1
|
James A, Velayudhaperumal Chellam P. Recent Advances in the Development of Sustainable Composite Materials used as Membranes in Microbial Fuel Cells. CHEM REC 2024; 24:e202300227. [PMID: 37650319 DOI: 10.1002/tcr.202300227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Indexed: 09/01/2023]
Abstract
MFC can have dual functions; they can generate electricity from industrial and domestic effluents while purifying wastewater. Most MFC designs comprise a membrane which physically separates the cathode and anode compartments while keeping them electrically connected, playing a significant role in its efficiency. Popular commercial membranes such as Nafion, Hyflon and Zifron have excellent ionic conductivity, but have several drawbacks, mainly their prohibitive cost and non-biodegradability, preventing the large-scale application of MFC. Fabrication of composite materials that can function better at a much lower cost while also being environment-friendly has been the endeavor of few researchers over the past years. The current review aims to apprise readers of the latest trends of the past decade in fabricating composite membranes (CM) for MFC. For emphasis on environmental-friendly CM, the review begins with biopolymers, moving on to the carbon-polymer, polymer-polymer, and metal-polymer CM. Lastly, critical analysis towards technology-oriented propositions and realistic future directives in terms of strengths, weakness, opportunities, challenges (SWOC analysis) of the application of CM in MFC have been discussed for their possible large-scale use. The focus of this review is the development of hybrid materials as membranes for fuel cells, while underscoring the need for environment-friendly composites and processes.
Collapse
Affiliation(s)
- Anina James
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, 110078, Delhi, India
| | | |
Collapse
|
2
|
Zhao S, Wang X, Wang Q, Sumpradit T, Khan A, Zhou J, Salama ES, Li X, Qu J. Application of biochar in microbial fuel cells: Characteristic performances, electron-transfer mechanism, and environmental and economic assessments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115643. [PMID: 37944462 DOI: 10.1016/j.ecoenv.2023.115643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Biochar is a by-product of thermochemical conversion of biomass or other carbonaceous materials. Recently, it has garnered extensive attention for its high application potential in microbial fuel cell (MFC) systems owing to its high conductivity and low cost. However, the effects of biochar on MFC system performance have not been comprehensively reviewed, thereby necessitating the evaluation of the efficacy of biochar application in MFCs. In this review, biochar characteristics were outlined based on recent publications. Subsequently, various applications of biochar in the MFC systems and their probable processes were summarized. Finally, proposals for future applications of biochar in MFCs were explored along with its perspectives and an environmental evaluation in the context of a circular economy. The purpose of this review is to gain comprehensive insights into the application of biochar in the MFC systems, offering important viewpoints on the effective and steady utilization of biochar in MFCs for practical application.
Collapse
Affiliation(s)
- Shuai Zhao
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xu Wang
- College of International Education, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Qiutong Wang
- College of International Education, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Tawatchai Sumpradit
- Microbiolgy and Parasitology Department, Naresuan University, Muang, Phitsanulok, Thailand
| | - Aman Khan
- Pakistan Agricultural Research Council, 20-Attaturk Avenue, Sector G-5/1, Islamabad, Pakistan
| | - Jia Zhou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - El-Sayed Salama
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Jianhang Qu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Palanisamy G, Thangarasu S, Oh TH. Effect of Sulfonated Inorganic Additives Incorporated Hybrid Composite Polymer Membranes on Enhancing the Performance of Microbial Fuel Cells. Polymers (Basel) 2023; 15:polym15051294. [PMID: 36904534 PMCID: PMC10006918 DOI: 10.3390/polym15051294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Microbial fuel cells (MFCs) provide considerable benefits in the energy and environmental sectors for producing bioenergy during bioremediation. Recently, new hybrid composite membranes with inorganic additives have been considered for MFC application to replace the high cost of commercial membranes and improve the performances of cost-effective polymers, such as MFC membranes. The homogeneous impregnation of inorganic additives in the polymer matrix effectively enhances the physicochemical, thermal, and mechanical stabilities and prevents the crossover of substrate and oxygen through polymer membranes. However, the typical incorporation of inorganic additives in the membrane decreases the proton conductivity and ion exchange capacity. In this critical review, we systematically explained the impact of sulfonated inorganic additives (such as (sulfonated) sSiO2, sTiO2, sFe3O4, and s-graphene oxide) on different kinds of hybrid polymers (such as PFSA, PVDF, SPEEK, SPAEK, SSEBS, and PBI) membrane for MFC applications. The membrane mechanism and interaction between the polymers and sulfonated inorganic additives are explained. The impact of sulfonated inorganic additives on polymer membranes is highlighted based on the physicochemical, mechanical, and MFC performances. The core understandings in this review can provide vital direction for future development.
