1
|
Chen J, Jin L, Lin N. Utilization of EEG microstates as a prospective biomarker for assessing the impact of ketogenic diet in GLUT1-DS. Neurol Sci 2024; 45:4539-4547. [PMID: 38589768 DOI: 10.1007/s10072-024-07519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVE The aim of the study is to analyze microstate patterns in GLUT1-DS, both before and after the ketogenic diet (KD). METHODS We conducted microstate analysis of a patient with GLUT-1 DS and 27 healthy controls. A systematic literature review and meta-analysis was done. We compared the parameters of the patients with those of healthy controls and the incorporating findings in literature. RESULTS The durations of the patient were notably shorter, and the occurrence rates were longer than those of healthy controls and incorporating findings from the review. After 10 months of KD, the patient's microstate durations exhibited an increase from 53.05 ms, 57.17 ms, 61.80 ms, and 49.49 ms to 60.53 ms, 63.27 ms, 71.11 ms, and 66.55 ms. The occurrence rates changed from 4.0774 Hz, 4.9462 Hz, 4.8006 Hz, and 4.0579 Hz to 3.3354 Hz, 3.7893 Hz, 3.5956 Hz, and 4.1672 Hz. In healthy controls, the durations of microstate class A, B, C, and D were 61.86 ms, 63.58 ms, 70.57 ms, and 72.00 ms, respectively. CONCLUSIONS Our findings suggest EEG microstates may be a promising biomarker for monitoring the effect of KD. Administration of KD may normalize the dysfunctional patterns of temporal parameters.
Collapse
Affiliation(s)
- Jianhua Chen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China.
| | - Liri Jin
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China.
| | - Nan Lin
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China
| |
Collapse
|
2
|
Kleinert T, Nash K. Trait Aggression is Reflected by a Lower Temporal Stability of EEG Resting Networks. Brain Topogr 2024; 37:514-523. [PMID: 36400856 PMCID: PMC11199292 DOI: 10.1007/s10548-022-00929-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Trait aggression can lead to catastrophic consequences for individuals and society. However, it remains unclear how aggressive people differ from others regarding basic, task-independent brain characteristics. We used EEG microstate analysis to investigate how the temporal organization of neural resting networks might help explain inter-individual differences in aggression. Microstates represent whole-brain networks, which are stable for short timeframes (40-120 ms) before quickly transitioning into other microstate types. Recent research demonstrates that the general temporal stability of microstates across types predicts higher levels of self-control and inhibitory control, and lower levels of risk-taking preferences. Given that these outcomes are inversely related to aggression, we investigated whether microstate stability at rest would predict lower levels of trait aggression. As males show higher levels of aggression than females, and males and females express aggression differently, we also tested for possible gender-differences. As hypothesized, people with higher levels of trait aggression showed lower microstate stability. This effect was moderated by gender, with men showing stronger associations compared to women. These findings support the notion that temporal dynamics of sub-second resting networks predict complex human traits. Furthermore, they provide initial indications of gender-differences in the functional significance of EEG microstates.
Collapse
Affiliation(s)
- Tobias Kleinert
- Department of Psychology, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139, Dortmund, Germany.
| | - Kyle Nash
- Department of Psychology, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
3
|
Sun Y, Sun J, Chen X, Wang Y, Gao X. EEG signatures of cognitive decline after mild SARS-CoV-2 infection: an age-dependent study. BMC Med 2024; 22:257. [PMID: 38902696 PMCID: PMC11188525 DOI: 10.1186/s12916-024-03481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Current research on the neurological impact of SARS-CoV-2 primarily focuses on the elderly or severely ill individuals. This study aims to explore the diverse neurological consequences of SARS-CoV-2 infection, with a particular focus on mildly affected children and adolescents. METHODS A cohort study was conducted to collect pre- and post-infection resting-state electroencephalogram (EEG) data from 185 participants and 181 structured questionnaires of long-term symptoms across four distinct age groups. The goal was to comprehensively evaluate the impact of SARS-CoV-2 infection on these different age demographics. The study analyzed EEG changes of SARS-CoV-2 by potential biomarkers across age groups using both spatial and temporal approaches. RESULTS Spatial analysis indicated that children and adolescents exhibit smaller changes in brain network and microstate patterns post-infection, implying a milder cognitive impact. Sequential linear analyses showed that SARS-CoV-2 infection is associated with a marked rise in low-complexity, synchronized neural activity within low-frequency EEG bands. This is evidenced by a significant increase in Hjorth activity within the theta band and Hjorth mobility in the delta band. Sequential nonlinear analysis indicated a significant reduction in the Hurst exponent across all age groups, pointing to increased chaos and complexity within the cognitive system following infection. Furthermore, linear regression analysis based on questionnaires established a significant positive relationship between the magnitude of changes in these neural indicators and the persistence of long-term symptoms post-infection. CONCLUSIONS The findings underscore the enduring neurological impacts of SARS-CoV-2 infection, marked by cognitive decline and increased EEG disarray. Although children and adolescents experienced milder effects, cognitive decline and heightened low-frequency electrical activity were evident. These observations might contribute to understanding potential anxiety, insomnia, and neurodevelopmental implications.
