1
|
Zhu X, Cheung WW, Zhang A, Ding G. Mutation Characteristics of Primary Hyperoxaluria in the Chinese Population and Current International Diagnosis and Treatment Status. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:313-326. [PMID: 39131880 PMCID: PMC11309763 DOI: 10.1159/000539516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/16/2024] [Indexed: 08/13/2024]
Abstract
Background Primary hyperoxaluria (PH) is a rare autosomal recessive disorder, mainly due to the increase in endogenous oxalate production, causing a series of clinical features such as kidney stones, nephrocalcinosis, progressive impairment of renal function, and systemic oxalosis. There are three common genetic causes of glycolate metabolism anomalies. Among them, PH type 1 is the most prevalent and severe type, and early end-stage renal failure often occurs. Summary This review summarizes PH through pathophysiology, genotype, clinical manifestation, diagnosis, and treatment options. And explore the characteristics of Chinese PH patients. Key Messages Diagnosis of this rare disease is based on clinical symptoms, urinary or blood oxalate concentrations, liver biopsy, and genetic testing. Currently, the main treatment is massive hydration, citrate inhibition of crystallization, dialysis, liver and kidney transplantation, and pyridoxine. Recently, RNA interference drugs have also been used. In addition, technologies such as gene editing and autologous liver cell transplantation are also being developed. C.815_816insGA and c.33_34insC mutation in the AGXT gene could be a common variant in Chinese PH1 population. Mutations at the end of exon 6 account for approximately 50% of all Chinese HOGA1 mutations. Currently, the treatment of PH in China still relies mainly on symptomatic and high-throughput dialysis, with poor prognosis (especially for PH1 patients).
Collapse
Affiliation(s)
- Xingying Zhu
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wai W. Cheung
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA, USA
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Guixia Ding
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Wu J, Song J, He Y, Zhong C, Yang Q, Li Q, Wang M. Case series and literature review of primary hyperoxaluria type 1 in Chinese patients. Urolithiasis 2023; 51:123. [PMID: 37874369 PMCID: PMC10598140 DOI: 10.1007/s00240-023-01494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/20/2023] [Indexed: 10/25/2023]
Abstract
Based on the single-center case reports and all reported patients with primary hyperoxaluria type 1 (PH1) in China, this study discussed the clinical and genetic characteristics of this disease retrospectively. We reported and validated a novel genetic variation c.302 T > G: the clinical phenotypes of the two siblings were similar, in which both had onset in infancy, mainly manifested as renal insufficiency, and died within 6 months out of end-stage renal disease. The literature review is the first to summarize the Chinese patients with PH1 up to now. Forty-eight Chinese patients were included, containing 7 adults and 41 children. The median onset age was 51 months, and the ratio of male to female was 2.69:1. It showed a poor prognosis: 51.1% of Chinese primary hyperoxaluria type 1 patients suffered from end-stage renal disease, and 38.9% of patients died. Urolithiasis was the most common clinical manifestation both in adults and children, while infant-onset patients generally presented with renal insufficiency and had a higher mortality of 75.0%. One hundred and forty-nine AGXT mutant alleles are currently known in the Chinese population, c.33dupC and c.815_816insGA were the most common AGXT genes, accounting for 12.0% and 10.1% of allele frequencies, respectively. The exons 1, 2, 6, and 8 were the most common locations of gene variants, accounting for 78% of all variants, which will be promising targets of DNA sequencing for primary hyperoxaluria type 1.