Collapse
|
4
|
Rezk H, Olabi A, Abdelkareem MA, Sayed ET. Artificial intelligence as a novel tool for enhancing the performance of urine fed microbial fuel cell as an emerging approach for simultaneous power generation and wastewater treatment. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
5
|
Ahirwar A, Das S, Das S, Yang YH, Bhatia SK, Vinayak V, Ghangrekar MM. Photosynthetic microbial fuel cell for bioenergy and valuable production: A review of circular bio-economy approach. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
6
|
Vidhyeswari D, Surendhar A, Bhuvaneshwari S. General aspects and novel PEMss in microbial fuel cell technology: A review. CHEMOSPHERE 2022; 309:136454. [PMID: 36167209 DOI: 10.1016/j.chemosphere.2022.136454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/20/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
The current scenario of energy production is mostly shifted towards sustainable renewable energy sources. Other than the energy production from natural resources such as sun, wind and water, microbial fuel cell system (MFC) has earned attraction in recent times. These microbial fuel cell systems are bioelectrochemical cell that possesses a unique ability to generate power as well as treats wastewater simultaneously. In this paper, an overview of the microbial fuel cell system and the effect of significant components on the performance of microbial fuel cell systems are reviewed. Firstly, the importance of the MFC system in power generation, its components, the working principle and various configurations of the MFC were briefly introduced. Biofilm plays a major role in the MFC system. Thus the importance of bio film, bio film formation and characterization techniques are summarised. Further, the review mainly addresses the mechanism of conventional and novel membrane materials on the performance of the MFC system. In addition, special emphasis on ceramic-based materials in the MFC system is presented. Finally, recent applications of the MFC systems are discussed.
Collapse
Affiliation(s)
- D Vidhyeswari
- Department of Chemical Engineering, National Institute of Technology Calicut, 673601, India.
| | - A Surendhar
- Department of Food Technology, TKM Institute of Technology, Kollam, India.
| | - S Bhuvaneshwari
- Department of Chemical Engineering, National Institute of Technology Calicut, 673601, India.
| |
Collapse
|
7
|
Akash S, Sivaprakash B, Rajamohan N. Microbial electro deionization for waste water treatment - A critical review on methods, applications and mechanism. ENVIRONMENTAL RESEARCH 2022; 214:113999. [PMID: 35932837 DOI: 10.1016/j.envres.2022.113999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Electro deionization using microbial communities has been proven as a competent method for desalination and abatement of water pollution by removing ionic chemicals from the target waters. Microbial Desalination Cell (MDC) facilitates microbial deionization which can either support or be a substitute for the conventional desalination methods. Generation of electricity is accomplished by the bio electrochemical oxidation of organic compounds present as contaminants in wastewater which in turn attribute to the migration of ions in MDC system. The present review aims to elucidate the theory, principles and the application of microbial desalination cell and microbial fuel cell (MFC) in treatment of saline and wastewaters. Air cathode MDC and stacked MDC for purification of saline water are found to give promising results. Air pump assisted microbial desalination cell reported 150.39 ppm h-1 of salt removal with an operational time period of 80 h and showed consistent results. Hence the air cathode assisted MDC showed dominant capacity of salt removal compared to stacked MDC. Also, three major types of microbial fuel cell, namely photosynthetic biofilm MFC, constructive wetland MFC and ceramic membrane supported MFC are reviewed for their potentials in wastewater treatment by deionization method and electricity generation. Complete (100%) removal of chemical oxygen demand was reported by photosynthetic microbial fuel cell operated for 16 days having 435.8 Ω of external resistance. When constructive wetland microbial fuel cell was operated for 10 days with 1000 ohms of external resistance, it exhibited complete (100%) removal of chemical oxygen demand from the wastewater. About 92% of chemical oxygen demand removal was demonstrated by ceramic membrane supported microbial fuel. Compared to ceramic membrane microbial fuel cell, photosynthetic and constructive wetland microbial fuel cell displayed better performance in terms of pollutant removal capacity and economical factor. Ability of the electrogenic species, namely Geobacter, Shewanella, Clostridium and Bacillus and the photosynthetic species, namely Chorella Vulgaris Rhodopsuedomonas, and Scenedesmus abundans in microbial deionization methods and their performance levels reported by several researchers are presented.