Collapse
Affiliation(s)
- Yike Sun
- The School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jingnan Sun
- The School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaogang Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Yijun Wang
- Institute of Semiconductor, Chinese Academy of Sciences, Beijing, 100083, China
| | - Xiaorong Gao
- The School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Guo Q, Liu S, Wang L, Feng K, Yang S. Analysis of microstate features for Parkinson's disease based on reliability validation. J Neurosci Methods 2024; 406:110115. [PMID: 38531478 DOI: 10.1016/j.jneumeth.2024.110115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a disorder with abnormal changes in brain activity. The lack of objective indicators makes the assessment of PD progression difficult. Assessment of brain activity changes in PD may offer a potential solution. NEW METHOD Electroencephalogram (EEG) microstates reflect global dynamic changes in the brain. Therefore, we utilized microstates to assess changes in PD brain activity. However, the effect of epoch duration on the reliability of microstate analyses in PD is unclear. Thus, we first assessed the effect of data duration on the reliability of microstate topography and temporal features in PD and older healthy individuals. According to the reliability assessment, EEG epochs with high reliability were selected for microstate analysis in PD. Finally, we investigated the correlation between microstate features and clinical scales to determine whether these features could serve as objective indicators to evaluate PD progression. RESULTS Microstate analysis features that show high reliability for 3 min and above epoch durations. The topology of microstate D was significantly changed in PD compared to healthy controls, as well as the temporal features of microstates C and D. Additionally, the occurrence of C was negatively correlated with MoCA, and the duration of D was positively correlated with UPDRS. COMPARISON WITH EXISTING METHOD(S) High reliability of PD microstate features obtained by our approach. CONCLUSION EEG for PD microstate analysis should be at least 3 min. Microstate analysis is expected to provide new ideas and objective indicators for assessing Parkinson's disease progression in the clinical setting.
Collapse
Affiliation(s)
- Qingfang Guo
- Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China; State Key Laboratory of Reliable and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Shuo Liu
- Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China; State Key Laboratory of Reliable and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Lei Wang
- Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China; State Key Laboratory of Reliable and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Keke Feng
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China.
| | - Shuo Yang
- Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China; State Key Laboratory of Reliable and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
5
|
Toplutaş E, Aydın F, Hanoğlu L. EEG Microstate Analysis in Patients with Disorders of Consciousness and Its Clinical Significance. Brain Topogr 2024; 37:377-387. [PMID: 36735192 DOI: 10.1007/s10548-023-00939-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023]
Abstract
Disorders of Consciousness are divided into two major categories such as vegetative and minimally conscious states. Objective measures that allow correct identification of patients with vegetative and minimally conscious state are needed. EEG microstate analysis is a promising approach that we believe has the potential to be effective in examining the resting state activities of the brain in different stages of consciousness by allowing the proper identification of vegetative and minimally conscious patients. As a result, we try to identify clinical evaluation scales and microstate characteristics with resting state EEGs from individuals with disorders of consciousness. Our prospective observational study included 28 individuals with a disorder of consciousness. Control group included 18 healthy subjects with proper EEG data. We made clinical evaluations using patient behavior scales. We also analyzed the EEGs using microstate analysis. In our study, microstate D coverage differed substantially between vegetative and minimally conscious state patients. Also, there was a strong connection between microstate D characteristics and clinical scale scores. Consequently, we have demonstrated that the most accurate parameter for representing consciousness level is microstate D. Microstate analysis appears to be a strong option for future use in the diagnosis, follow-up, and treatment response of patients with Disorders of Consciousness.
Collapse
Affiliation(s)
- Eren Toplutaş
- Department of Neurology, Istanbul Eyupsultan Public Hospital, Istanbul, Turkey.
- Program of Neuroscience Ph.D., Graduate School of Health Sciences,, Istanbul Medipol University, Istanbul, Turkey.
| | - Fatma Aydın
- Program of Neuroscience Ph.D., Graduate School of Health Sciences,, Istanbul Medipol University, Istanbul, Turkey
| | - Lütfü Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Neuroimaging and Neuromodulation Lab, Clinical Electrophysiology, REMER, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
6
|
Wu X, Lei Z, Wu Y, Jiang M, Luo H, Chen X, Ruan J. Dynamics of Cerebral Function in Patients with Acute Cerebellar Infarction. CEREBELLUM (LONDON, ENGLAND) 2024; 23:374-382. [PMID: 36810748 DOI: 10.1007/s12311-023-01534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Few studies were devoted to investigating cerebral functional changes after acute cerebellar infarction (CI). The purpose of this study was to examine the brain functional dynamics of CI using electroencephalographic (EEG) microstate analysis. And the possible heterogenicity in neural dynamics between CI with vertigo and CI with dizziness was explored. Thirty-four CI patients and 37 age- and gender-matched healthy controls(HC) were included in the study. Each included subject underwent a 19-channel video EEG examination. Five 10-s resting-state EEG epochs were extracted after data preprocessing. Then, microstate analysis and source localization were performed using the LORETA-KEY tool. Microstate parameters such as duration, coverage, occurrence, and transition probability are all extracted. The current study showed that the duration, coverage, and occurrence of microstate(Ms) B significantly increased in CI patients, but the duration and coverage of MsA and MsD decreased. Compared CI with vertigo to dizziness, finding a decreased trend in the coverage of MsD and the transition from MsA and MsB to MsD. Taken together, our study sheds new light on the dynamics of cerebral function after CI, mainly reflecting increased activity in functional networks involved in MsB and decreased activity in functional networks involved in MsA and MsD. Vertigo and dizziness post-CI may be suggested by cerebral functional dynamics. Further longitudinal studies are needed to validate and explore the alterations in brain dynamics to what extent depict the clinical traits and their potential applications in the recovery of CI.