Collapse
Affiliation(s)
- Jiayu Wu
- Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jing Song
- Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yanzhao He
- University of Leeds, Woodhouse, Leeds, LS2 9JT, UK
| | - Cheng Zhong
- Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qin Yang
- Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qiu Li
- Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Mo Wang
- Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
3
|
Mandrile G, Beck B, Acquaviva C, Rumsby G, Deesker L, Garrelfs S, Gupta A, Bacchetta J, Groothoff J. Genetic assessment in primary hyperoxaluria: why it matters. Pediatr Nephrol 2023; 38:625-634. [PMID: 35695965 PMCID: PMC9842587 DOI: 10.1007/s00467-022-05613-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 04/29/2022] [Indexed: 01/21/2023]
Abstract
Accurate diagnosis of primary hyperoxaluria (PH) has important therapeutic consequences. Since biochemical assessment can be unreliable, genetic testing is a crucial diagnostic tool for patients with PH to define the disease type. Patients with PH type 1 (PH1) have a worse prognosis than those with other PH types, despite the same extent of oxalate excretion. The relation between genotype and clinical phenotype in PH1 is extremely heterogeneous with respect to age of first symptoms and development of kidney failure. Some mutations are significantly linked to pyridoxine-sensitivity in PH1, such as homozygosity for p.G170R and p.F152I combined with a common polymorphism. Although patients with these mutations display on average better outcomes, they may also present with CKD stage 5 in infancy. In vitro studies suggest pyridoxine-sensitivity for some other mutations, but confirmatory clinical data are lacking (p.G47R, p.G161R, p.I56N/major allele) or scarce (p.I244T). These studies also suggest that other vitamin B6 derivatives than pyridoxine may be more effective and should be a focus for clinical testing. PH patients displaying the same mutation, even within one family, may have completely different clinical outcomes. This discordance may be caused by environmental or genetic factors that are unrelated to the effect of the causative mutation(s). No relation between genotype and clinical or biochemical phenotypes have been found so far in PH types 2 and 3. This manuscript reviews the current knowledge on the genetic background of the three types of primary hyperoxaluria and its impact on clinical management, including prenatal diagnosis.
Collapse
Affiliation(s)
- Giorgia Mandrile
- Medical Genetics Unit and Thalassemia Center, San Luigi University Hospital, University of Torino, Orbassano, TO, Italy
| | - Bodo Beck
- Institute of Human Genetics, Center for Molecular Medicine Cologne, and Center for Rare and Hereditary Kidney Disease, University Hospital of Cologne, CologneCologne, Germany
| | - Cecile Acquaviva
- Service de Biochimie Et Biologie Moléculaire, Hospices Civils de Lyon, UM Pathologies Héréditaires du Métabolisme Et du Globule Rouge, Lyon, France
| | - Gill Rumsby
- Department of Clinical Biochemistry, University College London Hospitals NHS Foundation Trust | UCLH, Kintbury, UK
| | - Lisa Deesker
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Sander Garrelfs
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Asheeta Gupta
- Department of Nephrology, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Justine Bacchetta
- Reference Center for Rare Renal Diseases, Pediatric Nephrology-Rheumatology-Dermatology Unit, Hospices Civils de Lyon, Femme Mere Enfant Hospital, Lyon 1 University, Bron, France
| | - Jaap Groothoff
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
4
|
Abid A, Raza A, Khan AR, Firasat S, Shahid S, Hashmi S, Zafar MN, Sultan S, Khaliq S, Rizvi SAUH. Primary hyperoxaluria: Comprehensive mutation screening of the disease causing genes and spectrum of disease-associated pathogenic variants. Clin Genet 2023; 103:53-66. [PMID: 36185032 DOI: 10.1111/cge.14240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 12/13/2022]
Abstract
The primary hyperoxalurias are rare disorders of glyoxylate metabolism. Accurate diagnosis is essential for therapeutic and management strategies. We conducted a molecular study on patients suffering from recurrent calcium-oxalate stones and nephrocalcinosis and screened primary hyperoxaluria causing genes in a large cohort of early-onset cases. Disease-associated pathogenic-variants were defined as missense, nonsense, frameshift-indels, and splice-site variants with a reported minor allele frequency <1% in controls. We found pathogenic-variants in 34% of the cases. Variants in the AGXT gene causing PH-I were identified in 81% of the mutation positive cases. PH-II-associated variants in the GRHPR gene are found in 15% of the pediatric PH-positive population. Only 3% of the PH-positive cases have pathogenic-variants in the HOGA1 gene, responsible to cause PH-III. A population-specific AGXT gene variant c.1049G>A; p.Gly350Asp accounts for 22% of the PH-I-positive patients. Pathogenicity of the identified variants was evaluated by in-silico tools and ACMG guidelines. We have devised a rapid and low-cost approach for the screening of PH by using targeted-NGS highlighting the importance of an accurate and cost-effective screening platform. This is the largest study in Pakistani pediatric patients from South-Asian region that also expands the mutation spectrum of the three known genes.