Collapse
Affiliation(s)
- S Akash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC, 608002, India
| | - Baskaran Sivaprakash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC, 608002, India
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, PC-311, Oman.
| |
Collapse
|
8
|
Mukhopadhyay D, Khan N, Kamal N, Varjani S, Singh S, Sindhu R, Gupta P, Bhargava PC. Degradation of β-lactam antibiotic ampicillin using sustainable microbial peroxide producing cell system. BIORESOURCE TECHNOLOGY 2022; 361:127605. [PMID: 35835423 DOI: 10.1016/j.biortech.2022.127605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The enormous use of synthetic antibiotic and personal care products has impacted the natural microbiome and ecosystem. Overtime, treatment technologies developed suffered due to incomplete removal hence, a pilot dual-chambered microbial peroxide-producing cell that degrades ampicillin catalyzed by homogenous Fenton-reaction was designed. The system reported maximum current at 16.714 ± 0.048 µAcm-2, power output of 1.956 ± 0.015 mW m-2; 88 ± 2.90 mM of H2O2 generation with Na2SO4 that degraded 95.9 ± 3.00 to 97.8 ± 3.20% of 10 mg L-1ampicillin within 72 hrs with electro-active Shewanella putrefaciens. An E. coli bioactivity assay with ampicillin exhibited no sensitivity zone due to the loss of activity. Analytical spectroscopic studies reveal β-Lactam ring deformation; Liquid Chromatography-Mass Spectroscopy clearly shows the presence of degradation metabolites. A sustainable wastewater treatment with 72 ± 4.5% reduction in anodic chemical oxygen demand was achieved. Present results designate the technology, as promising for effective antibiotics removal for wastewater treatment concomitant with electricity generation.
Collapse
Affiliation(s)
| | - Nawaz Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh, India
| | - Neha Kamal
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh, India
| | | | - Shivani Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691505, Kerala, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology Raipur, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh, India.
| |
Collapse
|
9
|
Patel BR, Noroozifar M, Mohebbi-Kalhori D, Kerman K. Durum wheat semolina-modified ceramic membranes as novel porous separators for enhanced power generation and wastewater remediation using microbial fuel cell. BIORESOURCE TECHNOLOGY 2022; 361:127752. [PMID: 35940322 DOI: 10.1016/j.biortech.2022.127752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
This proof-of-concept study describes the enhanced performance efficiency of the dual-chambered microbial fuel cell equipped with the fabricated unmodified ceramic membranes and ceramic membranes modified with 5 % and 10 % (w/w) durum wheat semolina in comparison with the commercially available NafionTM 117 membranes. The chemical oxygen demand removal efficiencies were determined to be 85.6 ± 0.1, 72.1 ± 0.2 and 68.6 ± 0.1 % for microbial fuel cell equipped with 10 % (w/w) semolina-modified, 5 % (w/w) semolina-modified and unmodified ceramic membrane, respectively, which indicated the improved wastewater treatment efficiency with increasing content of semolina. Preliminary studies showed that the 10 % (w/w) semolina-modified ceramic was cost-effective (64 USD/m2) with improved water uptake, good proton mobility, low oxygen diffusion in addition to the enhanced power and current density output. The semolina-modified ceramic membranes have the potential to become a cost-effective alternative for the high-efficiency production of bioelectricity using microbial fuel cells.