Collapse
Affiliation(s)
- Xin Wu
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Ziye Lei
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Yusi Wu
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Mingqing Jiang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Hua Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Xiu Chen
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Jianghai Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China.
| |
Collapse
|
7
|
Zhu M, Gong Q. EEG spectral and microstate analysis originating residual inhibition of tinnitus induced by tailor-made notched music training. Front Neurosci 2023; 17:1254423. [PMID: 38148944 PMCID: PMC10750374 DOI: 10.3389/fnins.2023.1254423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023] Open
Abstract
Tailor-made notched music training (TMNMT) is a promising therapy for tinnitus. Residual inhibition (RI) is one of the few interventions that can temporarily inhibit tinnitus, which is a useful technique that can be applied to tinnitus research and explore tinnitus mechanisms. In this study, RI effect of TMNMT in tinnitus was investigated mainly using behavioral tests, EEG spectral and microstate analysis. To our knowledge, this study is the first to investigate RI effect of TMNMT. A total of 44 participants with tinnitus were divided into TMNMT group (22 participants; ECnm, NMnm, RInm represent that EEG recordings with eyes closed stimuli-pre, stimuli-ing, stimuli-post by TMNMT music, respectively) and Placebo control group (22 participants; ECpb, PBpb, RIpb represent that EEG recordings with eyes closed stimuli-pre, stimuli-ing, stimuli-post by Placebo music, respectively) in a single-blind manner. Behavioral tests, EEG spectral analysis (covering delta, theta, alpha, beta, gamma frequency bands) and microstate analysis (involving four microstate classes, A to D) were employed to evaluate RI effect of TMNMT. The results of the study showed that TMNMT had a stronger inhibition ability and longer inhibition time according to the behavioral tests compared to Placebo. Spectral analysis showed that RI effect of TMNMT increased significantly the power spectral density (PSD) of delta, theta bands and decreased significantly the PSD of alpha2 band, and microstate analysis showed that RI effect of TMNMT had shorter duration (microstate B, microstate C), higher Occurrence (microstate A, microstate C, microstate D), Coverage (microstate A) and transition probabilities (microstate A to microstate B, microstate A to microstate D and microstate D to microstate A). Meanwhile, RI effect of Placebo decreased significantly the PSD of alpha2 band, and microstate analysis showed that RI effect of Placebo had shorter duration (microstate C, microstate D), higher occurrence (microstate B, microstate C), lower coverage (microstate C, microstate D), higher transition probabilities (microstate A to microstate B, microstate B to microstate A). It was also found that the intensity of tinnitus symptoms was significant positively correlated with the duration of microstate B in five subgroups (ECnm, NMnm, RInm, ECpb, PBpb). Our study provided valuable experimental evidence and practical applications for the effectiveness of TMNMT as a novel music therapy for tinnitus. The observed stronger residual inhibition (RI) ability of TMNMT supported its potential applications in tinnitus treatment. Furthermore, the temporal dynamics of EEG microstates serve as novel functional and trait markers of synchronous brain activity that contribute to a deep understanding of the neural mechanism underlying TMNMT treatment for tinnitus.
Collapse
Affiliation(s)
- Min Zhu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Qin Gong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
8
|
Eqlimi E, Bockstael A, Schönwiesner M, Talsma D, Botteldooren D. Time course of EEG complexity reflects attentional engagement during listening to speech in noise. Eur J Neurosci 2023; 58:4043-4069. [PMID: 37814423 DOI: 10.1111/ejn.16159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Auditory distractions are recognized to considerably challenge the quality of information encoding during speech comprehension. This study explores electroencephalography (EEG) microstate dynamics in ecologically valid, noisy settings, aiming to uncover how these auditory distractions influence the process of information encoding during speech comprehension. We examined three listening scenarios: (1) speech perception with background noise (LA), (2) focused attention on the background noise (BA), and (3) intentional disregard of the background noise (BUA). Our findings showed that microstate complexity and unpredictability increased when attention was directed towards speech compared with tasks without speech (LA > BA & BUA). Notably, the time elapsed between the recurrence of microstates increased significantly in LA compared with both BA and BUA. This suggests that coping with background noise during speech comprehension demands more sustained cognitive effort. Additionally, a two-stage time course for both microstate complexity and alpha-to-theta power ratio was observed. Specifically, in the early epochs, a lower level was observed, which gradually increased and eventually reached a steady level in the later epochs. The findings suggest that the initial stage is primarily driven by sensory processes and information gathering, while the second stage involves higher level cognitive engagement, including mnemonic binding and memory encoding.
Collapse
Affiliation(s)
- Ehsan Eqlimi
- WAVES Research Group, Department of Information Technology, Ghent University, Ghent, Belgium
| | - Annelies Bockstael
- WAVES Research Group, Department of Information Technology, Ghent University, Ghent, Belgium
| | | | - Durk Talsma
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Dick Botteldooren
- WAVES Research Group, Department of Information Technology, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Liu C, Jiang Z, Liu S, Chu C, Wang J, Liu W, Sun Y, Dong M, Shi Q, Huang P, Zhu X. Frequency-Dependent Microstate Characteristics for Mild Cognitive Impairment in Parkinson's Disease. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4115-4124. [PMID: 37831557 DOI: 10.1109/tnsre.2023.3324343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Cognitive impairment is typically reflected in the time and frequency variations of electroencephalography (EEG). Integrating time-domain and frequency-domain analysis methods is essential to better understand and assess cognitive ability. Timely identification of cognitive levels in early Parkinson's disease (ePD) patients can help mitigate the risk of future dementia. For the investigation of the brain activity and states related to cognitive levels, this study recruited forty ePD patients for EEG microstate analysis, including 13 with mild cognitive impairment (MCI) and 27 without MCI (control group). To determine the specific frequency band on which the microstate analysis relies, a deep learning framework was employed to discern the frequency dependence of the cognitive level in ePD patients. The input to the convolutional neural network consisted of the power spectral density of multi-channel multi-point EEG signals. The visualization technique of gradient-weighted class activation mapping was utilized to extract the optimal frequency band for identifying MCI samples. Within this frequency band, microstate analysis was conducted and correlated with the Montreal Cognitive Assessment (MoCA) Scale. The deep neural network revealed significant differences in the 1-11.5Hz spectrum of the ePD-MCI group compared to the control group. In this characteristic frequency band, ePD-MCI patients exhibited a pattern of global microstate disorder. The coverage rate and occurrence frequency of microstate A and D increased significantly and were both negatively correlated with the MoCA scale. Meanwhile, the coverage, frequency and duration of microstate C decreased significantly and were positively correlated with the MoCA scale. Our work unveils abnormal microstate characteristics in ePD-MCI based on time-frequency fusion, enhancing our understanding of cognitively related brain dynamics and providing electrophysiological markers for ePD-MCI recognition.