Collapse
Affiliation(s)
- Aiysha Abid
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Ali Raza
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Abdul Rafay Khan
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Sadaf Firasat
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Saba Shahid
- Molecular Diagnostic Laboratory, Al Qassimi Hospital, Sharjah, UAE
| | - Seema Hashmi
- Department of Pediatric Nephrology, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Mirza Naqi Zafar
- Department of Pathology, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Sajid Sultan
- Department of Pediatric Urology, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Shagufta Khaliq
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | | |
Collapse
|
5
|
Xin Q, Dong Y, Guo W, Zhao X, Liu Z, Shi X, Lang Y, Shao L. Four novel variants identified in primary hyperoxaluria and genotypic and phenotypic analysis in 21 Chinese patients. Front Genet 2023; 14:1124745. [PMID: 37139236 PMCID: PMC10150119 DOI: 10.3389/fgene.2023.1124745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
Background: Primary hyperoxaluria (PH) is a rare genetic disorder characterized by excessive accumulation of oxalate in plasma and urine, resulting in various phenotypes due to allelic and clinical heterogeneity. This study aimed to analyze the genotype of 21 Chinese patients with primary hyperoxaluria (PH) and explore their correlations between genotype and phenotype. Methods: Combined with clinical phenotypic and genetic analysis, we identified 21 PH patients from highly suspected Chinese patients. The clinical, biochemical, and genetic data of the 21 patients were subsequently reviewed. Results: We reported 21 cases of PH in China, including 12 cases of PH1, 3 cases of PH2 and 6 cases of PH3, and identified 2 novel variants (c.632T > G and c.823_824del) in AGXT gene and 2 novel variants (c.258_272del and c.866-34_866-8del) in GRHPR gene, respectively. A possible PH3 hotspot variant c.769T > G was identified for the first time. In addition, patients with PH1 showed higher levels of creatinine and lower eGFR than those with PH2 and PH3. In PH1, patients with severe variants in both alleles had significantly higher creatinine and lower eGFR than other patients. Delayed diagnosis still existed in some late-onset patients. Of all cases, 6 had reached to end-stage kidney disease (ESKD) at diagnosis with systemic oxalosis. Five patients were on dialysis and three had undergone kidney or liver transplants. Notably, four patients showed a favorable therapeutic response to vitamin B6, and c.823_824dup and c.145A > C may be identified as potentially vitamin B6-sensitive genotypes. Conclusion: In brief, our study identified 4 novel variants and extended the variant spectrum of PH in the Chinese population. The clinical phenotype was characterized by large heterogeneity, which may be determined by genotype and a variety of other factors. We first reported two variants that may be sensitive to vitamin B6 therapy in Chinese population, providing valuable references for clinical treatment. In addition, early screening and prognosis of PH should be given more attention. We propose to establish a large-scale registration system for rare genetic diseases in China and call for more attention on rare kidney genetic diseases.
