1
|
El-Shoura EAM, Abdelzaher LA, Ahmed AAN, Abdel-Wahab BA, Sharkawi SMZ, Mohamed SA, Salem EA. Reno-protective effect of nicorandil and pentoxifylline against potassium dichromate-induced acute renal injury via modulation p38MAPK/Nrf2/HO-1 and Notch1/TLR4/NF-κB signaling pathways. J Trace Elem Med Biol 2024; 85:127474. [PMID: 38788404 DOI: 10.1016/j.jtemb.2024.127474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/09/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Occupational and environmental exposure to chromium compounds such as potassium dichromate (PDC) (K2Cr2O7) has emerged as a potential aetiologic cause for renal disease through apoptotic, and inflammatory reactions. The known potent antioxidants such as nicorandil (NIC) and/or pentoxifylline (PTX) were studied for their possible nephroprotective effect in PDC-treated rats. METHODS Forty male Wistar rats were divided into five groups; control, PDC group, NIC+PDC, PTX+PDC group, and combination+PDC group. Nephrotoxicity was evaluated histopathologically and biochemically. Invasive blood pressure, renal function parameters urea, creatinine, uric acid and albumin, glomerular filtration rate markers Cys-C, Kim-1 and NGAL, inflammatory markers IL-1β, IL-6, TNF-α, TGF-β, COX-II, p38MAPK, NF-κB and TLR4, oxidative stress SOD, GSH, MDA, MPO, HO-1 and Nrf2 and apoptotic mediators Notch1 and PCNA were evaluated. Besides, renal cortical histopathology was assayed as well. RESULTS PDC led to a considerable increase in indicators for kidney injury, renal function parameters, invasive blood pressure, oxidative stress, and inflammatory markers. They were markedly reduced by coadministration of PDC with either/or NIC and PTX. The NIC and PTX combination regimen showed a more significant improvement than either medication used alone. Our results demonstrated the nephroprotective effect of NIC, PTX, and their combined regimen on PDC-induced kidney injury through suppression of oxidative stress, apoptosis, and inflammatory response. CONCLUSION Renal recovery from PDC injury was achieved through enhanced MAPK/Nrf2/HO-1 and suppressed Notch1/TLR4/NF-κB signaling pathways. This study highlights the role of NIC and PTX as effective interventions to ameliorate nephrotoxicity in patients undergoing PDC toxicity.
Collapse
Affiliation(s)
- Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt; Department of Pharmacy Practice, Faculty of Pharmacy, Horus University, New Damietta, Egypt.
| | - Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed A N Ahmed
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, P.O. Box 1988, Najran, Saudi Arabia
| | - Souty M Z Sharkawi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | | | - Esraa A Salem
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen ElKom 32511, Egypt
| |
Collapse
|
2
|
Zhang M, Wang Y, Fu W, Sun L. The effect of a methylxanthine vasodilator: pentoxifylline on the treatment of diabetic nephropathy-a meta-analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2777-2791. [PMID: 37987795 DOI: 10.1007/s00210-023-02842-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
This meta-analysis aimed to comprehensively evaluate the efficacy and safety of pentoxifylline (PTF) in the treatment of diabetic nephropathy (DN) and to offer fresh perspectives and evidence-based references for this condition. Meta-analysis. Relevant randomized controlled trials (RCTs) were searched from PubMed, Embase, Cochrane Library, China Knowledge Network (CNKI), Wanfang, and China Biomedical Literature Database. All trials were screened for compliance with the inclusion and exclusion criteria, and relevant data were extracted after quality evaluation. Eighteen studies with a total of 1280 patients were finally included. Compared to the control group, high sensitivity C-reactive protein (hsCRP) was improved (MD = - 0.23. 95% CI = [- 0.41, - 0.05], P = 0.01); urinary albumin excretion (UAE) rate was reduced (MD = - 16.50, 95% CI = [- 18.87, - 14.13], P<0.00001); the change of serum creatinine (Scr) from baseline was reduced (MD = - 0.05, 95%CI = [- 0.08, - 0.01], P = 0.009); fasting plasma glucose (FPG) was decreased (MD = - 5.66, 95% CI = [- 9.79, - 1.53], P = 0.007); and the improvement of glomerular filtration rate (eGFR) from baseline was increased (MD = 4.38, 95% CI = [3.28, 5.48], P<0.00001) in the treatment group. No significant difference was observed between the two groups concerning systolic blood pressure, diastolic blood pressure, total cholesterol, and triglycerides. And in terms of safety, the use of PTF was relatively safe with some self-limiting adverse events. FPG was decreased by PTF more effectively, but there was no effect of PTF on glycated hemoglobin (HbA1c). PTF could improve hsCRP, decrease UAE and Scr, and raise eGFR in the treatment of DN.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yaqing Wang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Wenjing Fu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Li Sun
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, People's Republic of China.
