moreover, the warm and humid conditions that are favorable for growth and mycotoxin production of these species put the Argentinian wheat production area at a high risk of mycotoxin contamination with this novel pathogen. The aim of this work was to evaluate the antagonistic effect of Trichoderma harzianum against F. sudanense under in vitro tests at different environmental conditions. Fungi were screened in dual culture at different water activities (αw) (0.995, 0.98, 0.95, and 0.90) and temperatures (25 and 15 °C). The growth rate of the fungi, interaction types, and dominance index were evaluated. Also, the interaction between T. harzianum and F. sudanense was examined by light and cryo-scanning microscopy. T. harzianum suppressed the growth of F. sudanense at 0.995, 0.98, and 0.95 αw at 25 °C and 0.995 and 0.98 αw at 15 °C. Macroscopic study revealed different interaction types between F. sudanense and T. harzianum on dual culture. Dominance on contact where the colonies of T. harzianum overgrew the pathogen was the most common interaction type determined. The competitive capacity of T. harzianum was diminished by decreasing the temperature and αw. At 0.95 αw and 15 °C, both fungi grew slowly, and interaction type "A" was assigned. Microscopic analysis from the interaction zone of dual cultures revealed an attachment of T. harzianum to the F. sudanense hyphae, penetration with or without formation of appressorium-like structures, coiling, plasmolysis, and a veil formation. According to our results, T. harzianum demonstrated capability to antagonize F. sudanense and could be a promising biocontrol agent.
Collapse
Affiliation(s)
- Silvina Larran
- Centro
de Investigaciones de Fitopatología (CIDEFI-UNLP-CIC), Facultad
de Ciencias Agrarias y Forestales, Universidad
Nacional de La Plata, 60 y 119, CC
31, La Plata B1900, Buenos
Aires, Argentina
| | - M. Pilar Santamarina Siurana
- Departamento
de Ecosistemas Agroforestales, Escuela Técnica Superior de
Ingeniería Agronómica y del Medio Natural, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain
| | - Josefa Roselló Caselles
- Departamento
de Ecosistemas Agroforestales, Escuela Técnica Superior de
Ingeniería Agronómica y del Medio Natural, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain
| | - María Rosa Simón
- Facultad
de Ciencias Agrarias y Forestales, Universidad
Nacional de La Plata, 60 y 119, CC
31, La Plata B1900, Buenos
Aires, Argentina
- Comisión
de Investigaciones Científicas de la Provincia de Buenos Aires
(CICBA), La Plata B1900, Buenos Aires, Argentina
| | - Analía Perelló
- Centro
de Investigaciones de Fitopatología (CIDEFI-UNLP-CIC), Facultad
de Ciencias Agrarias y Forestales, Universidad
Nacional de La Plata, 60 y 119, CC
31, La Plata B1900, Buenos
Aires, Argentina
- Consejo
Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata B1904, Buenos Aires, Argentina
| |
Collapse
|
11
|
Wolkis D, Deans S. Picking from the Past in Preparation for a Pest: Seed Banks Outperform Herbaria as Sources of Preserved 'Ōhi'a Seed. Biopreserv Biobank 2019; 17:583-590. [PMID: 31429591 DOI: 10.1089/bio.2019.0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Seed banks serve the purpose of maintaining germplasm for ex situ species preservation. Herbarium vouchers may be a viable source of unique and/or additional seeds for restoration as they can sometimes be from larger and more representative populations compared with seed banks. Rapid 'ōhi'a death (ROD) has emerged as a serious threat against Hawaii's most iconic and foundational forest tree (Metrosideros spp.), and seed banking has been identified as an important strategy in preserving the genetic diversity of 'ōhi'a. With respect to 'ōhi'a we ask the following: (1) what is the long-term viability of 'ōhi'a seeds stored in herbarium conditions, (2) how do herbarium curation practices affect seed viability, and (3) how long do seeds survive using conventional storage methods? We placed fresh 'ōhi'a seeds in a herbarium dryer (57°C/5% relative humidity) for 5 days, freezer (-18°C/95% RH) for 2 weeks, and dryer then freezer, and compared against fresh control seeds. Seeds were harvested from a chronosequence of herbarium specimens, withdrawn from conventional storage conditions up to 3.75 and 6.5 years before experiments began, and germination assessed. There was no difference in the proportion germinated among treatments and control testing for herbarium entry (p = 0.56). Although no seeds from herbarium specimens germinated, freshly collected dried and frozen seeds germinated at a level equivalent to the control (p = 0.76). For seeds stored using conventional storage methods at 3.75 and 6.5 years, germination was equivalent to freshly harvested seeds. This suggests that seeds can survive the extreme climate conditions necessary to enter herbaria, but lose viability after storage at ambient conditions in 4 years or less. Although 'ōhi'a seeds may be plentiful in herbaria, we recommend using seeds deposited into seed banks using conventional storage methods for orthodox seeds for postdisturbance restoration, and to combat ROD.