Collapse
Affiliation(s)
- Qing Xin
- Department of Nephrology, Qingdao Municipal Hospital, Qingdao, China
| | - Yameng Dong
- Department of Nephrology, Qingdao Municipal Hospital, Qingdao, China
| | - Wencong Guo
- Department of Nephrology, Qingdao Municipal Hospital, Qingdao, China
| | - Xiangzhong Zhao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhiying Liu
- Renal Division, Peking University First Hospital, Beijing, China
| | - Xiaomeng Shi
- Department of Nephrology, Qingdao Municipal Hospital, Qingdao, China
| | - Yanhua Lang
- Department of Nursing, Qingdao Municipal Hospital, Qingdao, China
- *Correspondence: Yanhua Lang, ; Leping Shao,
| | - Leping Shao
- Department of Nephrology, Qingdao Municipal Hospital, Qingdao, China
- *Correspondence: Yanhua Lang, ; Leping Shao,
| |
Collapse
|
6
|
The advances of calcium oxalate calculi associated drugs and targets. Eur J Pharmacol 2022; 935:175324. [DOI: 10.1016/j.ejphar.2022.175324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022]
|
7
|
Meiouet F, El Kabbaj S, Daudon M. The type Ic morphology of urinary calculi: an alert to primary hyperoxaluria? Experience with 43 Moroccan children. CR CHIM 2022. [DOI: 10.5802/crchim.160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Ahmed HA, Fadel FI, Abdel Mawla MA, Salah DM, Fathallah MG, Amr K. Next-generation sequencing in identification of pathogenic variants in primary hyperoxaluria among 21 Egyptian families: Identification of two novel AGXT gene mutations. Mol Genet Genomic Med 2022; 10:e1992. [PMID: 35661454 PMCID: PMC9356549 DOI: 10.1002/mgg3.1992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/19/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background Primary hyperoxaluria (PH) is a rare heterogeneous, autosomal recessive disorder of glyoxylate metabolism. It is characterized by excessive hepatic production of oxalate resulting in a wide spectrum of clinical, imaging, and functional presentation. The characteristic features of PH comprise of recurrent urolithiasis, renal stones, and/or nephrocalcinosis. Three known types of PH have been identified PH1, PH2, and PH3. Pathogenic variants in AGXT, GRHPR, and HOGA1 cause the phenotypic expression of PH. Methods In this study, we describe the clinical and genetic findings of 22 patients from 21 unrelated Egyptian families with the distinctive clinical features of PH. A thorough clinical evaluation followed by an NGS custom panel of AGXT, GRHPR, and HOGA1 genes was done. Results Two novel mutations (p.Gly27Glu and p.Gln256Serfs*17) and six previously reported mutations (p.Lys12Glnfs*156, p.Lys12Argfs*34, p.Ile244Thr, p.Asn22Ser, p.Pro11Leu, and p.Ile340Met) were identified in AGXT gene. The NGS panel results were validated thereafter using Sanger sequencing. Conclusion Our results extend the number of AGXT mutations identified so far and emphasize the important role of genetic testing in providing proper counseling and patients management.
Collapse
Affiliation(s)
- Hoda A Ahmed
- Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Fatina I Fadel
- Pediatrics Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | | | - Doaa M Salah
- Pediatrics Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | | | - Khalda Amr
- Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
9
|
Gang X, Liu F, Mao J. Lumasiran for primary hyperoxaluria type 1: What we have learned? Front Pediatr 2022; 10:1052625. [PMID: 36704142 PMCID: PMC9871624 DOI: 10.3389/fped.2022.1052625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare autosomal recessive genetic disorder caused by mutations in the AGXT gene. The hepatic peroxisomal enzyme alanine glyoxylate aminotransferase (AGT) defects encoded by the AGXT gene increase oxalate production, resulting in nephrocalcinosis, nephrolithiasis, chronic kidney disease, and kidney failure. Traditional pharmacological treatments for PH1 are limited. At present, the treatment direction of PH1 is mainly targeted therapy which refer to a method that targeting the liver to block the pathway of the production of oxalate. Lumasiran (OxlumoTM, developed by Alnylam Pharmaceuticals), an investigational RNA interference (RNAi) therapeutic agent, is the first drug approved for the treatment of PH1, which was officially approved by the US Food and Drug Administration and the European Union in November 2020. It is also the only drug that has been shown to decrease harmful oxalate. Currently, there are 5 keys completed and ongoing clinical trials of lumasiran in PH1. Through the three phase III trials that completed the primary analysis period, lumasiran has been shown to be effective in reducing oxalate levels in urine and plasma in different age groups, such as children, adults, and patients with advanced kidney disease, including those on hemodialysis. In addition to clinical trials, cases of lumasiran treatment for PH1 have been reported in small infants, twin infants, and children diagnosed with PH1 after kidney transplantation. These reports confirm the effectiveness and safety of lumasiran. All adverse events were of mild to moderate severity, with the most common being mild, transient injection-site reactions. No deaths or severe adverse events were reported. This article reviews PH1 and lumasiran which is the only approved therapeutic drug, and provide new options and hope for the treatment of PH1.
