1
|
Mueller C, Nenert R, Catiul C, Pilkington J, Szaflarski JP, Amara AW. Relationship between sleep, physical fitness, brain microstructure, and cognition in healthy older adults: A pilot study. Brain Res 2024; 1839:149016. [PMID: 38768934 DOI: 10.1016/j.brainres.2024.149016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND There is a critical need for neuroimaging markers of brain integrity to monitor effects of modifiable lifestyle factors on brain health. This observational, cross-sectional study assessed relationships between brain microstructure and sleep, physical fitness, and cognition in healthy older adults. METHODS Twenty-three adults aged 60 and older underwent whole-brain multi-shell diffusion imaging, comprehensive cognitive testing, polysomnography, and exercise testing. Neurite Orientation Dispersion and Density Imaging (NODDI) was used to quantify neurite density (NDI) and orientation dispersion (ODI). Diffusion tensor imaging (DTI) was used to quantify axial diffusivity (AxD), fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD). Relationships between sleep efficiency (SE), time and percent in N3 sleep, cognitive function, physical fitness (VO2 peak) and the diffusion metrics in regions of interest and the whole brain were evaluated. RESULTS Higher NDI in bilateral white and gray matter was associated with better executive functioning. NDI in the right anterior cingulate and adjacent white matter was positively associated with language skills. Higher NDI in the left posterior corona radiata was associated with faster processing speed. Physical fitness was positively associated with NDI in the left precentral gyrus and corticospinal tract. N3 % was positively associated with NDI in the left caudate and right pre- and postcentral gyri. Higher ODI in the left putamen and adjacent white matter was associated with better executive function. CONCLUSION NDI and ODI derived from NODDI are potential neuroimaging markers for associations between brain microstructure and modifiable risk factors in aging. If these associations are observable in clinical samples, NODDI could be incorporated into clinical trials assessing the effects of modifiable risk factors on brain integrity in aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Christina Mueller
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States.
| | - Rodolphe Nenert
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States
| | - Corina Catiul
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States
| | - Jennifer Pilkington
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States
| | - Jerzy P Szaflarski
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States
| | - Amy W Amara
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States; University of Colorado Anschutz Medical Campus, 1635 Aurora Ct, Aurora, CO 80045, United States
| |
Collapse
|
2
|
Mouchtouris N, Ailes I, Gooch R, Raimondo C, Oghli YS, Tjoumakaris S, Jabbour P, Rosenwasser R, Alizadeh M. Quantifying blood-brain barrier permeability in patients with ischemic stroke using non-contrast MRI. Magn Reson Imaging 2024; 109:165-172. [PMID: 38513785 DOI: 10.1016/j.mri.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Increased blood-brain barrier permeability (BBBP) after ischemic stroke predisposes patients to hemorrhagic conversion. While altered BBBP can impact patient recovery, it is not routinely assessed during the workup of acute ischemic stroke (AIS). We study the effectiveness of the non-contrast MRI sequences diffusion-prepared pseudocontinuous arterial spin labeling (DP-pCASL) and Neurite Orientation Dispersion and Density Imaging (NODDI) in assessing BBBP and correlating to tissue microstructure after ischemic insult. Twelve patients with AIS were prospectively enrolled to undergo our multimodal MR imaging, which generated the DP-pCASL-derived cerebral blood flow (CBF), arterial transit time (ATT), and water exchange rate (kw) and the NODDI-derived b0, mean diffusivity (MD), orientation dispersion index (ODI), intracellular volume fraction (ICVF), and isotropic volume fraction (ISO) parametric maps. The mean age of the patients was 70.2 ± 14.8 with an average NIHSS of 13.0 (7.3-19.8). MR imaging was performed on average at 53.7 (27.8-93.3) hours from stroke symptom onset. The water exchange rate (kw) of the infarcted area and its contralateral territory were 89.7 min-1 (66.7-121.9) and 89.9 min-1 (65.9-106.0) respectively (p = 0.887). Multivariable linear regression analysis showed that b0, ODI, ISO and mechanical thrombectomy were significant predictors of kw. DP-pCASL and NODDI are promising non-contrast sequences for the routine assessment of BBBP.
Collapse
Affiliation(s)
- Nikolaos Mouchtouris
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, United States.
