1
|
Paithankar JG, Gupta SC, Sharma A. Therapeutic potential of low dose ionizing radiation against cancer, dementia, and diabetes: evidences from epidemiological, clinical, and preclinical studies. Mol Biol Rep 2023; 50:2823-2834. [PMID: 36595119 PMCID: PMC9808703 DOI: 10.1007/s11033-022-08211-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023]
Abstract
The growing use of ionizing radiation (IR)-based diagnostic and treatment methods has been linked to increasing chronic diseases among patients and healthcare professionals. However, multiple factors such as IR dose, dose-rate, and duration of exposure influence the IR-induced chronic effects. The predicted links between low-dose ionizing radiation (LDIR) and health risks are controversial due to the non-availability of direct human studies. The studies pertaining to LDIR effects have importance in public health as exposure to background LDIR is routine. It has been anticipated that data from epidemiological and clinical reports and results of preclinical studies can resolve this controversy and help to clarify the notion of LDIR-associated health risks. Accumulating scientific literature shows reduced cancer risk, cancer-related deaths, curtailed neuro-impairments, improved neural functions, and reduced diabetes-related complications after LDIR exposure. In addition, it was found to alter evolutionarily conserved stress response pathways. However, the picture of molecular signaling pathways in LDIR responses is unclear. Besides, there is limited/no information on biomarkers of epidemiological LDIR exposure. Therefore, the present review discusses epidemiological, clinical, and preclinical studies on LDIR-induced positive effects in three chronic diseases (cancer, dementia, and diabetes) and their associated molecular mechanisms. The knowledge of LDIR response mechanisms may help to devise LDIR-based therapeutic modalities to stop disease progression. Modulation of these pathways may be helpful in developing radiation resistance among humans. However, more clinical evidence with additional biochemical, cellular, and molecular data and exploring the side effects of LDIR are the major areas of future research.
Collapse
Affiliation(s)
- Jagdish Gopal Paithankar
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. .,Department of Biochemistry, All India Institute of Medical Sciences, Guwahati, 781001, India.
| | - Anurag Sharma
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
2
|
Polgár S, Schofield PN, Madas BG. Datasets of in vitro clonogenic assays showing low dose hyper-radiosensitivity and induced radioresistance. Sci Data 2022; 9:555. [PMID: 36075916 PMCID: PMC9458642 DOI: 10.1038/s41597-022-01653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022] Open
Abstract
Low dose hyper-radiosensitivity and induced radioresistance are primarily observed in surviving fractions of cell populations exposed to ionizing radiation, plotted as the function of absorbed dose. Several biophysical models have been developed to quantitatively describe these phenomena. However, there is a lack of raw, openly available experimental data to support the development and validation of quantitative models. The aim of this study was to set up a database of experimental data from the public literature. Using Google Scholar search, 46 publications with 101 datasets on the dose-dependence of surviving fractions, with clear evidence of low dose hyper-radiosensitivity, were identified. Surviving fractions, their uncertainties, and the corresponding absorbed doses were digitized from graphs of the publications. The characteristics of the cell line and the irradiation were also recorded, along with the parameters of the linear-quadratic model and/or the induced repair model if they were provided. The database is available in STOREDB, and can be used for meta-analysis, for comparison with new experiments, and for development and validation of biophysical models.
Collapse
Affiliation(s)
- Szabolcs Polgár
- Doctoral School of Physics, ELTE Eötvös Loránd University, Budapest, Hungary
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary
| | - Paul N Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Balázs G Madas
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary.
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary.
| |
Collapse
|
3
|
Desai R, Seymour C, Mothersill C. Isolated Clones of a Human Colorectal Carcinoma Cell Line Display Variation in Radiosensitivity Following Gamma Irradiation. Dose Response 2022; 20:15593258221113797. [PMID: 36106056 PMCID: PMC9465601 DOI: 10.1177/15593258221113797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/28/2022] [Indexed: 11/15/2022] Open
Abstract
Objective To determine whether the width of the shoulder and the size of the bystander effect are correlated using clonal lineages derived from a cultured cell line. Methods HCT 116 (p53 wildtype) cells were grown at cloning density and individual viable colonies were picked off and grown to establish a series of cell lines from both unirradiated and irradiated progenitors. These cell lines were then irradiated to generate full survival curves. Highly variant clones were then tested to determine the level of the bystander effect using a medium transfer protocol. Results The multi-target model gave the best fit in these experiments and size of the shoulder n is assessed in terms of radiosensitivity. The parent cell line has an n value of 1.1 while the most variant clones have n values of 0.88 (Clone G) and 5.5 (Clone A). Clonal lines subject to irradiation prior to isolation differed in bystander signal strength in comparison to clonal lines which were not initially irradiated (P = .055). Conclusions Based on these experiments we suggest there may be a link between shoulder size of a mammalian cell line and the strength of a bystander effect produced in vitro. This may have implications for radiotherapy related to out-of-field effects.