Collapse
Affiliation(s)
- Xuan Gang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Fei Liu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
10
|
Lin JA, Liao X, Wu W, Xiao L, Liu L, Qiu J. Clinical analysis of 13 children with primary hyperoxaluria type 1. Urolithiasis 2021; 49:425-431. [PMID: 33721035 PMCID: PMC8416882 DOI: 10.1007/s00240-021-01249-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/27/2021] [Indexed: 12/01/2022]
Abstract
A retrospective statistical analysis of primary hyperoxaluria type 1 (PH1) in children from June 2016 to May 2019 was carried out to discover its clinical and molecular biological characteristics. Patients were divided into two groups (infant and noninfant) according to clinic type. There were 13 pediatric patients (male:female = 6:7) with PH1 in the cohort from 11 families (four of which were biological siblings from two families), whose median age of symptom onset was 12 months and median confirmed diagnosis age was 14 months. Infant type (6 patients) was the most common type. The infant type mortality rate (100%) was higher than the noninfant (14.3%) (p = 0.029). The incidence of renal failure in infant patients was 67%, while the noninfant was 14.3%. 8 of 10 patients with nephrocalcinosis (NC) (76.92%, 10/13) were diagnosed by radiological imaging examinations, including X-ray (3 patients), CT (4 patients) and MRI (1 patient). NC was an independent risk factor for renal insufficiency [OR 3.33, 95% CI (0.7-1.2)], p < 0.05). Nine types of AGXT gene mutations were found; 1 type, c.190A > T, were first reported here. The most common AGXT gene mutation was c.679_680del, which occurred in exon 6 (5 patients). The infant type is the most common type of pediatric PH, with a relatively higher ratio of renal failure at symptom onset and poor prognosis. NC is an independent risk factor leading to renal failure, and radiological imaging examination is recommended for patients with abnormal ultrasound examination to identify NC. AGXT gene detection is important for the diagnosis and treatment of PH1 in children.
Collapse
Affiliation(s)
- Jin-Ai Lin
- Department of Nephrology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xin Liao
- Department of Nephrology, Guangzhou Women and Children's Medical Center, Guangzhou, China.
| | - Wenlin Wu
- Department of Nephrology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Lixia Xiao
- Department of Nephrology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Longshan Liu
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Jiang Qiu
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
11
|
Xu CB, Zhou XD, Xu HE, Zhao YL, Zhao XH, Liu DH, Tian YA, Hu XX, Guan JY, Guo JC, Tang WX, Xue X. A novel nonsense variant of the AGXT identified in a Chinese family: special variant research in the Chinese reference genome. BMC Nephrol 2021; 22:83. [PMID: 33691640 PMCID: PMC7945658 DOI: 10.1186/s12882-021-02276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Primary hyperoxaluria(PH)is a rare autosomal recessive genetic disease that contains three subtypes (PH1, PH2 and PH3). Approximately 80% of PH patients has been reported as subtype PH1, this subtype of PH has been related to a higher risk of renal failure at any age. Several genetic studies indicate that the variants in gene AGXT are responsible for the occurrence of PH1. However, the population heterogeneity of the variants in AGXT makes the genetic diagnosis of PH1 more challenging as it is hard to locate each specific variant. It is valuable to have a complete spectrum of AGXT variants from different population for early diagnosis and clinical treatments of PH1. CASE PRESENTATION In this study, We performed high-throughput sequencing and genetic analysis of a 6-year-old male PH1 patient from a Chinese family. Two variants (c.346G > A: p.Gly116Arg; c.864G > A: p.Trp288X) of the gene AGXT were identified. We found a nonsense variant (c.864G > A: p.Trp288X) that comes from the proband's mother and has never been reported previously. The other missense variant (c.346G > A: p.Gly116Arg) was inherited from his father and has been found previously in a domain of aminotransferase, which plays an important role in the function of AGT protein. Furthermore, we searched 110 pathogenic variants of AGXT that have been reported worldwide in healthy local Chinese population, none of these pathogenic variants was detected in the local genomes. CONCLUSIONS Our research provides an important diagnosis basis for PH1 on the genetic level by updating the genotype of PH1 and also develops a better understanding of the variants in AGXT by broadening the variation database of AGXT according to the Chinese reference genome.