Collapse
Affiliation(s)
- Bhargav R Patel
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Davod Mohebbi-Kalhori
- Chemical Engineering Department, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|
10
|
Modified sulfonated polyphenylsulfone proton exchange membrane with enhanced fuel cell performance: A review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Effectiveness of biophotovoltaics system modified with fuller-clay composite separators for chromium removal. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Priya AK, Subha C, Kumar PS, Suresh R, Rajendran S, Vasseghian Y, Soto-Moscoso M. Advancements on sustainable microbial fuel cells and their future prospects: A review. ENVIRONMENTAL RESEARCH 2022; 210:112930. [PMID: 35182595 DOI: 10.1016/j.envres.2022.112930] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
A microbial fuel cell (MFC) is a sustainable device that produces electricity. The main components of MFC are electrodes (anode & cathode) and separators. The MFC's performance is ascertained by measuring its power density. Its components and other parameters, such as cell design and configuration, operation parameters (pH, salinity, and temperature), substrate characteristics, and microbes present in the substrate, all influence its performance. MFC can be scaled up and commercialized using low-cost materials without affecting its performance. Hence the choice of materials plays a significant role. In the past, precious and non-precious metals were mostly used. These were replaced by a variety of low-cost carbonaceous and non-carbonaceous materials. Nano materials, activated compounds, composite materials, have also found their way as components of MFC materials. This review describes the recently reported modified electrodes (anode and cathode), their improvisation, their merits, pollutant removal efficiency, and associated power density.
Collapse
Affiliation(s)
- A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - C Subha
- Department of Civil Engineering, Ramco Institute of Technology, Rajapalayam, 626 117, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - R Suresh
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| | - Matias Soto-Moscoso
- Departamento de Física, Facultad de Ciencias, Universidad del Bío-bío, avenida Collao 1202, casilla 15-C, Concepción, Chile
| |
Collapse
|
13
|
James A. Ceramic-microbial fuel cell (C-MFC) for waste water treatment: A mini review. ENVIRONMENTAL RESEARCH 2022; 210:112963. [PMID: 35217013 DOI: 10.1016/j.envres.2022.112963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Microbial fuel cell (MFC) is a bio-electrochemical system that utilizes the activity of electrogenic bacteria to generate electricity. When wastewater is used as feed in MFC, its organic constituents are hydrolyzed and oxidized by the bacteria. Hence, this technology is a source of clean electricity while simultaneously treating wastewater. Over the years much research has been done to improve its efficiency as well as to reduce the cost of implementation and functioning. However, scalability and commercialization of this technology still faces several challenges. This mini review discusses the use of ceramics in MFCs using wastewater feed as a method of overcoming the current technological challenges. Ceramics can be used as separators, chassis or electrode, conferring facile chemical and structural stability. The material is low-cost, environment-friendly and easily available. Studies reporting stacked configurations have been mentioned, and those that have reported field studies and technology oriented practical applications. Critical analysis of the scalability of the use of ceramics for the dual purpose of electricity generation as well as wastewater treatment has been done in this review. Future research directives towards potential sustainable commercialization have also been mentioned. C-MFC is a promising technology and the primary aim of this review is to help enhance the knowledge base for the optimization of use of ceramics in MFC to achieve large-scale clean electricity generation and sewage treatment.