Collapse
Affiliation(s)
- Rhea Desai
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
4
|
Ma CMC. Pulsed low dose-rate radiotherapy: radiobiology and dosimetry. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac4c2f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/17/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Pulsed low dose-rate radiotherapy (PLDR) relies on two radiobiological findings, the hyper-radiosensitivity of tumor cells at small doses and the reduced normal tissue toxicity at low dose rates. This is achieved by delivering the daily radiation dose of 2 Gy in 10 sub-fractions (pulses) with a 3 min time interval, resulting in an effective low dose rate of 0.067 Gy min−1. In vitro cell studies and in vivo animal experiments demonstrated the therapeutic potential of PLDR treatments and provided useful preclinical data. Various treatment optimization strategies and delivery techniques have been developed for PLDR on existing linear accelerators. Preliminary results from early clinical studies have shown favorable outcomes for various treatment sites especially for recurrent cancers. This paper reviews the experimental findings of PLDR and dosimetric requirements for PLDR treatment planning and delivery, and summarizes major clinical studies on PLDR cancer treatments.
Collapse
|
5
|
Wen X, Qiu H, Shao Z, Liu G, Liu N, Chen A, Zhang X, Ding X, Zhang L. Pulsed low-dose rate radiotherapy has an improved therapeutic effect on abdominal and pelvic malignancies. J Zhejiang Univ Sci B 2021; 22:774-781. [PMID: 34514757 DOI: 10.1631/jzus.b2000793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Until now, there has been a lack of standard and effective treatments for patients with recurrent malignant tumors or abdominal and pelvic malignancies with extensive invasion (Morris, 2000). Generally, these patients face problems such as inability to undergo surgery or chemotherapy resistance (Combs et al., 2016). Re-radiotherapy has achieved a prominent place in the treatment of patients who have received radiotherapy previously and developed in-field recurrences (Straube et al., 2018). However, re-radiotherapy is very complicated, requiring comprehensive consideration of appropriate radiation dose, interval from first radiotherapy, boundary of the radiotherapy target area, and damage to surrounding normal tissues (Straube et al., 2019). In other words, it is necessary to focus on the protection of surrounding normal tissues while maximizing the efficacy of re-radiotherapy in such patients.
Collapse
Affiliation(s)
- Xin Wen
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Hui Qiu
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Zhiying Shao
- Department of Interventional Ultrasound, Zhejiang Cancer Hospital, Hangzhou 310000, China
| | - Guihong Liu
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Nianli Liu
- Cancer Institute of Xuzhou Medical University, Xuzhou 221000, China
| | - Aoxing Chen
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Xingying Zhang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Xin Ding
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China.
| | - Longzhen Zhang
- Cancer Institute of Xuzhou Medical University, Xuzhou 221000, China. .,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou 221000, China.
| |
Collapse
|
6
|
Supawat B, Homnuan P, Kanthawong N, Semrasa N, Tima S, Kothan S, Udomtanakunchai C, Tungjai M. Different responses of normal cells (red blood cells) and cancer cells (K562 and K562/Dox cells) to low-dose 137Cs gamma-rays. Mol Clin Oncol 2021; 14:74. [PMID: 33680462 PMCID: PMC7922799 DOI: 10.3892/mco.2021.2236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
High-dose radiation is deleterious to cells or tissues. However, the health risks of exposure to low-dose radiation remain unclear. The present study aimed to investigate the biological responses of low-dose gamma-ray in vitro exposure to normal red blood cells (RBCs) and erythroleukemia (K562 and K562/Dox) cancer cells. Cells were given a low dose of 0.03, 0.05 and 0.1 mGy of 137Cs gamma-rays (at a dose rate of 0.001 Gy/min) under in vitro conditions. Cells exposed to 0 Gy served as controls. Hemolysis and reactive oxygen species (ROS) were measured in exposed RBCs following exposure to low-dose gamma-rays. In addition, complete blood count (CBC) parameters were determined in irradiated whole blood. For irradiated K562 and K562/Dox cancer cells, ROS and mitochondrial activity were measured at 0, 30, 60 and 120 post-irradiation times. The results showed no change in the percentage of ROS and hemolysis in irradiated RBCs. The data indicated no perturbation in the CBC parameters in irradiated whole blood. By contrast, statistically significant dose-dependent increases in the percentage of ROS and decreases in the mitochondrial activity in the K562 and K562/Dox cancer cells were observed from 0 min up to 120 min post-irradiation. These findings concluded that there were differences in biological responses in normal cells (RBCs) and cancer cells (K562 and K562/Dox) to low-dose gamma-rays when cells were irradiated under in vitro conditions.