| |
Collapse
|
3
|
Hu Q, Jiang L, Yan Q, Zeng J, Ma X, Zhao Y. A natural products solution to diabetic nephropathy therapy. Pharmacol Ther 2023; 241:108314. [PMID: 36427568 DOI: 10.1016/j.pharmthera.2022.108314] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Diabetic nephropathy is one of the most common complications in diabetes. It has been shown to be the leading cause of end-stage renal disease. However, due to their complex pathological mechanisms, effective therapeutic drugs other than angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), which have been used for 20 years, have not been developed so far. Recent studies have shown that diabetic nephropathy is characterized by multiple signalling pathways and multiple targets, including inflammation, apoptosis, pyroptosis, autophagy, oxidative stress, endoplasmic reticulum stress and their interactions. It definitely exacerbates the difficulty of therapy, but at the same time it also brings out the chance for natural products treatment. In the most recent two decades, a large number of natural products have displayed their potential in preclinical studies and a few compounds are under invetigation in clinical trials. Hence, many compounds targeting these singals have been emerged as a comprehensive blueprint for treating strategy of diabetic nephropathy. This review focuses on the cellular and molecular mechanisms of natural prouducts that alleviate this condition, including preclinical studies and clinical trials, which will provide new insights into the treatment of diabetic nephropathy and suggest novel ideas for new drug development.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China
| | - Lan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
4
|
Gao Y, Wang C, Wang K, He C, Hu K, Liang M. The effects and molecular mechanism of heat stress on spermatogenesis and the mitigation measures. Syst Biol Reprod Med 2022; 68:331-347. [PMID: 35722894 DOI: 10.1080/19396368.2022.2074325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Under normal conditions, to achieve optimal spermatogenesis, the temperature of the testes should be 2-6 °C lower than body temperature. Cryptorchidism is one of the common pathogenic factors of male infertility. The increase of testicular temperature in male cryptorchidism patients leads to the disorder of body regulation and balance, induces the oxidative stress response of germ cells, destroys the integrity of sperm DNA, yields morphologically abnormal sperm, and leads to excessive apoptosis of germ cells. These physiological changes in the body can reduce sperm fertility and lead to male infertility. This paper describes the factors causing testicular heat stress, including lifestyle and behavioral factors, occupational and environmental factors (external factors), and clinical factors caused by pathological conditions (internal factors). Studies have shown that wearing tight pants or an inappropriate posture when sitting for a long time in daily life, and an increase in ambient temperature caused by different seasons or in different areas, can cause an increase in testicular temperature, induces testicular oxidative stress response, and reduce male fertility. The occurrence of cryptorchidism causes pathological changes within the testis and sperm, such as increased germ cell apoptosis, DNA damage in sperm cells, changes in gene expression, increase in chromosome aneuploidy, and changes in Na+/K+-ATPase activity, etc. At the end of the article, we list some substances that can relieve oxidative stress in tissues, such as trigonelline, melatonin, R. apetalus, and angelica powder. These substances can protect testicular tissue and relieve the damage caused by excessive oxidative stress.
Collapse
Affiliation(s)
- Yuanyuan Gao
- School of Life Science, Bengbu Medical College, Bengbu, People's Republic of China
| | - Chen Wang
- School of Life Science, Bengbu Medical College, Bengbu, People's Republic of China
| | - Kaixian Wang
- School of Life Science, Bengbu Medical College, Bengbu, People's Republic of China
| | - Chaofan He
- School of Life Science, Bengbu Medical College, Bengbu, People's Republic of China
| | - Ke Hu
- School of Life Science, Bengbu Medical College, Bengbu, People's Republic of China
| | - Meng Liang
- School of Life Science, Bengbu Medical College, Bengbu, People's Republic of China
| |
Collapse
|
5
|
Mitrofanova A, Fontanella AM, Merscher S, Fornoni A. Lipid deposition and metaflammation in diabetic kidney disease. Curr Opin Pharmacol 2020; 55:60-72. [PMID: 33137677 DOI: 10.1016/j.coph.2020.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/16/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
A critical link between metabolic disorders and a form of low-grade systemic and chronic inflammation has been recently established and named 'Metaflammation'. Metaflammation has been recognized as a key mediator of both microvascular and macrovascular complications of diabetes and as a significant contributor to the development of diabetic kidney disease (DKD). The goal of this review is to summarize the contribution of diabetes-induced inflammation and the related signaling pathways to diabetic complications, with a particular focus on how innate immunity and lipid metabolism influence each other.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA; Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Antonio M Fontanella
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
6
|