Collapse
Affiliation(s)
- Anina James
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Dwarka Sector 3, Delhi, 110078, India.
| |
Collapse
|
14
|
Vempaty A, Mathuriya AS. Strategic development and performance evaluation of functionalized tea waste ash-clay composite as low-cost, high-performance separator in microbial fuel cell. ENVIRONMENTAL TECHNOLOGY 2022:1-12. [PMID: 35138220 DOI: 10.1080/09593330.2022.2041103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The separator is an important component of the microbial fuel cells (MFCs), which separates anode and cathode entities and facilitates ion transfer between both. Despite the high research in separators in recent years, the need for cost-effective, waste-driven selective separators in MFCs persists. Present study discloses the strategic fabrication of functionalized-tea-waste-ash-clay (FTWA-C) composite separator by integrating functionalized tea waste ash (FTWA) with potter's clay. Clay was used as a base, while FTWA was used as cation exchanger. FTWA and clay were separately mixed in four different ratios, 00:100 (C1); 05:95 (C2); 10:90 (C3); 15:85 (C4). Mixtures were then crafted manually as consecutive four layers. C1-side faced anode while separator-cathode-assembly was developed at C4. The separator was characterized by evaluating proton and oxygen transfer coefficient, and water-uptake analysis. The separator was also analysed for elemental composition, microstructure, particle size, and surface area and porous structure. SEM analysis of FTWA showed the presence of 15-100 nm pores. EDS analysis of the FTWA-C showed the presence of hygroscopic oxides, mainly SO42- and SiO2. A slight peak observed at P/Po∼1, confirmed the presence of macropores. The FTWA-C separator showed proton transfer coefficient as high as 18.7 × 10-5 cm/s, and oxygen mass transfer coefficient of 2.1 × 10-4 cm/s. The FTWA-C displayed the highest operating voltage of 612.4.2 mV, the power density of 1.81 W/m3, and COD removal efficiency of 87.52%. The fabrication cost of this separator was estimated to be $9.8/m2. FTWA-C could be an affordable and high-efficiency alternative for expensive ion-exchange membranes in MFCs.
Collapse
Affiliation(s)
- Anusha Vempaty
- Bio-POSITIVE, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Abhilasha Singh Mathuriya
- Bio-POSITIVE, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
- Environmental Impact Assessment Division, Ministry of Environment, Forest and Climate Change, New Delhi, India
| |
Collapse
|
15
|
Dwivedi KA, Huang SJ, Wang CT, Kumar S. Fundamental understanding of microbial fuel cell technology: Recent development and challenges. CHEMOSPHERE 2022; 288:132446. [PMID: 34653488 DOI: 10.1016/j.chemosphere.2021.132446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
The research on microbial fuel cells (MFCs) is rising tremendously but its commercialization is restricted by several microbiological, material, and economic constraints. Hence, a systematic assessment of the research articles published previously focusing on potential upcoming directions in this field is necessary. A detailed multi-perspective analysis of various techniques for enhancing the efficiency of MFC in terms of electric power production is presented in this paper. A brief discussion on the central aspects of different issues are preceded by an extensive analysis of the strategies that can be introduced to optimize power generation and reduce energy losses. Various applications of MFCs in a broad spectrum ranging from biomedical to underwater monitoring rather than electricity production and wastewater treatment are also presented followed by relevant possible case studies. Mathematical modeling is used to understand the concepts that cannot be understood experimentally. These methods relate electrode geometries to microbiological reactions occurring inside the MFC chamber, which explains the system's behavior and can be improved. Finally, directions for future research in the field of MFCs have been suggested. This article can be beneficial for engineers and researchers concerned about the challenges faced in the application of MFC.
Collapse
Affiliation(s)
- Kavya Arun Dwivedi
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Song-Jeng Huang
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chin-Tsan Wang
- Department of Mechanical and Electromechanical Engineering, National I Lan University, I Lan, 26047, Taiwan; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, India.