Collapse
Affiliation(s)
- Benjamaporn Supawat
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panumas Homnuan
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natthawan Kanthawong
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Niyada Semrasa
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Singkome Tima
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suchart Kothan
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chatchanok Udomtanakunchai
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Montree Tungjai
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence to: Dr Montree Tungjai, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Building 2, 110 Intawaroros Road, Sripoom, Chiang Mai 50200, Thailand
| |
Collapse
|
7
|
Pulsed low dose-rate irradiation response in isogenic HNSCC cell lines with different radiosensitivity. Radiol Oncol 2020; 54:168-179. [PMID: 32229678 PMCID: PMC7276640 DOI: 10.2478/raon-2020-0015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/01/2020] [Indexed: 12/16/2022] Open
Abstract
Background Management of locoregionally recurrent head and neck squamous cell carcinomas (HNSCC) is challenging due to potential radioresistance. Pulsed low-dose rate (PLDR) irradiation exploits phenomena of increased radiosensitivity, low-dose hyperradiosensitivity (LDHRS), and inverse dose-rate effect. The purpose of this study was to evaluate LDHRS and the effect of PLDR irradiation in isogenic HNSCC cells with different radiosensitivity. Materials and methods Cell survival after different irradiation regimens in isogenic parental FaDu and radioresistant FaDu-RR cells was determined by clonogenic assay; post irradiation cell cycle distribution was studied by flow cytometry; the expression of DNA damage signalling genes was assesed by reverse transcription-quantitative PCR. Results Radioresistant Fadu-RR cells displayed LDHRS and were more sensitive to PLDR irradiation than parental FaDu cells. In both cell lines, cell cycle was arrested in G2/M phase 5 hours after irradiation. It was restored 24 hours after irradiation in parental, but not in the radioresistant cells, which were arrested in G1-phase. DNA damage signalling genes were under-expressed in radioresistant compared to parental cells. Irradiation increased DNA damage signalling gene expression in radioresistant cells, while in parental cells only few genes were under-expressed. Conclusions We demonstrated LDHRS in isogenic radioresistant cells, but not in the parental cells. Survival of LDHRS-positive radioresistant cells after PLDR was significantly reduced. This reduction in cell survival is associated with variations in DNA damage signalling gene expression observed in response to PLDR most likely through different regulation of cell cycle checkpoints.
Collapse
|
8
|
Zhao L, Liu S, Liang D, Jiang T, Yan X, Zhao S, Liu Y, Zhao W, Yu H. Resensitization of cisplatin resistance ovarian cancer cells to cisplatin through pretreatment with low-dose fraction radiation. Cancer Med 2019; 8:2442-2448. [PMID: 30941896 PMCID: PMC6536942 DOI: 10.1002/cam4.2116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 02/06/2023] Open
Abstract
Objective Cisplatin is the first‐line chemotherapy for ovarian cancer. However, cisplatin resistance is severely affecting the treatment efficacy. FOXO3a has been reported to be involved in reversing chemotherapy resistance. However, whether low‐dose fraction radiation therapy (LDFRT) can reverse cisplatin resistance remains unclear. This study aimed to explore the effect of LDFRT on cisplatin resistance and its relation with FOXO3a expression in vitro. Methods The toxicity of cisplatin on SKOV3/DDP cells was evaluated by CCK8 assay and cell apoptosis was measured by Annexin V‐FITC staining as well as Hoechst33342 staining. The expression of FOXO3a and other relative proteins was measured by western blot. Results Our study found that LDFRT enhanced cisplatin‐induced apoptosis of SKOV3/DDP cells and promoted the expression of FOXO3a and pro‐apoptotic protein PUMA. In addition, overexpression of FOXO3a promoted PUMA activity and toxicity of cisplatin on SKOV3/DDP cells. Conclusion LDFRT reverses cisplatin resistance of SKOV3/DDP cells possibly by upregulating the expression of FOXO3a and its downstream target PUMA, suggesting that LDFRT might be a potent chemosensitizer for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Lili Zhao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Shihai Liu
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Donghai Liang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Tao Jiang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiaoyan Yan
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Shengnan Zhao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yuanwei Liu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Wei Zhao
- Department of Oncology, Traditional Chinese medical hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Hongsheng Yu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
9
|
