1
|
Hu Y, Shi W, Yeh CH. A novel nonlinear bispectrum analysis for dynamical complex oscillations. Cogn Neurodyn 2024; 18:1337-1357. [PMID: 39534364 PMCID: PMC11551096 DOI: 10.1007/s11571-023-09953-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/30/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
In this study, we proposed a novel set of bispectrum in constructing both frequency power and complexity spectrum. The uniform phase empirical mode decomposition (UPEMD) was implemented to obtain nonlinear extraction while guaranteeing explicit frequencies. Lepel-Ziv complexity (LZC) and frequency power per mode were used for comprehensive frequency spectra. To examine the performances of the proposed method and meanwhile optimize routine methodological parameters, either chaotic logistic maps or a default non-stationary simulation in 40 ~ 60 Hz along with several challenges were designed. The simulation results showed the UPEMD-based LZC spectrum distinguishes the degree of complexity, reflecting the bandwidth and noise level of the inputs. The UPEMD-based power spectrum on the other side presents power distribution of nonlinear and nonstationary oscillation across multiple frequencies. In addition, given gait disturbance is an unsolved symptom in adaptive deep brain stimulation (DBS) for Parkinson's disease (PD), meanwhile considering the representative of deep brain activities to the complex oscillations, such data were analyzed further. Our results showed the high-frequency band (45 ~ 80 Hz) of the UPEMD-based LZC spectrum reflects the impact of auditory cues in modulating the complexity of DBS recording. Such an increase in complexity (45 ~ 60 Hz) reduces shortly after the cue was removed. As for the UPEMD-based power spectrum, decreasing power over the higher frequency region (> 30 Hz) was shown with auditory cues. These results manifest the potential of the proposed methods in reflecting gait improvement for PD. The proposed bispectrum reflected both the nonlinear complexity and power spectrum analyses, enabling examining targeted frequencies with refined resolution. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-09953-z.
Collapse
Affiliation(s)
- Yidong Hu
- Beijing Institute of Technology, Beijing, 100081 China
| | - Wenbin Shi
- Beijing Institute of Technology, Beijing, 100081 China
| | | |
Collapse
|
2
|
Liyanagedera ND, Hussain AA, Singh A, Lal S, Kempton H, Guesgen HW. Common spatial pattern for classification of loving kindness meditation EEG for single and multiple sessions. Brain Inform 2023; 10:24. [PMID: 37688757 PMCID: PMC10492719 DOI: 10.1186/s40708-023-00204-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/19/2023] [Indexed: 09/11/2023] Open
Abstract
While a very few studies have been conducted on classifying loving kindness meditation (LKM) and non-meditation electroencephalography (EEG) data for a single session, there are no such studies conducted for multiple session EEG data. Thus, this study aims at classifying existing raw EEG meditation data on single and multiple sessions to come up with meaningful inferences which will be highly beneficial when developing algorithms that can support meditation practices. In this analysis, data have been collected on Pre-Resting (before-meditation), Post-Resting (after-meditation), LKM-Self and LKM-Others for 32 participants and hence allowing us to conduct six pairwise comparisons for the four mind tasks. Common Spatial Patterns (CSP) is a feature extraction method widely used in motor imaginary brain computer interface (BCI), but not in meditation EEG data. Therefore, using CSP in extracting features from meditation EEG data and classifying meditation/non-meditation instances, particularly for multiple sessions will create a new path in future meditation EEG research. The classification was done using Linear Discriminant Analysis (LDA) where both meditation techniques (LKM-Self and LKM-Others) were compared with Pre-Resting and Post-Resting instances. The results show that for a single session of 32 participants, around 99.5% accuracy was obtained for classifying meditation/Pre-Resting instances. For the 15 participants when using five sessions of EEG data, around 83.6% accuracy was obtained for classifying meditation/Pre-Resting instances. The results demonstrate the ability to classify meditation/Pre-Resting data. Most importantly, this classification is possible for multiple session data as well. In addition to this, when comparing the classification accuracies of the six mind task pairs; LKM-Self, LKM-Others and Post-Resting produced relatively lower accuracies among them than the accuracies obtained for classifying Pre-Resting with the other three. This indicates that Pre-Resting has some features giving a better classification indicating that it is different from the other three mind tasks.