Collapse
Affiliation(s)
- Chang Bao Xu
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xu Dong Zhou
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Hong En Xu
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, ZhengZhou University, Zhengzhou, China.,Precision Medicine Center of ZhengZhou University, Zhengzhou, China
| | - Yong Li Zhao
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xing Hua Zhao
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Dan Hua Liu
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yong An Tian
- BGI College, ZhengZhou University, Zhengzhou, China
| | - Xin Xin Hu
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Precision Medicine Center of ZhengZhou University, Zhengzhou, China
| | - Jing Yuan Guan
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Precision Medicine Center of ZhengZhou University, Zhengzhou, China
| | - Jian Cheng Guo
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, ZhengZhou University, Zhengzhou, China.,Precision Medicine Center of ZhengZhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wen Xue Tang
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, ZhengZhou University, Zhengzhou, China.,Precision Medicine Center of ZhengZhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xia Xue
- Academy of Medical Sciences, ZhengZhou University, Zhengzhou, China. .,Precision Medicine Center of ZhengZhou University, Zhengzhou, China.
| |
Collapse
|
12
|
Zhao Y, Yang Y, Zhou P, Jiang J, Chen Z, Du D. Novel mutations in response to vitamin B6 in primary hyperoxaluria type 1 after only kidney transplantation: a case report. Transl Androl Urol 2021; 9:2848-2854. [PMID: 33457257 PMCID: PMC7807321 DOI: 10.21037/tau-20-979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, the mainstream curative treatment for primary hyperoxaluria type 1 (PH1) is combined liver and kidney transplantation, and only kidney transplantation is considered ineffective for most PH1 patients. Furthermore, vitamin B6 (B6) is the only permitted drug available for treatment. However, except for specific mutations such as G170R and F152I in gene AGXT, data of B6 effect on other mutations are lacking. Insufficient research has evaluated the efficacy of the combination of kidney transplantation and B6 treatment in the therapeutic strategy in PH1 patients. Here, we report a case of a 52-year-old male with frequent stone events and end-stage renal diseases (ESRD), and subsequently undergone kidney transplantation. Sudden rising of serum creatinine within two months after the transplantation. After gene sequencing, the mutations of A186V, R197Q, and I340M were presented in gene AGXT. Therefore, the patient was diagnosed with PH1. B6 administration was attempted during the period of waiting for liver transplantation. Four-week oral B6 therapy (50 mg tid) reduced the serum creatinine of the patient from 194 to 145 µmol/L, which revealed that the patient probably responded to B6 treatment. At the almost three-year follow-up, the patient's serum creatinine remained reduced (130 µmol/L), without urinary oxalate excretion. In this case, we established a positive effect, even a beneficial result, of the use of B6 as a retrospective therapeutic choice in PH1 treatment after kidney transplantation.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,NHC Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yang Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,NHC Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Ping Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,NHC Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jipin Jiang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,NHC Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,NHC Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Dunfeng Du
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,NHC Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
13
|
Zhao F, Li J, Tang L, Li C, Wang W, Ning C. Characteristics of the genotype and phenotype in Chinese primary hyperoxaluria type 1 populations. Urolithiasis 2020; 49:17-25. [PMID: 32556641 DOI: 10.1007/s00240-020-01201-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/29/2020] [Indexed: 11/30/2022]
Abstract
The aim of our study is to explore the relationship between genotype and phenotype in Chinese PH1 patients and determine the putative mutation hotspot regions. This was a retrospective study regarding 13 Chinese PH1 patients. And all sporadic published researches of Chinese PH1 populations were searched and enrolled based on the inclusive standard. All patients presented with multiple urolithiasis or nephrolithiasis. Urinary oxalate values demonstrated an obvious and extensive variability, ranging from 1.01 to 3.85 mmol/1.73 m2. Molecular diagnosis showed that 13 mutant types were detected. Infantile form patient (pt.) 10 and five patients (pts. 5, 7, 8, 9, 12) carrying c.815_816insGA or c.33_34insC demonstrated a worse prognosis, of whom pt. 5 progressed into ESRD 4 years later and died of chronic kidney failure. Based on the integrated Chinese mutation data, two variants (c.815_816insGA and c.33_34insC) were determined as the most common mutations. Besides, c.1049G>A was initially identified in a Chinese patient. Conclusions: heterogeneity between genotype and phenotype was observed and described in Chinese PH1 patients. c.815_816insGA and c.33_34insC which were recognized as AGXT mutation hotspot regions in China implied a poor prognosis. And c.1049G>A was not determined as the race-specific mutation of Pakistani.