| | - Isaiah Ailes
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Reid Gooch
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, United States
| | - Christian Raimondo
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Yazan Shamli Oghli
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Stavropoula Tjoumakaris
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, United States
| | - Pascal Jabbour
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, United States
| | - Robert Rosenwasser
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, United States
| | - Mahdi Alizadeh
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, United States
| |
Collapse
|
3
|
Lima Santos JP, Kontos AP, Holland CL, Suss SJ, Stiffler RS, Bitzer HB, Colorito AT, Shaffer M, Skeba A, Iyengar S, Manelis A, Brent D, Shirtcliff EA, Ladouceur CD, Phillips ML, Collins MW, Versace A. The Role of Puberty and Sex on Brain Structure in Adolescents With Anxiety Following Concussion. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:285-297. [PMID: 36517369 DOI: 10.1016/j.bpsc.2022.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Adolescence represents a window of vulnerability for developing psychological symptoms following concussion, especially in girls. Concussion-related lesions in emotion regulation circuits may help explain these symptoms. However, the contribution of sex and pubertal maturation remains unclear. Using the neurite density index (NDI) in emotion regulation tracts (left/right cingulum bundle [CB], forceps minor [FMIN], and left/right uncinate fasciculus), we sought to elucidate these relationships. METHODS No adolescent had a history of anxiety and/or depression. The Screen for Child Anxiety Related Emotional Disorders and Children's Depression Rating Scale were used at scan to assess anxiety and depressive symptoms in 55 concussed adolescents (41.8% girls) and 50 control adolescents with no current/history of concussion (44% girls). We evaluated if a mediation-moderation model including the NDI (mediation) and sex or pubertal status (moderation) could help explain this relationship. RESULTS Relative to control adolescents, concussed adolescents showed higher anxiety (p = .003) and lower NDI, with those at more advanced pubertal maturation showing greater abnormalities in 4 clusters: the left CB frontal (p = .002), right CB frontal (p = .011), FMIN left-sided (p = .003), and FMIN right-sided (p = .003). Across all concussed adolescents, lower NDI in the left CB frontal and FMIN left-sided clusters partially mediated the association between concussion and anxiety, with the CB being specific to female adolescents. These effects did not explain depressive symptoms. CONCLUSIONS Our findings indicate that lower NDI in the CB and FMIN may help explain anxiety following concussion and that adolescents at more advanced (vs less advanced) status of pubertal maturation may be more vulnerable to concussion-related injuries, especially in girls.
Collapse
Affiliation(s)
- João Paulo Lima Santos
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anthony P Kontos
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program, University of Pittsburgh, Pennsylvania
| | - Cynthia L Holland
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program, University of Pittsburgh, Pennsylvania
| | - Stephen J Suss
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program, University of Pittsburgh, Pennsylvania
| | - Richelle S Stiffler
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hannah B Bitzer
- Department of Psychology, Florida International University, Miami, Florida
| | - Adam T Colorito
- Department of Psychology, Florida International University, Miami, Florida
| | - Madelyn Shaffer
- Department of Psychology, Florida International University, Miami, Florida
| | - Alexander Skeba
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Satish Iyengar
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anna Manelis
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David Brent
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychiatry, UPMC Western Psychiatric Hospital, Pittsburgh, Pennsylvania
| | - Elizabeth A Shirtcliff
- Center for Translational Neuroscience and Department of Psychology, University of Oregon, Eugene, Oregon
| | - Cecile D Ladouceur
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mary L Phillips
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael W Collins
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program, University of Pittsburgh, Pennsylvania
| | - Amelia Versace
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Radiology, Magnetic Resonance Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
4
|
Mueller C, Goodman AM, Nenert R, Allendorfer JB, Philip NS, Correia S, Oster RA, LaFrance WC, Szaflarski JP. Repeatability of neurite orientation dispersion and density imaging in patients with traumatic brain injury. J Neuroimaging 2023; 33:802-824. [PMID: 37210714 PMCID: PMC10524628 DOI: 10.1111/jon.13125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was to assess the repeatability of neurite orientation dispersion and density imaging in healthy controls (HCs) and traumatic brain injury (TBI). METHODS Seventeen HCs and 48 TBI patients were scanned twice over 18 weeks with diffusion imaging. Orientation dispersion (ODI), neurite density (NDI), and the fraction of isotropic diffusion (F-ISO) were quantified in regions of interest (ROIs) from a gray matter, subcortical, and white matter atlas and compared using the coefficient of variation for repeated measures (CVrep ), which quantifies the expected percent change on repeated measurement. We used a modified signed likelihood ratio test (M-SLRT) to compare the CVrep between groups in each ROI while correcting for multiple comparisons. RESULTS NDI exhibited excellent repeatability in both groups; the only group difference was found in the fusiform gyrus, where HCs exhibited better repeatability (M-SLRT = 9.463, p = .0021). ODI also had excellent repeatability in both groups, although repeatability was significantly better in HCs in 16 cortical ROIs (p < .0022) and in the bilateral white matter and bilateral cortex (p < .0027). F-ISO exhibited relatively poor repeatability in both groups, with few group differences. CONCLUSION Overall, the repeatability of the NDI, ODI, and F-ISO metrics over an 18-week period is acceptable for assessing the effects of behavioral or pharmacological interventions, though caution is advised when assessing F-ISO changes over time.