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India.
| |
Collapse
|
16
|
Sharma M, Das PP, Sood T, Chakraborty A, Purkait MK. Reduced graphene oxide incorporated polyvinylidene fluoride/cellulose acetate proton exchange membrane for energy extraction using microbial fuel cells. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Tiwari BR, Rouissi T, Brar SK, Surampalli RY. Critical insights into psychrophilic anaerobic digestion: Novel strategies for improving biogas production. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 131:513-526. [PMID: 34280728 DOI: 10.1016/j.wasman.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) under psychrophilic temperature has only recently garnered deserved attention. In major parts of Europe, USA, Canada and Australia, climatic conditions are more suited for psychrophilic (<20 ℃) rather than mesophilic (35 - 37 ℃) and thermophilic (55 - 60 ℃) AD. Low temperature has adverse effects on important cellular processes which may render the cell biology inactive. Moreover, cold climate can also alter the physical and chemical properties of wastewater, thereby reducing the availability of substrate to microbes. Hence, the use of low temperature acclimated microbial biomass could overcome thermodynamic constraints and carry out flexible structural and conformational changes to proteins, membrane lipid composition, expression of cold-adapted enzymes through genotypic and phenotypic variations. Reduction in organic loading rate is beneficial to methane production under low temperatures. Moreover, modification in the design of existing reactors and the use of hybrid reactors have already demonstrated improved methane generation in the lab-scale. This review also discusses some novel strategies such as direct interspecies electron transfer (DIET), co-digestion of substrate, bioaugmentation, and bioelectrochemical system assisted AD which present promising prospects. While DIET can facilitate syntrophic electron exchange in diverse microbes, the addition of organic-rich co-substrate can help in maintaining suitable C/N ratio in the anaerobic digester which subsequently can enhance methane generation. Bioaugmentation with psychrophilic strains could reduce start-up time and ensure daily stable performance for wastewater treatment facilities at low temperatures. In addition to the technical discussion, the economic assessment and future outlook on psychrophilic AD are also highlighted.
Collapse
Affiliation(s)
- Bikash R Tiwari
- Institut National de la recherche scientifique - Centre Eau Terre Environnement, Université du Québec, Quebec City, Canada
| | - Tarek Rouissi
- Institut National de la recherche scientifique - Centre Eau Terre Environnement, Université du Québec, Quebec City, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Canada.
| | - Rao Y Surampalli
- Global Institute for Energy, Environment and Sustainability, Lenexa, USA
| |
Collapse
|
18
|
Priyadarshini M, Ahmad A, Das S, Ghangrekar MM. Application of microbial electrochemical technologies for the treatment of petrochemical wastewater with concomitant valuable recovery: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 29:61783-61802. [PMID: 34231137 DOI: 10.1007/s11356-021-14944-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/12/2021] [Indexed: 02/08/2023]
Abstract
Petrochemical industry is one of the major and rapidly growing industry that generates a variety of toxic and recalcitrant organic pollutants as by-products, which are not only harmful to the aquatic animals but also affects human health. The majority of the components of petrochemical wastewater (PW) are carcinogenic, genotoxic and phytotoxic in nature; hence, this complex wastewater generated from different petrochemical processes should be efficiently treated prior to its disposal in natural water bodies. The established technologies like advanced oxidation, membrane bioreactor, electrocoagulation and activated sludge process employed for the treatment of PW are highly energy intensive and incurs high capital and operation cost. Moreover, these technologies are not effective in completely eliminating petroleum hydrocarbons present in PW. Thus, to reduce the energy requirement and also to transform the chemical energy trapped in these organic matters present in this wastewater into bioelectricity and other value-added products, microbial electrochemical technologies (METs) can be efficaciously used, which would also compensate the treatment cost by transforming these pollutants into bioenergy and valuables. In this regard, this review elucidates the feasibility and application of different METs as an appropriate alternative for the treatment of PW. Furthermore, the numerous bottlenecks towards the real-life application and commercialization of pioneering METs have also been articulated.