Collapse
|
10
|
Yu F, Gao Y, Li F, Zhang X, Hu F, Jia W, Li X. Resting-state EEG microstates as electrophysiological biomarkers in post-stroke disorder of consciousness. Front Neurosci 2023; 17:1257511. [PMID: 37849891 PMCID: PMC10577186 DOI: 10.3389/fnins.2023.1257511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Ischemic stroke patients commonly experience disorder of consciousness (DOC), leading to poorer discharge outcomes and higher mortality risks. Therefore, the identification of applicable electrophysiological biomarkers is crucial for the rapid diagnosis and evaluation of post-stroke disorder of consciousness (PS-DOC), while providing supportive evidence for cerebral neurology. Methods In our study, we conduct microstate analysis on resting-state electroencephalography (EEG) of 28 post-stroke patients with awake consciousness and 28 patients with PS-DOC, calculating the temporal features of microstates. Furthermore, we extract the Lempel-Ziv complexity of microstate sequences and the delta/alpha power ratio of EEG on spectral. Statistical analysis is performed to examine the distinctions in features between the two groups, followed by inputting the distinctive features into a support vector machine for the classification of PS-DOC. Results Both groups obtain four optimal topographies of EEG microstates, but notable distinctions are observed in microstate C. Within the PS-DOC group, there is a significant increase in the mean duration and coverage of microstates B and C, whereas microstate D displays a contrasting trend. Additionally, noteworthy variations are found in the delta/alpha ratio and Lempel-Ziv complexity between the two groups. The integration of the delta/alpha ratio with microstates' temporal and Lempel-Ziv complexity features demonstrates the highest performance in the classifier (Accuracy = 91.07%). Discussion Our results suggest that EEG microstates can provide insights into the abnormal brain network dynamics in DOC patients post-stroke. Integrating the temporal and Lempel-Ziv complexity microstate features with spectral features offers a deeper understanding of the neuro mechanisms underlying brain damage in patients with DOC, holding promise as effective electrophysiological biomarkers for diagnosing PS-DOC.
Collapse
Affiliation(s)
- Fang Yu
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Yanzhe Gao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Fenglian Li
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xueying Zhang
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Fengyun Hu
- The Fifth Clinical Medical College of Shanxi Medical University, Department of Neurology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Wenhui Jia
- The Fifth Clinical Medical College of Shanxi Medical University, Department of Neurology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Xiaohui Li
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
11
|
Fadli RA, Yamanouchi Y, Jovanovic LI, Popovic MR, Marquez-Chin C, Nomura T, Milosevic M. Effectiveness of motor and prefrontal cortical areas for brain-controlled functional electrical stimulation neuromodulation. J Neural Eng 2023; 20:056022. [PMID: 37714143 DOI: 10.1088/1741-2552/acfa22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/15/2023] [Indexed: 09/17/2023]
Abstract
Objective. Brain-computer interface (BCI)-controlled functional electrical stimulation (FES) could excite the central nervous system to enhance upper limb motor recovery. Our current study assessed the effectiveness of motor and prefrontal cortical activity-based BCI-FES to help elucidate the underlying neuromodulation mechanisms of this neurorehabilitation approach.Approach. The primary motor cortex (M1) and prefrontal cortex (PFC) BCI-FES interventions were performed for 25 min on separate days with twelve non-disabled participants. During the interventions, a single electrode from the contralateral M1 or PFC was used to detect event-related desynchronization (ERD) in the calibrated frequency range. If the BCI system detected ERD within 15 s of motor imagery, FES activated wrist extensor muscles. Otherwise, if the BCI system did not detect ERD within 15 s, a subsequent trial was initiated without FES. To evaluate neuromodulation effects, corticospinal excitability was assessed using single-pulse transcranial magnetic stimulation, and cortical excitability was assessed by motor imagery ERD and resting-state functional connectivity before, immediately, 30 min, and 60 min after each intervention.Main results. M1 and PFC BCI-FES interventions had similar success rates of approximately 80%, while the M1 intervention was faster in detecting ERD activity. Consequently, only the M1 intervention effectively elicited corticospinal excitability changes for at least 60 min around the targeted cortical area in the M1, suggesting a degree of spatial localization. However, cortical excitability measures did not indicate changes after either M1 or PFC BCI-FES.Significance. Neural mechanisms underlying the effectiveness of BCI-FES neuromodulation may be attributed to the M1 direct corticospinal projections and/or the closer timing between ERD detection and FES, which likely enhanced Hebbian-like plasticity by synchronizing cortical activation detected by the BCI system with the sensory nerve activation and movement related reafference elicited by FES.