Mothersill C, Seymour C. Targets, pools, shoulders, and communication – a reflection on the evolution of low-dose radiobiology. Int J Radiat Biol 2019; 95:851-860. [DOI: 10.1080/09553002.2019.1589016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
10
|
Yang G, Yu D, Li W, Zhao Y, Wen X, Liang X, Zhang X, Zhou L, Hu J, Niu C, Tian H, Han F, Chen X, Dong L, Cai L, Cui J. Distinct biological effects of low-dose radiation on normal and cancerous human lung cells are mediated by ATM signaling. Oncotarget 2018; 7:71856-71872. [PMID: 27708248 PMCID: PMC5342128 DOI: 10.18632/oncotarget.12379] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 09/25/2016] [Indexed: 11/30/2022] Open
Abstract
Low-dose radiation (LDR) induces hormesis and adaptive response in normal cells but not in cancer cells, suggesting its potential protection of normal tissue against damage induced by conventional radiotherapy. However, the underlying mechanisms are not well established. We addressed this in the present study by examining the role of the ataxia telangiectasia mutated (ATM) signaling pathway in response to LDR using A549 human lung adenocarcinoma cells and HBE135-E6E7 (HBE) normal lung epithelial cells. We found that LDR-activated ATM was the initiating event in hormesis and adaptive response to LDR in HBE cells. ATM activation increased the expression of CDK4/CDK6/cyclin D1 by activating the AKT/glycogen synthase kinase (GSK)-3β signaling pathway, which stimulated HBE cell proliferation. Activation of ATM/AKT/GSK-3β signaling also increased nuclear accumulation of nuclear factor erythroid 2-related factor 2, leading to increased expression of antioxidants, which mitigated cellular damage from excessive reactive oxygen species production induced by high-dose radiation. However, these effects were not observed in A549 cells. Thus, the failure to activate these pathways in A549 cells likely explains the difference between normal and cancer cells in terms of hormesis and adaptive response to LDR.
Collapse
Affiliation(s)
- Guozi Yang
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China.,Department of Radiation-Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Dehai Yu
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuguang Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xue Wen
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xinyue Liang
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaoying Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Lei Zhou
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Jifan Hu
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Chao Niu
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Huimin Tian
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Fujun Han
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiao Chen
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Lihua Dong
- Department of Radiation-Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Lu Cai
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China.,Kosair Children's Hospital Research Institute, Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
11
|
Terashima S, Hosokawa Y, Tsuruga E, Mariya Y, Nakamura T. Impact of time interval and dose rate on cell survival following low-dose fractionated exposures. JOURNAL OF RADIATION RESEARCH 2017; 58:782-790. [PMID: 28595296 PMCID: PMC5710595 DOI: 10.1093/jrr/rrx025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/08/2017] [Indexed: 05/23/2023]
Abstract
Enhanced cell lethality, also known as hyper-radiosensitivity, has been reported at low doses of radiation (≤0.5 Gy) in various cell lines, and is expected to be an effective cancer therapy. We conducted this study to examine the impact of time interval and dose rate of low-dose fractionated exposures with a short time interval. We evaluated the cell-survival rates of V79 and A549 cells using clonogenic assays. We performed fractionated exposures in unit doses of 0.25, 0.5, 1.0 and 2.0 Gy. We exposed the cells to 2 Gy of X-rays (i) at dose-rates of 1.0, 1.5 and 2.0 Gy/min at 1-min intervals and (ii) at a dose-rate of 2.0 Gy/min at 10-s, 1-min and 3-min intervals by fractionated exposures. Apoptosis and cell cycle analyses were also evaluated in the fractionated exposures (unit dose 0.25 Gy) and compared with single exposures by using flow cytometry. Both cell-type survival rates with fractionated exposures (unit dose 0.25 Gy) with short time intervals were markedly lower than those for single exposures delivering the same dose. When the dose rates were lower, the cytotoxic effect decreased compared with exposure to a dose-rate of 2.0 Gy/min. On the other hand, levels of apoptosis and cell cycle distribution were not significantly different between low-dose fractionated exposures and single exposures in either cell line. These results indicate that a stronger cytotoxic effect was induced with low-dose fractionated exposures with a short time interval for a given dose due to the hyper-radiosensitivity phenomenon, suggesting that dose rates are important for effective low-dose fractionated exposures.