Collapse
Affiliation(s)
- Monali Priyadarshini
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Azhan Ahmad
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sovik Das
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Makarand Madhao Ghangrekar
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India. .,Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
19
|
Priyadarshini M, Ahmad A, Das S, Ghangrekar MM. Metal organic frameworks as emergent oxygen-reducing cathode catalysts for microbial fuel cells: a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1007/s13762-021-03499-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Lan Y, Liu Y, Li J, Chen D, He G, Parkin IP. Natural Clay-Based Materials for Energy Storage and Conversion Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004036. [PMID: 34105287 PMCID: PMC8188194 DOI: 10.1002/advs.202004036] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/18/2021] [Indexed: 05/03/2023]
Abstract
Among various energy storage and conversion materials, functionalized natural clays display significant potentials as electrodes, electrolytes, separators, and nanofillers in energy storage and conversion devices. Natural clays have porous structures, tunable specific surface areas, remarkable thermal and mechanical stabilities, abundant reserves, and cost-effectiveness. In addition, natural clays deliver the advantages of high ionic conductivity and hydrophilicity, which are beneficial properties for solid-state electrolytes. This review article provides an overview toward the recent advancements in natural clay-based energy materials. First, it comprehensively summarizes the structure, classification, and chemical modification methods of natural clays to make them suitable in energy storage and conversion devices. Then, the particular attention is focused on the application of clays in the fields of lithium-ion batteries, lithium-sulfur batteries, zinc-ion batteries, chloride-ion batteries, supercapacitors, solar cells, and fuel cells. Finally, the possible future research directions are provided for natural clays as energy materials. This review aims at facilitating the rapid developments of natural clay-based energy materials through a fruitful discussion from inorganic and materials chemistry aspects, and also promotes the broad sphere of clay-based materials for other utilization, such as effluent treatment, heavy metal removal, and environmental remediation.
Collapse
Affiliation(s)
- Ye Lan
- Department of ChemistryUniversity College London20 Gordon Street, WC1H 0AJLondonUK
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Yiyang Liu
- Department of ChemistryUniversity College London20 Gordon Street, WC1H 0AJLondonUK
| | - Jianwei Li
- Department of ChemistryUniversity College London20 Gordon Street, WC1H 0AJLondonUK
| | - Dajun Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Guanjie He
- Department of ChemistryUniversity College London20 Gordon Street, WC1H 0AJLondonUK
- School of ChemistryUniversity of LincolnBrayford PoolLincolnLN6 7TSUK
| | - Ivan P. Parkin
- Department of ChemistryUniversity College London20 Gordon Street, WC1H 0AJLondonUK
| |
Collapse
|
21
|
Proficient Sanitary Wastewater Treatment in Laboratory and Field-Scale Microbial Fuel Cell with Anti-Biofouling Cu0.5Mn0.5Fe2O4 as Cathode Catalyst. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2021. [DOI: 10.1149/1945-7111/abfe77] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
For successful field-scale application of microbial fuel cell (MFC), the power recovery from field-scale MFC needs to be improved considerably with simultaneous reduction in its fabrication cost. These problems can be addressed by applying low-cost and efficient cathode catalyst in MFCs. In this regard, Cu0.5Mn0.5Fe2O4 (CuMnFe) was synthesized and applied as cathode catalyst in lab and field-scale MFCs with capacity of 150 ml and 25 l, respectively. Lab-scale MFC having CuMnFe as cathode catalyst demonstrated power density of 176.0 ± 8.2 mW m−2, which was competitive with MFC having Pt as cathode catalyst (183.0 ± 12.6 mW m−2) and it was about seven times higher than control MFC (25.5 ± 4.5 mW m−2) having no catalyst. Application of CuMnFe as cathode catalyst in field-scale MFC produced power density of 7.74 mW m−2, which was three-times higher than the power produced by the field-scale MFC operated without any cathode catalyst (2.58 mW m−2). The cathode catalyst CuMnFe also demonstrated excellent anti-biofouling properties, which in turn improved the power production of field-scale MFC. Therefore, low-cost CuMnFe can be anticipated as an efficacious cathode catalyst for application in MFCs that would produce long term stable higher power, while offering simultaneous treatment to wastewater.