Collapse
Affiliation(s)
- Rizaldi A Fadli
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama, Toyonaka 560-8531, Japan
- Department of Biomedical Engineering, University of Miami College of Engineering, 1251 Memorial Drive, Coral Gables, FL 33146, United States of America
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, United States of America
| | - Yuki Yamanouchi
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama, Toyonaka 560-8531, Japan
| | - Lazar I Jovanovic
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, 520 Sutherland Drive, Toronto, Ontario M4G 3V9, Canada
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, 520 Sutherland Drive, Toronto, Ontario M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto. 550 University Avenue, Toronto, Ontario M5G 2A2, Canada
| | - Cesar Marquez-Chin
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, 520 Sutherland Drive, Toronto, Ontario M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto. 550 University Avenue, Toronto, Ontario M5G 2A2, Canada
| | - Taishin Nomura
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama, Toyonaka 560-8531, Japan
| | - Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama, Toyonaka 560-8531, Japan
- Department of Biomedical Engineering, University of Miami College of Engineering, 1251 Memorial Drive, Coral Gables, FL 33146, United States of America
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, United States of America
| |
Collapse
|
12
|
Zhou H, Yan W, Xu J, Ma Y, Zuo G, Shi C. Allocation of cognitive resources in cognitive processing of rhythmic visual stimuli before gait-related motor initiation. Front Neurosci 2023; 17:1145051. [PMID: 37250401 PMCID: PMC10213455 DOI: 10.3389/fnins.2023.1145051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023] Open
Abstract
Rhythmic visual cues can affect the allocation of cognitive resources during gait initiation (GI) and motor preparation. However, it is unclear how the input of rhythmic visual information modulates the allocation of cognitive resources and affects GI. The purpose of this study was to explore the effect of rhythmic visual cues on the dynamic allocation of cognitive resources by recording electroencephalographic (EEG) activity during exposure to visual stimuli. This study assessed event-related potentials (ERPs), event-related synchronization/desynchronization (ERS/ERD), and EEG microstates at 32 electrodes during presentation of non-rhythmic and rhythmic visual stimuli in 20 healthy participants. The ERP results showed that the amplitude of the C1 component was positive under exposure to rhythmic visual stimuli, while the amplitude of the N1 component was higher under exposure to rhythmic visual stimuli compared to their non-rhythmic counterparts. Within the first 200 ms of the onset of rhythmic visual stimuli, ERS in the theta band was highly pronounced in all brain regions analyzed. The results of microstate analysis showed that rhythmic visual stimuli were associated with an increase in cognitive processing over time, while non-rhythmic visual stimuli were associated with a decrease. Overall, these findings indicated that, under exposure to rhythmic visual stimuli, consumption of cognitive resources is lower during the first 200 ms of visual cognitive processing, but the consumption of cognitive resources gradually increases over time. After approximately 300 ms, cognitive processing of rhythmic visual stimuli consumes more cognitive resources than processing of stimuli in the non-rhythmic condition. This indicates that the former is more conducive to the completion of gait-related motor preparation activities, based on processing of rhythmic visual information during the later stages. This finding indicates that the dynamic allocation of cognitive resources is the key to improving gait-related movement based on rhythmic visual cues.
Collapse
Affiliation(s)
- Huilin Zhou
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Wenfeng Yan
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang, China
| | - Jialin Xu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Yehao Ma
- Robotics Institute, Ningbo University of Technology, Ningbo, Zhejiang, China
| | - Guokun Zuo
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Changcheng Shi
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
| |
Collapse
|
13
|
Lamoš M, Bočková M, Goldemundová S, Baláž M, Chrastina J, Rektor I. The effect of deep brain stimulation in Parkinson's disease reflected in EEG microstates. NPJ Parkinsons Dis 2023; 9:63. [PMID: 37069159 PMCID: PMC10110608 DOI: 10.1038/s41531-023-00508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
Mechanisms of deep brain stimulation (DBS) on cortical networks were explored mainly by fMRI. Advanced analysis of high-density EEG is a source of additional information and may provide clinically useful biomarkers. The presented study evaluates EEG microstates in Parkinson's disease and the effect of DBS of the subthalamic nucleus (STN). The association between revealed spatiotemporal dynamics of brain networks and changes in oscillatory activity and clinical examination were assessed. Thirty-seven patients with Parkinson's disease treated by STN-DBS underwent two sessions (OFF and ON stimulation conditions) of resting-state EEG. EEG microstates were analyzed in patient recordings and in a matched healthy control dataset. Microstate parameters were then compared across groups and were correlated with clinical and neuropsychological scores. Of the five revealed microstates, two differed between Parkinson's disease patients and healthy controls. Another microstate differed between ON and OFF stimulation conditions in the patient group and restored parameters in the ON stimulation state toward to healthy values. The mean beta power of that microstate was the highest in patients during the OFF stimulation condition and the lowest in healthy controls; sources were localized mainly in the supplementary motor area. Changes in microstate parameters correlated with UPDRS and neuropsychological scores. Disease specific alterations in the spatiotemporal dynamics of large-scale brain networks can be described by EEG microstates. The approach can reveal changes reflecting the effect of DBS on PD motor symptoms as well as changes probably related to non-motor symptoms not influenced by DBS.
Collapse
Grants
- NU21-04-00445 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
- NU21-04-00445 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
- NU21-04-00445 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
- NU21-04-00445 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
- NU21-04-00445 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
- NU21-04-00445 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
- LM2018129 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- LM2018129 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- LM2018129 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- LM2018129 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- LM2018129 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- LM2018129 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
Collapse
Affiliation(s)
- Martin Lamoš
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martina Bočková
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Movement Disorders Center, First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Sabina Goldemundová
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Marek Baláž
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Movement Disorders Center, First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Jan Chrastina
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Neurosurgery, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Ivan Rektor
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- Movement Disorders Center, First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic.
| |
Collapse
|
14
|
Costa TDDC, Machado CBDS, Lemos Segundo RP, Silva JPDS, Silva ACT, Andrade RDS, Rosa MRD, Smaili SM, Morya E, Costa-Ribeiro A, Lindquist ARR, Andrade SM, Machado DGDS. Are the EEG microstates correlated with motor and non-motor parameters in patients with Parkinson's disease? Neurophysiol Clin 2023; 53:102839. [PMID: 36716585 DOI: 10.1016/j.neucli.2022.102839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/05/2022] [Accepted: 12/17/2022] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVES This study compared electroencephalography microstates (EEG-MS) of patients with Parkinson's disease (PD) to healthy controls and correlated EEG-MS with motor and non-motor aspects of PD. METHODS This cross-sectional exploratory study was conducted with patients with PD (n = 10) and healthy controls (n = 10) matched by sex and age. We recorded EEG-MS using 32 channels during eyes-closed and eyes-open conditions and analyzed the four classic EEG-MS maps (A, B, C, D). Clinical information (e.g., disease duration, medications, levodopa equivalent daily dose), motor (Movement Disorder Society - Unified Parkinson Disease Rating Scale II and III, Timed Up and Go simple and dual-task, and Mini-Balance Evaluation Systems Test) and non-motor aspects (Mini-Mental State Exam [MMSE], verbal fluency, Hospital Anxiety and Depression Scale, and Parkinson's Disease Questionnaire-39 [PDQ-39]) were assessed in the PD group. Mann-Whitney U test was used to compare groups, and Spearman's correlation coefficient to analyze the correlations between coverage of EEG-MS and clinical aspects of PD. RESULTS The PD group showed a shorter duration of EEG-MS C in the eyes-closed condition than the control group. We observed correlations (rho = 0.64 to 0.82) between EEG-MS B, C, and D and non-motor aspects of PD (MMSE, verbal fluency, PDQ-39, and levodopa equivalent daily dose). CONCLUSION Alterations in EEG-MS and correlations between topographies and cognitive aspects, quality of life, and medication dose indicate that EEG could be used as a PD biomarker. Future studies should investigate these associations using a longitudinal design.
