1
|
Picoli T, Peter C, Lopes M, Barcelos L, Varela Júnior A, Corcini C, Hübner S, Vargas G, Lima M, Fischer G. Melittin-induced metabolic changes on the Madin-Darby Bovine Kidney cell line. ARQ BRAS MED VET ZOO 2021. [DOI: 10.1590/1678-4162-12150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT In this study, the toxic effects of melittin on Madin-Darby Bovine Kidney cells (MDBK) were analyzed with respect to mitochondrial functionality by reduction of MTT and flow cytometry, apoptosis potential, necrosis, oxygen reactive species (ROS) production, lipid peroxidation, and DNA fragmentation using flow cytometry and cell membrane destabilization by confocal microscopy. The toxicity presented dose-dependent characteristics and mitochondrial activity was inhibited by up to 78.24 ±3.59% (P<0.01, n = 6) in MDBK cells exposed to melittin (10μg/mL). Flow cytometry analysis revealed that melittin at 2μg/mL had the highest necrosis rate (P<0.05) for the cells. The lipoperoxidation of the membranes was also higher at 2μg/mL of melittin (P<0.05), which was further confirmed by the microphotographs obtained by confocal microscopy. The highest ROS production occurred when the cells were exposed to 2.5μg/mL melittin (P<0.05), and this concentration also increased DNA fragmentation (P<0.05). There was a significative and positive correlation between the lipoperoxidation of membranes with ROS (R=0.4158), mitochondrial functionality (R=0.4149), and apoptosis (R=0.4978). Thus, the oxidative stress generated by melittin culminates in the elevation of intracellular ROS that initiates a cascade of toxic events in MDBK cells.
Collapse
Affiliation(s)
- T. Picoli
- Universidade Federal de Pelotas, Brazil
| | | | | | | | | | | | | | | | - M. Lima
- Universidade Federal de Pelotas, Brazil
| | | |
Collapse
|
2
|
Dos Santos Rodrigues B, Lakkadwala S, Kanekiyo T, Singh J. Dual-Modified Liposome for Targeted and Enhanced Gene Delivery into Mice Brain. J Pharmacol Exp Ther 2020; 374:354-365. [PMID: 32561686 PMCID: PMC7430450 DOI: 10.1124/jpet.119.264127] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/09/2020] [Indexed: 11/22/2022] Open
Abstract
The development of neuropharmaceutical gene delivery systems requires strategies to obtain efficient and effective brain targeting as well as blood-brain barrier (BBB) permeability. A brain-targeted gene delivery system based on a transferrin (Tf) and cell-penetrating peptide (CPP) dual-functionalized liposome, CPP-Tf-liposome, was designed and investigated for crossing BBB and permeating into the brain. We selected three sequences of CPPs [melittin, Kaposi fibroblast growth factor (kFGF), and penetration accelerating sequence-R8] and compared their ability to internalize into the cells and, subsequently, improve the transfection efficiency. Study of intracellular uptake indicated that liposomal penetration into bEnd.3 cells, primary astrocytes, and primary neurons occurred through multiple endocytosis pathways and surface modification with Tf and CPP enhanced the transfection efficiency of the nanoparticles. A coculture in vitro BBB model reproducing the in vivo anatomophysiological complexity of the biologic barrier was developed to characterize the penetrating properties of these designed liposomes. The dual-functionalized liposomes effectively crossed the in vitro barrier model followed by transfecting primary neurons. Liposome tissue distribution in vivo indicated superior ability of kFGF-Tf-liposomes to overcome BBB and reach brain of the mice after single intravenous administration. These findings demonstrate the feasibility of using strategically designed liposomes by combining Tf receptor targeting with enhanced cell penetration as a potential brain gene delivery vector. SIGNIFICANCE STATEMENT: Rational synthesis of efficient brain-targeted gene carrier included modification of liposomes with a target-specific ligand, transferrin, and with cell-penetrating peptide to enhance cellular internalization. Our study used an in vitro triple coculture blood-brain barrier (BBB) model as a tool to characterize the permeability across BBB and functionality of designed liposomes prior to in vivo biodistribution studies. Our study demonstrated that rational design and characterization of BBB permeability are efficient strategies for development of brain-targeted gene carriers.