Collapse
Affiliation(s)
- Dustin Wolkis
- Department of Science and Conservation, National Tropical Botanical Garden, Kalāheo, Hawaii
| | - Susan Deans
- Department of Science and Conservation, National Tropical Botanical Garden, Kalāheo, Hawaii.,Department of Plant Science, Chicago Botanic Garden, Glencoe, Illinois.,Plant Biology and Conservation, Northwestern University, Evanston, Illinois
| |
Collapse
|
12
|
Ortega LM, Moure MC, González EM, Alconada TM. Wheat storage proteins: changes on the glutenins after wheat infection with different isolates of Fusarium graminearum. Int Microbiol 2019; 22:289-296. [PMID: 30810992 DOI: 10.1007/s10123-018-00048-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 11/28/2022]
Abstract
Wheat gluten proteins are decisive for the industrial properties of flour, so alterations resulting from grain infection with Fusarium graminearum produce changes in the glutenin content that affect the baking properties. This work analyzes the high-molecular-weight glutenin changes from wheat flour with different degrees of F. graminearum infection at field, since these proteins are determinant for the quality properties of flour. Wheat cultivars-on field trials-infected with F. graminearum isolates of diverse aggressiveness showed severity values between 9.1 and 42.58% and thousand kernel weight values between 28.12 and 32.33 g. Negative correlations between severity and protein content and positive correlations between yield and protein content were observed, employing reversed-phase high-performance liquid chromatography and polyacrylamide gel electrophoresis. Furthermore, the protein signal changes were in agreement for both methodological approaches. Also, the degree of disease observed and the protein changes on infected wheat cultivars varied in relation with the aggressiveness of the isolate responsible for the infection. The principal component analysis showed a close arrangement among protein values obtained by HPLC. For each cultivar, two principal components were obtained, which explained 80.85%, 88.48%, and 93.33% of the total variance (cultivars Sy200, AGP Fast, and Klein Tigre respectively). To our knowledge, the approaches employed for the analysis of protein changes according to the degree of disease, as well as the thorough statistical analysis, are novel for the study of Fusarium Head Blight.
Collapse
Affiliation(s)
- Leonel Maximiliano Ortega
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), UNLP, CCT-La Plata, CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, B1900ASH, La Plata, Argentina
| | - María Candela Moure
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), UNLP, CCT-La Plata, CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, B1900ASH, La Plata, Argentina
| | - Esteban Manuel González
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), UNLP, CCT-La Plata, CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, B1900ASH, La Plata, Argentina
| | - Teresa María Alconada
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), UNLP, CCT-La Plata, CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, B1900ASH, La Plata, Argentina.
| |
Collapse
|
13
|
|
14
|
Towards a natural classification of Annulatascaceae-like taxa: introducing Atractosporales ord. nov. and six new families. FUNGAL DIVERS 2017. [DOI: 10.1007/s13225-017-0387-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Hongsanan S, Maharachchikumbura SSN, Hyde KD, Samarakoon MC, Jeewon R, Zhao Q, Al-Sadi AM, Bahkali AH. An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. FUNGAL DIVERS 2017. [DOI: 10.1007/s13225-017-0384-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Diatrypella tectonae and Peroneutypa mackenziei spp. nov. (Diatrypaceae) from northern Thailand. Mycol Prog 2017. [DOI: 10.1007/s11557-017-1294-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Fígoli CB, Rojo R, Gasoni LA, Kikot G, Leguizamón M, Gamba RR, Bosch A, Alconada TM. Characterization of Fusarium graminearum isolates recovered from wheat samples from Argentina by Fourier transform infrared spectroscopy: Phenotypic diversity and detection of specific markers of aggressiveness. Int J Food Microbiol 2017; 244:36-42. [DOI: 10.1016/j.ijfoodmicro.2016.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/12/2016] [Accepted: 12/25/2016] [Indexed: 10/20/2022]
|
18
|
Foulon J, Zappelini C, Durand A, Valot B, Blaudez D, Chalot M. Impact of poplar-based phytomanagement on soil properties and microbial communities in a metal-contaminated site. FEMS Microbiol Ecol 2016; 92:fiw163. [PMID: 27481257 DOI: 10.1093/femsec/fiw163] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2016] [Indexed: 11/14/2022] Open
Abstract
Despite a long history of use in phytomanagement strategies, the impacts of poplar trees on the structure and function of microbial communities that live in the soil remain largely unknown. The current study combined fungal and bacterial community analyses from different management regimes using Illumina-based sequencing with soil analysis. The poplar phytomanagement regimes led to a significant increase in soil fertility and a decreased bioavailability of Zn and Cd, in concert with changes in the microbial communities. The most notable changes in the relative abundance of taxa and operational taxonomic units unsurprisingly indicated that root and soil constitute distinct ecological microbial habitats, as exemplified by the dominance of Laccaria in root samples. The poplar cultivar was also an important driver, explaining 12% and 6% of the variance in the fungal and bacterial data sets, respectively. The overall dominance of saprophytic fungi, e.g. Penicillium canescens, might be related to the decomposition activities needed at the experimental site. Our data further highlighted that the mycorrhizal colonization of poplar cultivars varies greatly between the species and genotypes, which is exemplified by the dominance of Scleroderma under Vesten samples. Further interactions between fungal and bacterial functional groups stressed the potential of high-throughput sequencing technologies in uncovering the microbial ecology of disturbed environments.