Collapse
Affiliation(s)
- Thaísa Dias de Carvalho Costa
- Aging and Neuroscience Laboratory, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Cognitive and Behavioural Neuroscience, Federal University of Paraíba, João Pessoa, Brazil
| | | | | | | | | | - Rafael de Souza Andrade
- Division of Neurology, Lauro Wanderley University Hospital, Federal University of Paraíba, João Pessoa, Brazil
| | - Marine Raquel Diniz Rosa
- Graduate Program in Cognitive and Behavioural Neuroscience, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Edgard Morya
- Edmond and Lily Safra International Institute of Neurosciences, Santos Dumont Institute, Natal, Brazil
| | - Adriana Costa-Ribeiro
- NeuroMove Laboratory, Department of Physiotherapy, Federal University of Paraíba, Joao Pessoa, Brazil
| | - Ana Raquel Rodrigues Lindquist
- Laboratory of Intervention and Analysis of Movement, Department of Physiotherapy, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Suellen Marinho Andrade
- Aging and Neuroscience Laboratory, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Cognitive and Behavioural Neuroscience, Federal University of Paraíba, João Pessoa, Brazil
| | - Daniel Gomes da Silva Machado
- Research Group in Neuroscience of Human Movement (NeuroMove), Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
15
|
Event-related microstate dynamics represents working memory performance. Neuroimage 2022; 263:119669. [PMID: 36206941 DOI: 10.1016/j.neuroimage.2022.119669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022] Open
Abstract
In recent years, EEG microstate analysis has attracted much attention as a tool for characterizing the spatial and temporal dynamics of large-scale electrophysiological activities in the human brain. Canonical 4 states (classes A, B, C, and D) have been widely reported, and they have been pointed out for their relationships with cognitive functions and several psychiatric disorders such as schizophrenia, in particular, through their static parameters such as average duration, occurrence, coverage, and transition probability. However, the relationships between event-related microstate changes and their related cognitive functions, as is often analyzed in event-related potentials under time-locked frameworks, is still not well understood. Furthermore, not enough attention has been paid to the relationship between microstate dynamics and static characteristics. To clarify the relationships between the static microstate parameters and dynamic microstate changes, and between the dynamics and working memory (WM) function, we first examined the temporal profiles of the microstates during the N-back task. We found significant event-related microstate dynamics that differed predominantly with WM loads, which were not clearly observed in the static parameters. Furthermore, in the 2-back condition, patterns of state transitions from class A to C in the high- and low-performance groups showed prominent differences at 50-300 ms after stimulus onset. We also confirmed that the transition patterns of the specific time periods were able to predict the performance level (low or high) in the 2-back condition at a significant level, where a specific transition between microstates, namely from class A to C with specific polarity, contributed to the prediction robustly. Taken together, our findings indicate that event-related microstate dynamics at 50-300 ms after onset may be essential for WM function. This suggests that event-related microstate dynamics can reflect more highly-refined brain functions.
Collapse
|
16
|
Li Y, Chen G, Lv J, Hou L, Dong Z, Wang R, Su M, Yu S. Abnormalities in resting-state EEG microstates are a vulnerability marker of migraine. J Headache Pain 2022; 23:45. [PMID: 35382739 PMCID: PMC8981824 DOI: 10.1186/s10194-022-01414-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/15/2022] [Indexed: 12/31/2022] Open
Abstract
Background Resting-state EEG microstates are thought to reflect brief activations of several interacting components of resting-state brain networks. Surprisingly, we still know little about the role of these microstates in migraine. In the present study, we attempted to address this issue by examining EEG microstates in patients with migraine without aura (MwoA) during the interictal period and comparing them with those of a group of healthy controls (HC). Methods Resting-state EEG was recorded in 61 MwoA patients (50 females) and 66 HC (50 females). Microstate parameters were compared between the two groups. We computed four widely identified canonical microstate classes A-D. Results Microstate classes B and D displayed higher time coverage and occurrence in the MwoA patient group than in the HC group, while microstate class C exhibited significantly lower time coverage and occurrence in the MwoA patient group. Meanwhile, the mean duration of microstate class C was significantly shorter in the MwoA patient group than in the HC group. Moreover, among the MwoA patient group, the duration of microstate class C correlated negatively with clinical measures of headache-related disability as assessed by the six-item Headache Impact Test (HIT-6). Finally, microstate syntax analysis showed significant differences in transition probabilities between the two groups, primarily involving microstate classes B, C, and D. Conclusions By exploring EEG microstate characteristics at baseline we were able to explore the neurobiological mechanisms underlying altered cortical excitability and aberrant sensory, affective, and cognitive processing, thus deepening our understanding of migraine pathophysiology.
