1
|
Taoka T, Ito R, Nakamichi R, Nakane T, Kawai H, Naganawa S. Diffusion Tensor Image Analysis ALong the Perivascular Space (DTI-ALPS): Revisiting the Meaning and Significance of the Method. Magn Reson Med Sci 2024; 23:268-290. [PMID: 38569866 PMCID: PMC11234944 DOI: 10.2463/mrms.rev.2023-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
More than 5 years have passed since the Diffusion Tensor Image Analysis ALong the Perivascular Space (DTI-ALPS) method was proposed with the intention of evaluating the glymphatic system. This method is handy due to its noninvasiveness, provision of a simple index in a straightforward formula, and the possibility of retrospective analysis. Therefore, the ALPS method was adopted to evaluate the glymphatic system for many disorders in many studies. The purpose of this review is to look back and discuss the ALPS method at this moment.The ALPS-index was found to be an indicator of a number of conditions related to the glymphatic system. Thus, although this was expected in the original report, the results of the ALPS method are often interpreted as uniquely corresponding to the function of the glymphatic system. However, a number of subsequent studies have pointed out the problems on the data interpretation. As they rightly point out, a higher ALPS-index indicates predominant Brownian motion of water molecules in the radial direction at the lateral ventricular body level, no more and no less. Fortunately, the term "ALPS-index" has become common and is now known as a common term by many researchers. Therefore, the ALPS-index should simply be expressed as high or low, and whether it reflects a glymphatic system is better to be discussed carefully. In other words, when a decreased ALPS-index is observed, it should be expressed as "decreased ALPS-index" and not directly as "glymphatic dysfunction". Recently, various methods have been proposed to evaluate the glymphatic system. It has become clear that these methods also do not seem to reflect the entirety of the extremely complex glymphatic system. This means that it would be desirable to use various methods in combination to evaluate the glymphatic system in a comprehensive manner.
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rintaro Ito
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rei Nakamichi
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Toshiki Nakane
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Hisashi Kawai
- Department of Radiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Ishii K, Hanaoka K, Watanabe S, Morimoto-Ishikawa D, Yamada T, Kaida H, Yamakawa Y, Minagawa S, Takenouchi S, Ohtani A, Mizuta T. High-Resolution Silicon Photomultiplier Time-of-Flight Dedicated Head PET System for Clinical Brain Studies. J Nucl Med 2023; 64:153-158. [PMID: 35798557 PMCID: PMC9841263 DOI: 10.2967/jnumed.122.264080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 01/28/2023] Open
Abstract
We acquired brain 18F-FDG and 18F-flutemetamol PET images using a time-of-flight system dedicated to the head (dhPET) and a conventional whole-body PET/CT (wbPET) system and evaluated the clinical superiority of dhPET over wbPET. Methods: There were 18 subjects for the 18F-FDG PET study and 17 subjects for the 18F-flutemetamol PET study. 18F-FDG PET images were first obtained using wbPET, followed by dhPET. 18F-flutemetamol PET images were first obtained using wbPET, followed by dhPET. Images acquired using dhPET and wbPET were compared by visual inspection, voxelwise analysis, and SUV ratio (SUVR). Results: All 18F-FDG and 18F-flutemetamol images acquired using dhPET were judged as visually better than those acquired using wbPET. The voxelwise analysis demonstrated that accumulations in the cerebellum, in the lateral occipital cortices, and around the central sulcus area in dhPET 18F-FDG images were lower than those in wbPET 18F-FDG images, whereas accumulations around the ventricle systems were higher in dhPET 18F-FDG images than those in wbPET 18F-FDG images. Accumulations in the cerebellar dentate nucleus, in the midbrain, in the lateral occipital cortices, and around the central sulcus area in dhPET images were lower than those in wbPET images, whereas accumulations around the ventricle systems were higher in dhPET 18F-flutemetamol images than those in wbPET 18F-flutemetamol images. The mean cortical SUVRs of 18F-FDG and 18F-flutemetamol dhPET images were significantly higher than those of 18F-FDG and 18F-flutemetamol wbPET images, respectively. Conclusion: The dhPET images had better image quality by visual inspection and higher SUVRs than wbPET images. Although there were several regional accumulation differences between dhPET and wbPET images, understanding this phenomenon will enable full use of the features of this dhPET system in clinical practice.