Collapse
Affiliation(s)
- Nalinda D Liyanagedera
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, 4410, New Zealand.
- Department of Computing & Information Systems, Faculty of Applied Sciences, Wayamba University of Sri Lanka, Kuliyapitiya, 60200, Sri Lanka.
| | - Ali Abdul Hussain
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, 4410, New Zealand
| | - Amardeep Singh
- Universal College of Learning (UCOL), Palmerston North, 4410, New Zealand
| | - Sunil Lal
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, 4410, New Zealand
| | - Heather Kempton
- School of Psychology, Massey University, Auckland, 0632, New Zealand
| | - Hans W Guesgen
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, 4410, New Zealand
| |
Collapse
|
3
|
Vicchietti ML, Ramos FM, Betting LE, Campanharo ASLO. Computational methods of EEG signals analysis for Alzheimer's disease classification. Sci Rep 2023; 13:8184. [PMID: 37210397 DOI: 10.1038/s41598-023-32664-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/30/2023] [Indexed: 05/22/2023] Open
Abstract
Computational analysis of electroencephalographic (EEG) signals have shown promising results in detecting brain disorders, such as Alzheimer's disease (AD). AD is a progressive neurological illness that causes neuron cells degeneration, resulting in cognitive impairment. While there is no cure for AD, early diagnosis is critical to improving the quality of life of affected individuals. Here, we apply six computational time-series analysis methods (wavelet coherence, fractal dimension, quadratic entropy, wavelet energy, quantile graphs and visibility graphs) to EEG records from 160 AD patients and 24 healthy controls. Results from raw and wavelet-filtered (alpha, beta, theta and delta bands) EEG signals show that some of the time-series analysis methods tested here, such as wavelet coherence and quantile graphs, can robustly discriminate between AD patients from elderly healthy subjects. They represent a promising non-invasive and low-cost approach to the AD detection in elderly patients.
Collapse
Affiliation(s)
- Mário L Vicchietti
- Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University, Botucatu, 18618-689, Brazil
| | - Fernando M Ramos
- National Institute for Space Research, Earth System Science Center, São José dos Campos, 12227-010, Brazil
| | - Luiz E Betting
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, São Paulo State University, Botucatu, 18618-687, Brazil
| | - Andriana S L O Campanharo
- Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University, Botucatu, 18618-689, Brazil.
| |
Collapse
|
4
|
Muñoz-Diosdado A, Solís-Montufar ÉE, Zamora-Justo JA. Visibility Graph Analysis of Heartbeat Time Series: Comparison of Young vs. Old, Healthy vs. Diseased, Rest vs. Exercise, and Sedentary vs. Active. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25040677. [PMID: 37190463 PMCID: PMC10137780 DOI: 10.3390/e25040677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
Using the visibility graph algorithm (VGA), a complex network can be associated with a time series, such that the properties of the time series can be obtained by studying those of the network. Any value of the time series becomes a node of the network, and the number of other nodes that it is connected to can be quantified. The degree of connectivity of a node is positively correlated with its magnitude. The slope of the regression line is denoted by k-M, and, in this work, this parameter was calculated for the cardiac interbeat time series of different contrasting groups, namely: young vs. elderly; healthy subjects vs. patients with congestive heart failure (CHF); young subjects and adults at rest vs. exercising young subjects and adults; and, finally, sedentary young subjects and adults vs. active young subjects and adults. In addition, other network parameters, including the average degree and the average path length, of these time series networks were also analyzed. Significant differences were observed in the k-M parameter, average degree, and average path length for all analyzed groups. This methodology based on the analysis of the three mentioned parameters of complex networks has the advantage that such parameters are very easy to calculate, and it is useful to classify heartbeat time series of subjects with CHF vs. healthy subjects, and also for young vs. elderly subjects and sedentary vs. active subjects.