Bahadir S, Narin F, Başar I, Hanalioğlu Ş, Bilginer B, Akalan N. The effect of pentoxifylline on cerebral vasospasm following experimental subarachnoid hemorrhage. Int J Neurosci 2020; 131:909-913. [PMID: 32324426 DOI: 10.1080/00207454.2020.1760268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTS Cerebral vasospasm is an important event that occurs following subarachnoid hemorage which has significant mortality and morbidity. The goal in this study was to investigate the effect of pentoxifylline on vasospasm in an experimental subarachnoid hemorrhage model. METHODS In this study, 20 male New Zeland White rabbits weighing 3000-3500 g were assigned randomly to four groups. Animals in group 1 served as controls. Animals in group two received only intravenous pentoxifylline injection 3 times in 12 h intervals. In group 3, SAH was induced and no injection was given. Animals in group 4 received intravenous pentoxifylline (6 mg/kg) injections 3 times at 12th, 24th and 36th hours after subarachnoid hemorrhage induction. All animals were sacrificed and basilar arteries were removed at 48th hour. Basilar artery vessel diameters, wall thicknesses and luminal section areas were measured with Spot for Windows version 4.1. Statistical analysis was performed using ANOVA and Kruskall-Wallis tests. RESULTS Mean basilar artery luminal section areas and luminal diameters in group 4 were significantly higher compared to group 3 (p < 0.05). Basilar artery wall thicknesses and were found to be higher in group 3 than in other groups and this was also statistically significant (p < 0.05). CONCLUSION Our study demonstrated that intravenous administration of pentoxifylline significantly decreases vasospasm after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Sinan Bahadir
- Department of Neurosurgery, Hacettepe University, Ankara, Turkey
| | - Firat Narin
- Department of Neurosurgery, Hacettepe University, Ankara, Turkey
| | - Ibrahim Başar
- Department of Neurosurgery, Hacettepe University, Ankara, Turkey
| | - Şahin Hanalioğlu
- Department of Neurosurgery, Hacettepe University, Ankara, Turkey
| | - Burçak Bilginer
- Department of Neurosurgery, Hacettepe University, Ankara, Turkey
| | - Nejat Akalan
- Department of Neurosurgery, Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
Leehey DJ. Targeting Inflammation in Diabetic Kidney Disease: Is There a Role for Pentoxifylline? ACTA ACUST UNITED AC 2020; 1:292-299. [DOI: 10.34067/kid.0001252019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Diabetic kidney disease (DKD) is the most common cause of ESKD in the United States and worldwide. Current treatment for DKD includes strict glycemic control and normalization of BP with renin-angiotensin-aldosterone system (RAAS) blockade. Although RAAS blockers slow progression of disease, they do not generally prevent ESKD and none of the studies with these agents in DKD included patients who were nonproteinuric, which make up an increasingly large percentage of patients with diabetes now seen in clinical practice. Recent studies with glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter-2 (SGLT2) inhibitors have shown beneficial renal effects, and the benefits of SGLT2 inhibitors likely extend to patients who are nonproteinuric. However, there remains a need to develop new therapies for DKD, particularly in those patients with advanced disease. A role of chronic low-grade inflammation in microvascular complications in patients with diabetes has now been widely accepted. Large clinical trials are being carried out with experimental agents such as bardoxolone and selonsertib that target inflammation and oxidative stress. The Food and Drug Administration–approved, nonspecific phosphodiesterase inhibitor pentoxifylline (PTX) has been shown to have anti-inflammatory effects in both animal and human studies by inhibiting the production of proinflammatory cytokines. Small randomized clinical trials and meta-analyses indicate that PTX may have therapeutic benefits in DKD, raising the possibility that a clinically available drug may be able to be repurposed to treat this disease. A large, multicenter, randomized clinical trial to determine whether this agent can decrease time to ESKD or death is currently being conducted, but results will not be available for several years. At this time, the combination of RAAS blockade plus SGLT2 inhibition is considered standard of care for DKD, but it may be reasonable for clinicians to consider addition of PTX in patients whose disease continues to progress despite optimization of current standard-of-care therapies.
Collapse
|
8
|
Wu F, Liu R, Shen X, Xu H, Sheng L. Study on the interaction and antioxidant activity of theophylline and theobromine with SOD by spectra and calculation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 215:354-362. [PMID: 30852283 DOI: 10.1016/j.saa.2019.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
Theophylline (TP) and theobromine (TB) are the methyl derivatives of xanthine. The antioxidation of TP and TB as well as the effect of the antioxidation and activity of copper‑zinc superoxide dismutase (SOD) with TP and TB were investigated. The contents of MDA in cells showed that both TP (14.49 μmol/g) and TB (14.25 μmol/g) are active in oxidation resistance and closed to the antioxidant effect of SOD (13.77 μmol/g). With the formation of TP-SOD and TB-SOD, the antioxidant ability can be superimposed. The interactions between TP/TB and SOD were studied by ultraviolet spectrum, fluorescence spectrum and molecular docking. The results showed that the complex of TP/TB and SOD with 1:1 component was stabilized by hydrogen bonding and van der Waals forces. The analysis also indicated that the microenvironment and structure of SOD were changed. All of the results indicate that the complex formation of TP-SOD and TB-SOD can maintain their respective antioxidant effects without changes in the activity of SOD.