Collapse
Affiliation(s)
- Kazunari Ishii
- Department of Radiology, Kindai University Faculty of Medicine, Osakasayama, Japan; .,Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, Osakasayama, Japan; and
| | - Kohei Hanaoka
- Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, Osakasayama, Japan; and
| | - Shota Watanabe
- Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, Osakasayama, Japan; and
| | - Daisuke Morimoto-Ishikawa
- Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, Osakasayama, Japan; and
| | - Takahiro Yamada
- Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, Osakasayama, Japan; and
| | - Hayato Kaida
- Department of Radiology, Kindai University Faculty of Medicine, Osakasayama, Japan;,Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, Osakasayama, Japan; and
| | | | - Suzuka Minagawa
- Medical Systems Division, Shimadzu Corporation, Kyoto, Japan
| | | | - Atsushi Ohtani
- Medical Systems Division, Shimadzu Corporation, Kyoto, Japan
| | - Tetsuro Mizuta
- Medical Systems Division, Shimadzu Corporation, Kyoto, Japan
| |
Collapse
|
4
|
Geng C, Wang S, Li Z, Xu P, Bai Y, Zhou Y, Zhang X, Li Y, Zhang J, Zhang H. Resting-State Functional Network Topology Alterations of the Occipital Lobe Associated With Attention Impairment in Isolated Rapid Eye Movement Behavior Disorder. Front Aging Neurosci 2022; 14:844483. [PMID: 35431890 PMCID: PMC9012114 DOI: 10.3389/fnagi.2022.844483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeThis study investigates the topological properties of brain functional networks in patients with isolated rapid eye movement sleep behavior disorder (iRBD).Participants and MethodsA total of 21 patients with iRBD (iRBD group) and 22 healthy controls (HCs) were evaluated using resting-state functional MRI (rs-fMRI) and neuropsychological measures in cognitive and motor function. Data from rs-fMRI were analyzed using graph theory, which included small-world properties, network efficiency, network local efficiency, nodal shortest path, node efficiency, and network connectivity, as well as the relationship between behavioral characteristics and altered brain topological features.ResultsRey-Osterrieth complex figure test (ROCFT-copy), symbol digital modalities test (SDMT), auditory verbal learning test (AVLT)-N1, AVLT-N2, AVLT-N3, and AVLT-N1-3 scores were significantly lower in patients with iRBD than in HC (P < 0.05), while trail making test A (TMT-A), TMT-B, and Unified Parkinson’s Disease Rating Scale Part-III (UPDRS-III) scores were higher in patients with iRBD (P < 0.05). Compared with the HCs, patients with iRBD had no difference in the small-world attributes (P > 0.05). However, there was a significant decrease in network global efficiency (P = 0.0052) and network local efficiency (P = 0.0146), while an increase in characteristic path length (P = 0.0071). There was lower nodal efficiency in occipital gyrus and nodal shortest path in frontal, parietal, temporal lobe, and cingulate gyrus. Functional connectivities were decreased between the nodes of occipital with the regions where they had declined nodal shortest path. There was a positive correlation between TMT-A scores and the nodal efficiency of the right middle occipital gyrus (R = 0.602, P = 0.014).ConclusionThese results suggest that abnormal behaviors may be associated with disrupted brain network topology and functional connectivity in patients with iRBD and also provide novel insights to understand pathophysiological mechanisms in iRBD.
Collapse
Affiliation(s)
- Chaofan Geng
- Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Shenghui Wang
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Zhonglin Li
- Department of Radiology, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Pengfei Xu
- Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yingying Bai
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yao Zhou
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xinyu Zhang
- Department of Neurology, Henan Provincial People’s Hospital Affiliated to Xinxiang Medical University, Zhengzhou, China
| | - Yongli Li
- Department of Functional Imaging, Henan Key Laboratory for Medical Imaging of Neurological Diseases, Zhengzhou, China
| | - Jiewen Zhang
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Hongju Zhang
- Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People’s Hospital Affiliated to Xinxiang Medical University, Zhengzhou, China
- *Correspondence: Hongju Zhang,
| |
Collapse
|