1
|
Viitanen SJ, Gehani SM, Tilamaa AM, Rajamäki MM, Veldhuizen RAW. Biophysical properties of alveolar surfactant in drever dogs with hunting associated pulmonary edema. Acta Vet Scand 2024; 66:24. [PMID: 38822358 PMCID: PMC11143697 DOI: 10.1186/s13028-024-00745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/28/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND A syndrome of acute non-cardiogenic pulmonary edema associated with hunting is prevalent in the drever breed, but etiology of this syndrome is currently unknown. Alveolar surfactant has a critical role in preventing alveolar collapse and edema formation. The aim of this study was to investigate, whether the predisposition to hunting associated pulmonary edema in drever dogs is associated with impaired biophysical properties of alveolar surfactant. Seven privately owned drever dogs with recurrent hunting associated pulmonary edema and seven healthy control dogs of other breeds were included in the study. All affected dogs underwent thorough clinical examinations including echocardiography, laryngeal evaluation, bronchoscopy, and bronchoalveolar lavage (BAL) as well as head, neck and thoracic computed tomography imaging to rule out other cardiorespiratory diseases potentially causing the clinical signs. Alveolar surfactant was isolated from frozen, cell-free supernatants of BAL fluid and biophysical analysis of the samples was completed using a constrained sessile drop surfactometer. Statistical comparisons over consecutive compression expansion cycles were performed using repeated measures ANOVA and comparisons of single values between groups were analyzed using T-test. RESULTS There were no significant differences between groups in any of the biophysical outcomes of surfactant analysis. The critical function of surfactant, reducing the surface tension to low values upon compression, was similar between healthy dogs and affected drevers. CONCLUSIONS The etiology of hunting associated pulmonary edema in drever dogs is not due to an underlying surfactant dysfunction.
Collapse
Affiliation(s)
- Sanna Johanna Viitanen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Koetilantie 2, 00790, Helsinki, Finland.
| | - Sabrine Moya Gehani
- Departments of Medicine and Physiology & Pharmacology, University of Western Ontario and Lawson Health Research Institute, 800 Commissioners Road, London, ON, Canada
| | - Anni Maria Tilamaa
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Koetilantie 2, 00790, Helsinki, Finland
| | - Minna Marjaana Rajamäki
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Koetilantie 2, 00790, Helsinki, Finland
| | - Ruud Anthonius Wilhelmus Veldhuizen
- Departments of Medicine and Physiology & Pharmacology, University of Western Ontario and Lawson Health Research Institute, 800 Commissioners Road, London, ON, Canada
| |
Collapse
|
2
|
Research Progress on the Mechanism of Right Heart-Related Pulmonary Edema. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8947780. [PMID: 35966729 PMCID: PMC9365571 DOI: 10.1155/2022/8947780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022]
Abstract
Objective. To investigate the mechanisms underlying the development of right heart-associated PE. Background. Right heart-related pulmonary edema (PE) refers to PE resulting from impaired right heart function caused by primary or secondary factors, which is common in critically ill patients. Although the clinical manifestations of different types of right heart-related PE are similar, the pathophysiological changes and treatment methods are significantly different. According to the hemodynamic mechanism, right heart-related PE is primarily classified into two types. One is the increase of right heart flow, including extravascular compression, intravascular compression, cardiac compression, and cardiac decompression. The other type is the abnormal distribution of pulmonary circulation, including obstruction, resistance, pleural decompression, or negative pressure. With the development of hemodynamic monitoring, hemodynamic data not only help us understand the specific pathogenesis of right heart-related PE but also assist us in determining the direction of therapy and enabling individualized treatment. Summary. This article presents a review on right heart-associated PE, with a perspective of hemodynamic analysis, and emphasizes the importance of right heart function in the management of circulation. Understanding the mechanism of right heart-associated PE will not only aid in better monitoring right heart function but also help intensivists make a more accurate identification of various types of PE in the clinic.
Collapse
|
3
|
Aoun J, Dgayli K, Abou Zeid C, Wong G, LaCamera P. Pulmonary edema during the Boston Marathon. Respir Med Case Rep 2019; 27:100845. [PMID: 31061788 PMCID: PMC6487368 DOI: 10.1016/j.rmcr.2019.100845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/14/2019] [Accepted: 04/14/2019] [Indexed: 02/08/2023] Open
Abstract
The Boston Marathon is the most popular marathon in the New England region and attracts some of the most qualified athletes participating from the United States and abroad. The race occurs in April, a month in the northeast characterized by unpredictable weather. While there are a number of well described weather-related medical complications that occur during exercise, less is known about noncardiogenic pulmonary edema (NCPE) in marathon runners, a condition that most physician are unfamiliar with. This phenomenon has been described in the literature as a complication of severe hyponatremia and cerebral edema. Here, we describe the case of a healthy athlete who took part in the Boston Marathon in 2018 and presented afterwards with hypothermia and NCPE. We also review the normal cardiopulmonary physiology along with the physiological changes and external factors impacting the respiratory system during exercise. The combination of significant physical exertion, cold and rainy weather and subsequent hypothermia, perhaps along with other less understood factors may have increased the permeability of his lungs and caused NCPE.