Collapse
|
22
|
Das S, Das S, Ghangrekar M. Application of TiO2 and Rh as cathode catalyst to boost the microbial electrosynthesis of organic compounds through CO2 sequestration. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Das S, Ghangrekar MM. Performance comparison between batch and continuous mode of operation of microbial electrosynthesis for the production of organic chemicals. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-020-01524-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
24
|
Bhowmick GD, Das S, Adhikary K, Ghangrekar MM, Mitra A. Bismuth-Impregnated Ruthenium with Activated Carbon as Photocathode Catalyst to Proliferate the Efficacy of a Microbial Fuel Cell. JOURNAL OF HAZARDOUS TOXIC AND RADIOACTIVE WASTE 2021. [DOI: 10.1061/(asce)hz.2153-5515.0000565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gourav Dhar Bhowmick
- Ph.D. Scholar, Dept. of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721302, India. ORCID:
| | - Sovik Das
- Ph.D. Scholar, Dept. of Civil Engineering, Indian Institute of Technology, Kharagpur 721302, India. ORCID:
| | - Koushik Adhikary
- Dept. of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Makarand Madhao Ghangrekar
- Professor, Dept. of Civil Engineering, Indian Institute of Technology, Kharagpur 721302, India (corresponding author). ORCID:
| | - Arunabha Mitra
- Professor, Dept. of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
25
|
Concomitant production of bioelectricity and hydrogen peroxide leading to the holistic treatment of wastewater in microbial fuel cell. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
26
|
Plant secondary metabolites induced electron flux in microbial fuel cell: investigation from laboratory-to-field scale. Sci Rep 2020; 10:17185. [PMID: 33057031 PMCID: PMC7560832 DOI: 10.1038/s41598-020-74092-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Wastewater treatment coupled with electricity recovery in microbial fuel cell (MFC) prefer mixed anaerobic sludge as inoculum in anodic chamber than pure stain of electroactive bacteria (EAB), due to robustness and syntrophic association. Genetic modification is difficult to adopt for mixed sludge microbes for enhancing power production of MFC. Hence, we demonstrated use of eco-friendly plant secondary metabolites (PSM) with sub-lethal concentrations to enhance the rate of extracellular electron transfer between EAB and anode and validated it in both bench-scale as well as pilot-scale MFCs. The PSMs contain tannin, saponin and essential oils, which are having electron shuttling properties and their addition to microbes can cause alteration in cell morphology, electroactive behaviour and shifting in microbial population dynamics depending upon concentrations and types of PSM used. Improvement of 2.1-times and 3.8-times in power densities was observed in two different MFCs inoculated with Eucalyptus-extract pre-treated mixed anaerobic sludge and pure culture of Pseudomonas aeruginosa, respectively, as compared to respective control MFCs operated without adding Eucalyptus-extract to inoculum. When Eucalyptus-extract-dose was spiked to anodic chamber (125 l) of pilot-scale MFC, treating septage, the current production was dramatically improved. Thus, PSM-dosing to inoculum holds exciting promise for increasing electricity production of field-scale MFCs.
Collapse
|
27
|
Das S, Das I, Ghangrekar M. Role of applied potential on microbial electrosynthesis of organic compounds through carbon dioxide sequestration. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2020. [DOI: 10.1016/j.jece.2020.104028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Das I, Das S, Ghangrekar M. Application of bimetallic low-cost CuZn as oxygen reduction cathode catalyst in lab-scale and field-scale microbial fuel cell. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137536] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Das I, Das S, Sharma S, Ghangrekar M. Ameliorated performance of a microbial fuel cell operated with an alkali pre-treated clayware ceramic membrane. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2020. [DOI: 10.1016/j.ijhydene.2020.04.157] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Das I, Noori MT, Shaikh M, Ghangrekar MM, Ananthakrishnan R. Synthesis and Application of Zirconium Metal–Organic Framework in Microbial Fuel Cells as a Cost-Effective Oxygen Reduction Catalyst with Competitive Performance. ACS APPLIED ENERGY MATERIALS 2020. [DOI: 10.1021/acsaem.0c00054] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Indrasis Das
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Md. T. Noori
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Melad Shaikh
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Department of Chemistry, Green Environmental Materials and Analytical Chemistry Laboratory, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Makarand M. Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajakumar Ananthakrishnan
- Department of Chemistry, Green Environmental Materials and Analytical Chemistry Laboratory, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|