Collapse
Affiliation(s)
- Julie Foulon
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - Cyril Zappelini
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - Alexis Durand
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - Benoit Valot
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - Damien Blaudez
- CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, BP70239, 54506 Vandoeuvre-lès-Nancy, France Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| | - Michel Chalot
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France Université de Lorraine, Faculté des Sciences et Technologies, BP 70239, 54506 Vandoeuvre-les-Nancy, France
| |
Collapse
|
19
|
Bauman D, Raspé O, Meerts P, Degreef J, Ilunga Muledi J, Drouet T. Multiscale assemblage of an ectomycorrhizal fungal community: the influence of host functional traits and soil properties in a 10-ha miombo forest. FEMS Microbiol Ecol 2016; 92:fiw151. [PMID: 27402715 DOI: 10.1093/femsec/fiw151] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2016] [Indexed: 11/14/2022] Open
Abstract
Ectomycorrhizal fungi (EMF) are highly diversified and dominant in a number of forest ecosystems. Nevertheless, their scales of spatial distribution and the underlying ecological processes remain poorly understood. Although most EMF are considered to be generalists regarding host identity, a preference toward functional strategies of host trees has never been tested. Here, the EMF community was characterised by DNA sequencing in a 10-ha tropical dry season forest-referred to as miombo-an understudied ecosystem from a mycorrhizal perspective. We used 36 soil parameters and 21 host functional traits (FTs) as candidate explanatory variables in spatial constrained ordinations for explaining the EMF community assemblage. Results highlighted that the community variability was explained by host FTs related to the 'leaf economics spectrum' (adjusted R(2) = 11%; SLA, leaf area, foliar Mg content), and by soil parameters (adjusted R(2) = 17%), notably total forms of micronutrients or correlated available elements (Al, N, K, P). Both FTs and soil generated patterns in the community at scales ranging from 75 to 375 m. Our results indicate that soil is more important than previously thought for EMF in miombo woodlands, and show that FTs of host species can be better predictors of symbiont distribution than taxonomical identity.
Collapse
Affiliation(s)
- David Bauman
- Laboratoire d'Écologie Végétale et Biogéochimie, Université Libre de Bruxelles, 50 av. F. D. Roosevelt, CP 244, 1050 Brussels, Belgium
| | - Olivier Raspé
- Department of Bryophyta and Thallophyta, Botanic Garden Meise, 38 Nieuwlaan, B-1860 Meise, Belgium Fédération Wallonie-Bruxelles, Direction Générale de l'Enseignement non obligatoire et de la Recherche scientifique, Rue A. Lavallée 1, 1080 Brussels, Belgium
| | - Pierre Meerts
- Laboratoire d'Écologie Végétale et Biogéochimie, Université Libre de Bruxelles, 50 av. F. D. Roosevelt, CP 244, 1050 Brussels, Belgium
| | - Jérôme Degreef
- Department of Bryophyta and Thallophyta, Botanic Garden Meise, 38 Nieuwlaan, B-1860 Meise, Belgium Fédération Wallonie-Bruxelles, Direction Générale de l'Enseignement non obligatoire et de la Recherche scientifique, Rue A. Lavallée 1, 1080 Brussels, Belgium
| | - Jonathan Ilunga Muledi
- Faculté des Sciences agronomiques, Université de Lubumbashi, Route Kasapa, BP 1825 Lubumbashi, The Democratic Republic of the Congo
| | - Thomas Drouet
- Laboratoire d'Écologie Végétale et Biogéochimie, Université Libre de Bruxelles, 50 av. F. D. Roosevelt, CP 244, 1050 Brussels, Belgium
| |
Collapse
|