Collapse
Affiliation(s)
- Fufang Wu
- School of Chemistry and Materials Engineering, Fuyang Normal College, Fuyang 236037, China; Engineering Research Center of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang 236037, China
| | - Ruirui Liu
- School of Chemistry and Materials Engineering, Fuyang Normal College, Fuyang 236037, China; Engineering Research Center of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang 236037, China
| | - Xiaobao Shen
- School of Chemistry and Materials Engineering, Fuyang Normal College, Fuyang 236037, China; Engineering Research Center of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang 236037, China
| | - Huajie Xu
- School of Chemistry and Materials Engineering, Fuyang Normal College, Fuyang 236037, China; Engineering Research Center of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang 236037, China
| | - Liangquan Sheng
- School of Chemistry and Materials Engineering, Fuyang Normal College, Fuyang 236037, China; Engineering Research Center of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang 236037, China.
| |
Collapse
|
9
|
Elhawary AHM, Ibrahim AN, Attallah MI. Comparative Study between the Effect of Pentoxifylline versus Diltiazem versus Rosuvastatin on the Development and Progression of Nephropathy in Streptozotocin Induced Diabetic Rats. EGYPTIAN JOURNAL OF BASIC AND CLINICAL PHARMACOLOGY 2018. [DOI: 10.11131/2018/101367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Abdel Hamid M. Elhawary
- Department of Clinical Pharmacology, Faculty of Medicine, Benha University, Benha, Qalubiya, Egypt
| | - Amany N. Ibrahim
- Department of Clinical Pharmacology, Faculty of Medicine, Benha University, Benha, Qalubiya, Egypt
| | - Magdy I. Attallah
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Kasr Alainy, Cairo, Egypt
| |
Collapse
|
10
|
Pentoxifylline prevents post-traumatic stress disorder induced memory impairment. Brain Res Bull 2018; 139:263-268. [DOI: 10.1016/j.brainresbull.2018.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/11/2018] [Accepted: 03/15/2018] [Indexed: 02/07/2023]
|
11
|
Effect of triptolide on expression of oxidative carbonyl protein in renal cortex of rats with diabetic nephropathy. ACTA ACUST UNITED AC 2017; 37:25-29. [PMID: 28224432 DOI: 10.1007/s11596-017-1689-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/06/2016] [Indexed: 10/18/2022]
Abstract
The traditional Chinese medicine (Tripterygium wilfordiiHook.f., TWH) has been clinically used to treat primary and secondary renal diseases and proteinuria for nearly 40 years. However, there is a rare literature about the effect of triptolide (the main active ingredient of TWH) on the expression of oxidative carbonyl protein (OCP) in diabetic nephropathy (DN). This study aimed to provide experimental evidence for triptolide treatment on DN through its effect on the expression of OCP, in order to investigate the effects of triptolide on the expression of OCP in rats with DN. Sixty SD rats were randomly divided into five groups: control group, high-dose triptolide (Th) group, low-dose triptolide (Tl) group, DN model group, and positive control (benazepril) group. The DN model was established using streptozotocin. Urinary protein excretion, fasting blood glucose (FBG), superoxide dismutase (SOD) in renal homogenate, malondialdehyde (MDA) in renal homogenate and renal nitrotyrosine by immunohistochemistry, and the expression of OCP by oxyblotimmune blotting were detected. In the DN model group, rat urinary protein excretion and renal MDA were significantly increased, while renal SOD significantly decreased and nitrotyrosine expression was obviously upregulated in the kidney. After triptolide treatment, 24-h urinary protein excretion (61.96±19.00 vs. 18.32±4.78 mg/day, P<0.001), renal MDA (8.09±0.79 vs. 5.45±0.68 nmol/L, P<0.001), and nitrotyrosine expression were decreased. Furthermore, renal OCP significantly decreased, while renal SOD (82.50±19.10 vs. 124.00±20.52 U/L, P<0.001) was elevated. This study revealed that triptolide can down-regulate the expression of OCP in the renal cortex of DN rats.
Collapse
|
12
|
Bhanot S, Leehey DJ. Pentoxifylline for Diabetic Nephropathy: an Important Opportunity to Re-purpose an Old Drug? Curr Hypertens Rep 2016; 18:8. [DOI: 10.1007/s11906-015-0612-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|