Collapse
|
17
|
Asanza V, Peláez E, Loayza F, Lorente-Leyva LL, Peluffo-Ordóñez DH. Identification of Lower-Limb Motor Tasks via Brain-Computer Interfaces: A Topical Overview. SENSORS (BASEL, SWITZERLAND) 2022; 22:2028. [PMID: 35271175 PMCID: PMC8914806 DOI: 10.3390/s22052028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/11/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023]
Abstract
Recent engineering and neuroscience applications have led to the development of brain-computer interface (BCI) systems that improve the quality of life of people with motor disabilities. In the same area, a significant number of studies have been conducted in identifying or classifying upper-limb movement intentions. On the contrary, few works have been concerned with movement intention identification for lower limbs. Notwithstanding, lower-limb neurorehabilitation is a major topic in medical settings, as some people suffer from mobility problems in their lower limbs, such as those diagnosed with neurodegenerative disorders, such as multiple sclerosis, and people with hemiplegia or quadriplegia. Particularly, the conventional pattern recognition (PR) systems are one of the most suitable computational tools for electroencephalography (EEG) signal analysis as the explicit knowledge of the features involved in the PR process itself is crucial for both improving signal classification performance and providing more interpretability. In this regard, there is a real need for outline and comparative studies gathering benchmark and state-of-art PR techniques that allow for a deeper understanding thereof and a proper selection of a specific technique. This study conducted a topical overview of specialized papers covering lower-limb motor task identification through PR-based BCI/EEG signal analysis systems. To do so, we first established search terms and inclusion and exclusion criteria to find the most relevant papers on the subject. As a result, we identified the 22 most relevant papers. Next, we reviewed their experimental methodologies for recording EEG signals during the execution of lower limb tasks. In addition, we review the algorithms used in the preprocessing, feature extraction, and classification stages. Finally, we compared all the algorithms and determined which of them are the most suitable in terms of accuracy.
Collapse
Affiliation(s)
- Víctor Asanza
- Facultad de Ingeniería en Electricidad y Computación, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo km 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador;
| | - Enrique Peláez
- Facultad de Ingeniería en Electricidad y Computación, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo km 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador;
| | - Francis Loayza
- Neuroimaging and Bioengineering Laboratory (LNB), Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo km 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador;
| | | | - Diego H. Peluffo-Ordóñez
- Faculty of Engineering, Corporación Universitaria Autónoma de Nariño, Pasto 520001, Colombia;
- Modeling, Simulation and Data Analysis (MSDA) Research Program, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| |
Collapse
|
18
|
Hanoglu L, Toplutas E, Saricaoglu M, Velioglu HA, Yildiz S, Yulug B. Therapeutic Role of Repetitive Transcranial Magnetic Stimulation in Alzheimer’s and Parkinson’s Disease: Electroencephalography Microstate Correlates. Front Neurosci 2022; 16:798558. [PMID: 35250446 PMCID: PMC8889013 DOI: 10.3389/fnins.2022.798558] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/07/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction The microstate analysis is a method to convert the electrical potentials on the multi-channel electrode array to topographical electroencephalography (EEG) data. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive method that can modulate brain networks. This study explores the pathophysiological changes through microstate analysis in two different neurodegenerative diseases, Alzheimer’s (AD) and Parkinson’s disease (PD), characterized by motor and cognitive symptoms and analysis the effect of rTMS on the impaired cognitive and motor functions. Materials and Methods We included 18 AD, 8 PD patients, and 13 age-matched controls. For both groups, we applied 5 Hz rTMS on the left pre-SMA in PD patients while 20 Hz rTMS on the left lateral parietal region in AD patients. Each patient was re-evaluated 1 week after the end of the sessions, which included a detailed clinical evaluation and measurement of EEG microstates. Results At the baseline, the common findings between our AD and PD patients were altered microstate (MS) B, MS D durations and transition frequencies between MS A–MS B, MS C–MS D while global explained variance (GEV) ratio and the extent and frequency of occurrence of MS A, MS B, and MS D were separately altered in AD patients. Although no specific microstate parameter adequately differentiated between AD and PD patients, we observed significant changes in MS B and MS D parameters in PD patients. Further, we observed that Mini-Mental State Examination (MMSE) performances were associated with the transition frequencies between MS A–MS B and MS C–MS D and GEV ratio. After left parietal rTMS application, we have observed significantly increased visual memory recognition and clock drawing scores after left parietal rTMS application associated with improved microstate conditions prominent, especially in the mean duration of MS C in AD patients. Also, pre-SMA rTMS resulted in significant improvement in motor scores and frequency of transitions from MS D to MS C in PD patients. Conclusion This study shows that PD and AD can cause different and similar microstate changes that can be modulated through rTMS, suggesting the role of MS parameters and rTMS as a possible combination in monitoring the treatment effect in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lutfu Hanoglu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
| | - Eren Toplutas
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
- Program of Neuroscience Ph.D., Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
- *Correspondence: Eren Toplutas,
| | - Mevhibe Saricaoglu
- Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
- Program of Neuroscience Ph.D., Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Halil Aziz Velioglu
- Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Sultan Yildiz
- Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
- Program of Neuroscience Ph.D., Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Burak Yulug
- Department of Neurology, School of Medicine, Alanya Alaaddin Keykubat University, Alanya, Turkey
| |
Collapse
|
19
|
Zanin M, Güntekin B, Aktürk T, Yıldırım E, Yener G, Kiyi I, Hünerli-Gündüz D, Sequeira H, Papo D. Telling functional networks apart using ranked network features stability. Sci Rep 2022; 12:2562. [PMID: 35169227 PMCID: PMC8847658 DOI: 10.1038/s41598-022-06497-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022] Open
Abstract
Over the past few years, it has become standard to describe brain anatomical and functional organisation in terms of complex networks, wherein single brain regions or modules and their connections are respectively identified with network nodes and the links connecting them. Often, the goal of a given study is not that of modelling brain activity but, more basically, to discriminate between experimental conditions or populations, thus to find a way to compute differences between them. This in turn involves two important aspects: defining discriminative features and quantifying differences between them. Here we show that the ranked dynamical stability of network features, from links or nodes to higher-level network properties, discriminates well between healthy brain activity and various pathological conditions. These easily computable properties, which constitute local but topographically aspecific aspects of brain activity, greatly simplify inter-network comparisons and spare the need for network pruning. Our results are discussed in terms of microstate stability. Some implications for functional brain activity are discussed.