Collapse
Affiliation(s)
- Fangzhou Zhao
- Department of Urology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, 100050, China
| | - Jun Li
- Department of Urology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, 100050, China.
| | - Lei Tang
- Department of Urology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, 100050, China
| | - Chunming Li
- Department of Urology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, 100050, China
| | - Wenying Wang
- Department of Urology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, 100050, China
| | - Chen Ning
- Department of Urology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, 100050, China
| |
Collapse
|
14
|
Human MiR-4660 regulates the expression of alanine-glyoxylate aminotransferase and may be a biomarker for idiopathic oxalosis. Clin Exp Nephrol 2019; 23:890-897. [PMID: 30852714 DOI: 10.1007/s10157-019-01723-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/24/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Dysfunction of oxalate synthesis can cause calcium oxalate stone disease and inherited primary hyperoxaluria (PH) disorders. PH type I (PH1) is one of the most severe hyperoxaluria disorders, which results in urolithiasis, nephrocalcinosis, and end-stage renal disease. Here, we sought to determine the role of microRNAs in regulating AGXT to contribute to the pathogenesis of mutation-negative idiopathic oxalosis. METHODS We conducted bioinformatics to search for microRNAs binding to AGXT, and examined the expression of the highest hit (miR-4660) in serum samples of patients with oxalosis, liver tissue samples, and determined the correlation and regulation between the microRNA and AGXT in vitro. RESULTS MiR-4660 expression was downregulated in patients with oxalosis compared with healthy controls (84.03 copies/µL vs 33.02 copies/µL, P < 0.0001). Moreover, miR-4660 epigenetically decreased the expression of AGT in human liver tissues (Rho = - 0543, P = 0.037). Overexpression of miR-4660 in HepG2 and L02 cell lines led to dysregulation of AGXT at both the mRNA (by 71% and 81%, respectively; P < 0.001) and protein (by 49% and 42%, respectively; P < 0.0001) levels. We confirmed the direct target site of miR-4660 binding to the 3'UTR of AGXT by a luciferase assay. CONCLUSION MiR-4660 is probably a new biomarker for mutation-negative idiopathic oxalosis by regulating the post-transcription of AGXT, providing a potential treatment target of mutation-negative idiopathic oxalosis.
Collapse
|
15
|
Li X, Gu J, Yang Y, Li J, Li Y. A Putative Mutation Hotspot of the AGXT Gene Associated with Primary Hyperoxaluria Type 1 in the Chinese Population. TOHOKU J EXP MED 2018; 246:233-241. [DOI: 10.1620/tjem.246.233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Xiyuan Li
- Precision Medicine Center, General Hospital of Tianjin Medical University
| | - Jie Gu
- Department of Laboratory Animal Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital
| | - Jun Li
- Department of Urology, Beijing Friendship Hospital, Capital Medical University
| | - Yanhan Li
- Department of Laboratory Animal Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| |
Collapse
|