Collapse
Affiliation(s)
- Alejandro Muñoz-Diosdado
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Mexico City 07340, Mexico
| | - Éric E Solís-Montufar
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Mexico City 07340, Mexico
| | - José A Zamora-Justo
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Mexico City 07340, Mexico
- Instituto Tecnológico de Santo Domingo (INTEC), Santo Domingo 10602, Dominican Republic
| |
Collapse
|
5
|
Deka B, Deka D. Nonlinear analysis of heart rate variability signals in meditative state: a review and perspective. Biomed Eng Online 2023; 22:35. [PMID: 37055770 PMCID: PMC10103447 DOI: 10.1186/s12938-023-01100-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
INTRODUCTION In recent times, an upsurge in the investigation related to the effects of meditation in reconditioning various cardiovascular and psychological disorders is seen. In majority of these studies, heart rate variability (HRV) signal is used, probably for its ease of acquisition and low cost. Although understanding the dynamical complexity of HRV is not an easy task, the advances in nonlinear analysis has significantly helped in analyzing the impact of meditation of heart regulations. In this review, we intend to present the various nonlinear approaches, scientific findings and their limitations to develop deeper insights to carry out further research on this topic. RESULTS Literature have shown that research focus on nonlinear domain is mainly concentrated on assessing predictability, fractality, and entropy-based dynamical complexity of HRV signal. Although there were some conflicting results, most of the studies observed a reduced dynamical complexity, reduced fractal dimension, and decimated long-range correlation behavior during meditation. However, techniques, such as multiscale entropy (MSE) and multifractal analysis (MFA) of HRV can be more effective in analyzing non-stationary HRV signal, which were hardly used in the existing research works on meditation. CONCLUSIONS After going through the literature, it is realized that there is a requirement of a more rigorous research to get consistent and new findings about the changes in HRV dynamics due to the practice of meditation. The lack of adequate standard open access database is a concern in drawing statistically reliable results. Albeit, data augmentation technique is an alternative option to deal with this problem, data from adequate number of subjects can be more effective. Multiscale entropy analysis is scantily employed in studying the effect of meditation, which probably need more attention along with multifractal analysis. METHODS Scientific databases, namely PubMed, Google Scholar, Web of Science, Scopus were searched to obtain the literature on "HRV analysis during meditation by nonlinear methods". Following an exclusion criteria, 26 articles were selected to carry out this scientific analysis.
Collapse
Affiliation(s)
- Bhabesh Deka
- Department of ECE, School of Engineering, Tezpur University, Assam, India.
| | - Dipen Deka
- Department of ECE, School of Engineering, Tezpur University, Assam, India
- Department of Instrumentation Engineering, Central Institute of Technology, Kokrajhar, India
| |
Collapse
|
6
|
Mohammadpoory Z, Nasrolahzadeh M, Mahmoodian N, Sayyah M, Haddadnia J. Complex network based models of ECoG signals for detection of induced epileptic seizures in rats. Cogn Neurodyn 2019; 13:325-339. [PMID: 31354879 DOI: 10.1007/s11571-019-09527-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/15/2019] [Accepted: 03/06/2019] [Indexed: 12/28/2022] Open
Abstract
The automatic detection of seizures bears a considerable significance in epileptic diagnosis as it can efficiently lead to a considerable reduction of the workload of the medical staff. The present study aims at automatic detecting epileptic seizures in epileptic rats. To this end, seizures were induced in rats implementing the pentylenetetrazole model, with the electrocorticogram (ECoG) signals during, before and after the seizure periods being recorded. For this purpose, five algorithms for transforming time series into complex networks based on visibility graph (VG) algorithm were used. In this study, VG based methods were used for the first time to analyze ECoG signals in rats. Afterward, Standard measures in network science (graph properties) were made to examine the topological structure of these networks produced on the basis of ECoG signals. Then these measures were given to a classifier as input features so that the ECoG signals could be classified into seizure periods and seizure-free periods. Artificial Neural Network, considered a popular classifier, was used in this work. The experimental results showed that the method managed to detect epileptic seizure in rats with a high accuracy of 92.13%. Our proposed method was also applied to the recorded EEG signals from Bonn database to show the efficiency of the proposed method for human seizure detection.
Collapse
Affiliation(s)
- Zeynab Mohammadpoory
- 1Department of Biomedical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Mahda Nasrolahzadeh
- 1Department of Biomedical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Naghmeh Mahmoodian
- 1Department of Biomedical Engineering, Hakim Sabzevari University, Sabzevar, Iran.,3Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammad Sayyah
- 2Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Javad Haddadnia
- 1Department of Biomedical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| |
Collapse
|