Collapse
Affiliation(s)
- Christina Mueller
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 6th Ave S, Birmingham, AL 35233
| | - Adam M. Goodman
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 6th Ave S, Birmingham, AL 35233
| | - Rodolphe Nenert
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 6th Ave S, Birmingham, AL 35233
| | - Jane B. Allendorfer
- Departments of Neurology and Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Noah S. Philip
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI
| | - Stephen Correia
- Department of Psychiatry, Butler Hospital / Brown University, Providence, RI
| | - Robert A. Oster
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - W. Curt LaFrance
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI
- Departments of Psychiatry and Neurology, Rhode Island Hospital / Brown University, Providence, RI
| | - Jerzy P. Szaflarski
- Departments of Neurology, Neurobiology and Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
5
|
Mueller C, Szaflarski JP. White matter microstructure and serum biomarkers of inflammation in psychogenic non-epileptic seizures. Neuroimage Clin 2023; 39:103462. [PMID: 37413772 PMCID: PMC10509528 DOI: 10.1016/j.nicl.2023.103462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Neuroinflammation may contribute to the pathophysiology of psychogenic non-epileptic seizures (PNES). However, it is unclear whether and to what degree comorbid psychiatric symptoms explain this association. In this study, we investigated the neuroinflammatory signature of PNES and how it compares to that of people with psychiatric conditions (PwPCs). METHODS We prospectively assessed differences in neurite density (NDI), orientation dispersion (ODI), and isotropic diffusion (F-ISO) in 23 participants with PNES and 27 PwPCs, and their relationships to serum levels of tumor necrosis factor (TNF)-α, TNF receptor 1 (TNF-R1), TNF-related apoptosis-inducing ligand (TRAIL), interleukin (IL)-6, intercellular adhesion molecule (ICAM)-1, and monocyte chemoattractant protein (MCP)-1 using voxelwise multiple linear regressions. Pearson correlations between serum biomarkers and clinical symptoms were also obtained. RESULTS There were no white matter (WM) microstructural differences between groups. In PNES, TNF-R1 was negatively associated with NDI in the right uncinate fasciculus (UF) and positively associated with F-ISO in the left UF. IL-6 was positively associated with NDI and negatively with F-ISO in the left UF. ICAM-1 was positively associated with ODI in the left UF. TNF-α was negatively associated with ODI in the left cingulum bundle. The opposite relationships were observed in PwPCs. Higher TNF-R1 was associated with higher depression, anxiety, lower emotional quality of life, and higher levels of disability in PNES. CONCLUSIONS For the first time, we report relationships between peripheral inflammatory biomarkers and WM integrity in PNES, including abnormalities in the UF and cingulum bundle. Our results suggest that serum biomarkers of inflammation may, with additional studies, become a useful aid to PNES diagnosis, especially in settings where video-EEG is not available. The lack of group differences in WM microstructure suggests that previously identified WM abnormalities in PNES versus healthy controls may be related to psychological comorbidities of PNES.
Collapse
Affiliation(s)
- Christina Mueller
- Department of Neurology, University of Alabama at Birmingham (UAB), Heersink School of Medicine, Birmingham, AL, USA.
| | - Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham (UAB), Heersink School of Medicine, Birmingham, AL, USA; Departments of Neurobiology and Neurosurgery, University of Alabama at Birmingham (UAB), Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
6
|
Bagdasarian FA, Yuan X, Athey J, Bunnell BA, Grant SC. NODDI highlights recovery mechanisms in white and gray matter in ischemic stroke following human stem cell treatment. Magn Reson Med 2021; 86:3211-3223. [PMID: 34355818 DOI: 10.1002/mrm.28929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE Diffusion MRI offers insight into ischemic stroke progression in both human and rodent models. However, diffusion MRI to evaluate therapeutic application of mesenchymal stem cells is limited. Robust analytical techniques are required to identify potential physiological changes as a function of cell therapy in stroke. Here, we seek to establish Neurite Orientation Dispersion and Density Imaging (NODDI) as a feasible method in evaluating stroke evolution in response to cell-based therapeutics. METHODS Diffusion MRI data at 21.1T were acquired from 16 male rats. Rats were grouped randomly: naïve (baseline, N = 5), stroke with injections of phosphate buffered saline (N = 6), stroke with injection of 2D human mesenchymal stem cells (hMSC, N = 5). Data were acquired on days 1, 3, 7, and 21 post-surgery. DTI and NODDI maps were generated, with regions of interest placed in the ischemic hemisphere external capsule and striatum. Diffusion parameters were compared between groups each day, and within groups across hemispheres and longitudinally. Behavioral characterizations were on days 0 (pre-surgery), 3, 7, 14, and 21. RESULTS The 2D hMSC preserved diffusional restriction in the external capsule compared to saline (day 1: MD, P = .4060; AD, P = .0220). NODDI indicates that hMSC may have preserved intracellular volume fractions (ICVF: day 1, P = .0086; day 3, P = .0021; day 21, P = .0383). Diffusion metrics of hMSC treated animals were comparable to naïve for the external capsule. CONCLUSIONS NODDI compliments DTI metrics, enhances interpretation of tissue outcome in ischemic stroke following hMSC application, and may be useful in evaluating or predicting therapeutic response.
Collapse
Affiliation(s)
- F Andrew Bagdasarian
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA.,Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Xuegang Yuan
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA.,Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Jacob Athey
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA.,Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Bruce A Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Samuel C Grant
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA.,Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|