Collapse
Affiliation(s)
- Joe Aoun
- Department of Internal Medicine, St. Elizabeth's Medical Center, Boston, MA, USA
- Department of Internal Medicine, Tufts University School of Medicine, Boston, MA, USA
- Corresponding author. Internal Medicine Resident St. Elizabeth's Medical Center, Tufts University School of Medicine 736 Cambridge Street, Boston, MA 02135, USA.
| | - Khabib Dgayli
- Department of Internal Medicine, St. Elizabeth's Medical Center, Boston, MA, USA
- Department of Internal Medicine, Tufts University School of Medicine, Boston, MA, USA
| | | | - Gordon Wong
- Tufts University School of Medicine, Boston, MA, USA
| | - Peter LaCamera
- Division of Pulmonary and Critical Care, St. Elizabeth's Medical Center, Boston, MA, USA
| |
Collapse
|
4
|
Harjola VP, Mullens W, Banaszewski M, Bauersachs J, Brunner-La Rocca HP, Chioncel O, Collins SP, Doehner W, Filippatos GS, Flammer AJ, Fuhrmann V, Lainscak M, Lassus J, Legrand M, Masip J, Mueller C, Papp Z, Parissis J, Platz E, Rudiger A, Ruschitzka F, Schäfer A, Seferovic PM, Skouri H, Yilmaz MB, Mebazaa A. Organ dysfunction, injury and failure in acute heart failure: from pathophysiology to diagnosis and management. A review on behalf of the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail 2017; 19:821-836. [PMID: 28560717 DOI: 10.1002/ejhf.872] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/20/2017] [Accepted: 04/04/2017] [Indexed: 12/18/2022] Open
Abstract
Organ injury and impairment are commonly observed in patients with acute heart failure (AHF), and congestion is an essential pathophysiological mechanism of impaired organ function. Congestion is the predominant clinical profile in most patients with AHF; a smaller proportion presents with peripheral hypoperfusion or cardiogenic shock. Hypoperfusion further deteriorates organ function. The injury and dysfunction of target organs (i.e. heart, lungs, kidneys, liver, intestine, brain) in the setting of AHF are associated with increased risk for mortality. Improvement in organ function after decongestive therapies has been associated with a lower risk for post-discharge mortality. Thus, the prevention and correction of organ dysfunction represent a therapeutic target of interest in AHF and should be evaluated in clinical trials. Treatment strategies that specifically prevent, reduce or reverse organ dysfunction remain to be identified and evaluated to determine if such interventions impact mortality, morbidity and patient-centred outcomes. This paper reflects current understanding among experts of the presentation and management of organ impairment in AHF and suggests priorities for future research to advance the field.
Collapse
Affiliation(s)
- Veli-Pekka Harjola
- Emergency Medicine, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Wilfried Mullens
- Department of Cardiology, Ziekenhuis Oost Limburg, Genk, Belgium.,Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Marek Banaszewski
- Intensive Cardiac Therapy Clinic, Institute of Cardiology, Warsaw, Poland
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Medical School Hannover, Hannover, Germany
| | | | - Ovidiu Chioncel
- Institute of Emergency in Cardiovascular Disease, University of Medicine Carol Davila, Bucharest, Romania
| | - Sean P Collins
- Department of Emergency Medicine, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Wolfram Doehner
- Centre for Stroke Research, Berlin, Germany.,Department of Cardiology, Charité Medical University, Berlin, Germany
| | - Gerasimos S Filippatos
- National and Kapodistrian University of Athens, School of Medicine, Athens University Hospital Attikon, Athens, Greece
| | - Andreas J Flammer
- University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Valentin Fuhrmann
- Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria.,Department of Intensive Care Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Mitja Lainscak
- Department of Internal Medicine, General Hospital Murska Sobota, Murska Sobota, Slovenia.,Department of Research and Education, General Hospital Murska Sobota, Murska Sobota, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Johan Lassus
- Cardiology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Matthieu Legrand
- U942 Inserm, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Investigation Network Initiative Cardiovascular and Renal Clinical Trialists (INI-CRCT), Nancy, France.,Department of Anaesthesiology, Critical Care and Burn Unit, St Louis Hospital, University Paris Denis Diderot, Paris, France
| | - Josep Masip
- Consorci Sanitari Integral (Public Health Consortium), University of Barcelona, Barcelona, Spain.,Department of Cardiology, Hospital Sanitas CIMA, Barcelona, Spain
| | - Christian Mueller
- Department of Cardiology, University Hospital Basel, Basel, Switzerland.,Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, Basel, Switzerland
| | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - John Parissis
- National and Kapodistrian University of Athens, School of Medicine, Athens University Hospital Attikon, Athens, Greece
| | - Elke Platz
- Department of Emergency Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alain Rudiger
- Cardio-Surgical Intensive Care Unit, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Frank Ruschitzka
- University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Schäfer
- Department of Cardiology and Angiology, Medical School Hannover, Hannover, Germany
| | - Petar M Seferovic
- Department of Internal Medicine, Belgrade University School of Medicine, Belgrade, Serbia.,Heart Failure Centre, Belgrade University Medical Centre, Belgrade, Serbia
| | - Hadi Skouri
- Division of Cardiology, Department of Internal Medicine, American University of Beirut Medical Centre, Beirut, Lebanon
| | - Mehmet Birhan Yilmaz
- Department of Cardiology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Alexandre Mebazaa
- U942 Inserm, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Investigation Network Initiative Cardiovascular and Renal Clinical Trialists (INI-CRCT), Nancy, France.,University Paris Diderot, Paris, France.,Department of Anaesthesia and Critical Care, University Hospitals Saint Louis-Lariboisière, Paris, France
| |
Collapse
|