Collapse
Affiliation(s)
- Shingo Terashima
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Yoichiro Hosokawa
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Eichi Tsuruga
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Yasushi Mariya
- Department of Radiology, Mutsu General Hospital, 1-2-8 Kogawa-cho, Mutsu, Aomori 035-8601, Japan
| | - Toshiya Nakamura
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
12
|
Enns L, Rasouli-Nia A, Hendzel M, Marples B, Weinfeld M. Association of ATM activation and DNA repair with induced radioresistance after low-dose irradiation. RADIATION PROTECTION DOSIMETRY 2015; 166:131-6. [PMID: 25904696 PMCID: PMC4572139 DOI: 10.1093/rpd/ncv203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mammalian cells often exhibit a hyper-radiosensitivity (HRS) to radiation doses <20 cGy, followed by increased radioresistance (IRR) at slightly higher doses (∼20-30 cGy). Here, the influence of DNA double-strand break repair (DSBR) on IRR was examined. The failure of Ataxia telangiectasia (AT) cells to undergo IRR reported by others was confirmed. Flow cytometric analysis indicated that normal cells fail to show a measurable increase in serine 1981 phosphorylated AT-mutated (ATM) protein after 10 cGy up to 4 h post irradiation, but a two- to fourfold increase after 25 cGy. Similarly, more proficient reduction of phosphorylated histone H2AX was observed 24 h after 25 cGy than after 10 cGy, suggesting that DSBR is more efficient during IRR than HRS. A direct examination of the consequences of inefficient DNA repair per se (as opposed to ATM-mediated signal transduction/cell cycle responses), by determining the clonogenic survival of cells lacking the DNA repair enzyme polynucleotide kinase/phosphatase, indicated that these cells have a response similar to AT cells, i.e. HRS but no IRR, strongly linking IRR to DSBR.
Collapse
Affiliation(s)
- L Enns
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave., Edmonton, Alberta T6G 1Z2, Canada
| | - A Rasouli-Nia
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave., Edmonton, Alberta T6G 1Z2, Canada
| | - M Hendzel
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave., Edmonton, Alberta T6G 1Z2, Canada
| | - B Marples
- Department of Radiation Oncology, William Beaumont Hospital, 3811 W. Thirteen Mile Rd., 105-RI, Royal Oak, MI 48073, USA
| | - M Weinfeld
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave., Edmonton, Alberta T6G 1Z2, Canada
| |
Collapse
|
13
|
Martin LM, Marples B, Lynch TH, Hollywood D, Marignol L. Exposure to low dose ionising radiation: Molecular and clinical consequences. Cancer Lett 2014; 349:98-106. [DOI: 10.1016/j.canlet.2013.12.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Zhao YX, Cheng C, Zhu F, Wu HG, Ren JH, Chen WH, Cheng J. Suppression of low-dose hyper-radiosensitivity in human lung cancer cell line A549 by radiation-induced autophagy. ACTA ACUST UNITED AC 2013; 33:770-774. [PMID: 24142735 DOI: 10.1007/s11596-013-1195-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/20/2013] [Indexed: 12/18/2022]
Abstract
This study explored the role of radiation-induced autophagy in low-dose hyperradiosensitivity (HRS) in the human lung cancer cell line A549. A549 cells, either treated with an autophagic inhibitor 3-methyladenine (3-MA), or with a vehicle control, were irradiated at different low doses (≤0.5 Gy). The generation of autophagy was examined by laser scanning confocal microscopy. Western blotting was used to detect the expression of microtubule-associated protein l light chain 3B II (LC3B-II). Flow cytometry (FCM) and clonogenic assays were used to measure the fraction of surviving cells at the low irradiation doses. Our results showed that there was a greater inhibition of autophagic activity, but a higher degree of low-dose HRS in A549 cells treated with 3-MA than in control group. Our data demonstrated that radiation-induced autophagy is correlated with HRS in A549 cells, and is probably one of the mechanisms underlying HRS.
Collapse
Affiliation(s)
- Yan-Xia Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430023, China
| | - Chen Cheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430023, China
| | - Fang Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430023, China
| | - Hong-Ge Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430023, China
| | - Jing-Hua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430023, China
| | - Wei-Hong Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430023, China
| | - Jing Cheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430023, China.
| |
Collapse
|
15
|
Exposure to low dose ionising radiation: molecular and clinical consequences. Cancer Lett 2013; 338:209-18. [PMID: 23693079 DOI: 10.1016/j.canlet.2013.05.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 12/19/2022]
Abstract
This review article provides a comprehensive overview of the experimental data detailing the incidence, mechanism and significance of low dose hyper-radiosensitivity (HRS). Important discoveries gained from past and present studies are mapped and highlighted to illustrate the pathway to our current understanding of HRS and the impact of HRS on the cellular response to radiation in mammalian cells. Particular attention is paid to the balance of evidence suggesting a role for DNA repair processes in the response, evidence suggesting a role for the cell cycle checkpoint processes, and evidence investigating the clinical implications/relevance of the effect.
Collapse
|