Collapse
Affiliation(s)
- Massimiliano Zanin
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122, Palma de Mallorca, Spain.
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Health Sciences and Technology Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Tuba Aktürk
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Yıldırım
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey.,School of Medicine, Izmir University of Economics, Izmir, Turkey
| | - Ilayda Kiyi
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Duygu Hünerli-Gündüz
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Henrique Sequeira
- University of Lille, CNRS, UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, 59000, Lille, France
| | - David Papo
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy.,Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
| |
Collapse
|
20
|
Prado P, Birba A, Cruzat J, Santamaría-García H, Parra M, Moguilner S, Tagliazucchi E, Ibáñez A. Dementia ConnEEGtome: Towards multicentric harmonization of EEG connectivity in neurodegeneration. Int J Psychophysiol 2022; 172:24-38. [PMID: 34968581 PMCID: PMC9887537 DOI: 10.1016/j.ijpsycho.2021.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 12/19/2021] [Indexed: 02/02/2023]
Abstract
The proposal to use brain connectivity as a biomarker for dementia phenotyping can be potentiated by conducting large-scale multicentric studies using high-density electroencephalography (hd- EEG). Nevertheless, several barriers preclude the development of a systematic "ConnEEGtome" in dementia research. Here we review critical sources of variability in EEG connectivity studies, and provide general guidelines for multicentric protocol harmonization. We describe how results can be impacted by the choice for data acquisition, and signal processing workflows. The implementation of a particular processing pipeline is conditional upon assumptions made by researchers about the nature of EEG. Due to these assumptions, EEG connectivity metrics are typically applicable to restricted scenarios, e.g., to a particular neurocognitive disorder. "Ground truths" for the choice of processing workflow and connectivity analysis are impractical. Consequently, efforts should be directed to harmonizing experimental procedures, data acquisition, and the first steps of the preprocessing pipeline. Conducting multiple analyses of the same data and a proper integration of the results need to be considered in additional processing steps. Furthermore, instead of using a single connectivity measure, using a composite metric combining different connectivity measures brings a powerful strategy to scale up the replicability of multicentric EEG connectivity studies. These composite metrics can boost the predictive strength of diagnostic tools for dementia. Moreover, the implementation of multi-feature machine learning classification systems that include EEG-based connectivity analyses may help to exploit the potential of multicentric studies combining clinical-cognitive, molecular, genetics, and neuroimaging data towards a multi-dimensional characterization of the dementia.
Collapse
Affiliation(s)
- Pavel Prado
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | - Agustina Birba
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile,Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Josefina Cruzat
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | - Hernando Santamaría-García
- Pontificia Universidad Javeriana, Medical School, Physiology and Psychiatry Departments, Memory and Cognition Center Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Mario Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom
| | - Sebastian Moguilner
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile,Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina,Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, USA,Trinity College Dublin (TCD), Dublin, Ireland
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile,Departamento de Física, Universidad de Buenos Aires and Instituto de Fisica de Buenos Aires (IFIBA -CONICET), Buenos Aires, Argentina
| | - Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile,Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina,Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, USA,Trinity College Dublin (TCD), Dublin, Ireland,Corresponding author at: Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile., (A. Ibáñez)
| |
Collapse
|
21
|
Gu H, Shan X, He H, Zhao J, Li X. EEG Evidence of Altered Functional Connectivity and Microstate in Children Orphaned by HIV/AIDS. Front Psychiatry 2022; 13:898716. [PMID: 35845439 PMCID: PMC9277056 DOI: 10.3389/fpsyt.2022.898716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Children orphaned by HIV/AIDS ("AIDS orphans") suffer numerous early-life adverse events which have a long-lasting effect on brain function. Although previous studies found altered electroencephalography (EEG) oscillation during resting state in children orphaned by HIV/AIDS, data are limited regarding the alterations in connectivity and microstate. The current study aimed to investigate the functional connectivity (FC) and microstate in children orphaned by HIV/AIDS with resting-state EEG data. Data were recorded from 63 children orphaned by HIV/AIDS and 65 non-orphan controls during a close-eyes resting state. The differences in phase-locking value (PLV) of global average FC and temporal dynamics of microstate were compared between groups. For functional connectivity, children orphaned by HIV/AIDS showed decreased connectivity in alpha, beta, theta, and delta band compared with non-orphan controls. For microstate, EEG results demonstrated that children orphaned by HIV/AIDS show increased duration and coverage of microstate C, decreased occurrence and coverage of microstate B, and decreased occurrence of microstate D than non-orphan controls. These findings suggest that the microstate and functional connectivity has altered in children orphaned by HIV/AIDS compared with non-orphan controls and provide additional evidence that early life stress (ELS) would alter the structure and function of the brain and increase the risk of psychiatric disorders.
Collapse
Affiliation(s)
- Huang Gu
- Institute of Behavior and Psychology, School of Psychology, Henan University, Kaifeng, China
| | - Xueke Shan
- Institute of Behavior and Psychology, School of Psychology, Henan University, Kaifeng, China
| | - Hui He
- Institute of Behavior and Psychology, School of Psychology, Henan University, Kaifeng, China
| | - Junfeng Zhao
- Institute of Behavior and Psychology, School of Psychology, Henan University, Kaifeng, China
| | - Xiaoming Li
- Department of Health Promotion, Education, and Behavior, University of South Carolina, Columbia, SC, United States
| |
Collapse
|