Collapse
Affiliation(s)
- Bruna Dos Santos Rodrigues
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota (B.S.R., S.L., J.S.) and Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (T.K.)
| | - Sushant Lakkadwala
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota (B.S.R., S.L., J.S.) and Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (T.K.)
| | - Takahisa Kanekiyo
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota (B.S.R., S.L., J.S.) and Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (T.K.)
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota (B.S.R., S.L., J.S.) and Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (T.K.)
| |
Collapse
|
3
|
Kandil R, Xie Y, Heermann R, Isert L, Jung K, Mehta A, Merkel OM. Coming in and Finding Out: Blending Receptor-Targeted Delivery and Efficient Endosomal Escape in a Novel Bio-Responsive siRNA Delivery System for Gene Knockdown in Pulmonary T Cells. ADVANCED THERAPEUTICS 2019; 2:1900047. [PMID: 31372493 PMCID: PMC6675603 DOI: 10.1002/adtp.201900047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Indexed: 12/11/2022]
Abstract
RNA interference (RNAi) offers the potential to selectively silence disease-related genes in defined cell subsets. Translation into the clinical routine is, however, still hampered by the lack of efficient carrier systems for therapeutic siRNA, endosomal entrapment presenting a major hurdle. A promising siRNA delivery system has previously been developed on the base of polyethylenimine (PEI) and the targeting ligand transferrin (Tf) to specifically reach activated T cells in the lung. In the present work, the focus is on optimizing Tf-PEI polyplexes for gene knockdown in primary activated T cells by improving their endosomal escape properties. Blending of the conjugate with membrane lytic melittin significantly enhanced endosomal release and thereby cytoplasmic delivery, while maintaining selective T cell targeting abilities and overall cell tolerability. The gathered data furthermore demonstrate that melittin addition also distinctly improves several other essential particle characteristics, such as siRNA encapsulation efficiency and stability in lung lining fluids. In conclusion, this results in a novel upgraded siRNA delivery system that is not only able to specifically deliver its payload to the desired target cells via receptor-mediated endocytosis, but also shows enhanced release from endosomal vesicles in order to initiate RNAi in the cytoplasm.
Collapse
Affiliation(s)
- Rima Kandil
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337 Munich, Germany
| | - Yuran Xie
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48201, USA
| | - Ralf Heermann
- Institute for Molecular Physiology, Microbiology and Wine Research, Johannes-Gutenberg-University, Johann-Joachim-Becher-Weg 13, 55128 Mainz, Germany; Biocenter, Department Microbiology, Ludwig-Maximilians-University, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Lorenz Isert
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337 Munich, Germany
| | - Kirsten Jung
- Biocenter, Department Microbiology, Ludwig-Maximilians-University, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Aditi Mehta
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337 Munich, Germany
| | - Olivia M. Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337 Munich, Germany
| |
Collapse
|
4
|
Sim JY, Kim S, Lee J, Lim H, Kim HH, Park ZY, Kim JI. A significantly enhanced antibacterial spectrum of D-enantiomeric lipopeptide bactenecin. Biochem Biophys Res Commun 2019; 514:497-502. [PMID: 31056261 DOI: 10.1016/j.bbrc.2019.04.153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
Abstract
Cationic antimicrobial peptides (CAMPs) are important antibiotics because they possess a broad spectrum of activity against both Gram-positive and Gram-negative bacteria, including those resistant to traditional antibiotics. The cyclic peptide bactenecin is a 12-amino acid CAMP that contains one intramolecular disulfide bond. To improve the antibacterial activity of bactenecin, we designed and synthesized several bactenecin analogs by applying multiple approaches, including amino acid substitution, use of the d-enantiomeric form, and lipidation. Among the synthetic analogs, d-enantiomeric bactenecin conjugated to capric acid, which we named dBacK-(cap), exhibited a significantly enhanced antibacterial spectrum with MIC values ranging from 1 to 8 μM against both Gram-positive and Gram-negative bacteria, including some drug-resistant bacteria. Upon exposure to dBacK-(cap), S. aureus cells were killed within 1 h at the MIC value, but full inactivation of E. coli required over 2 h. These results indicate that covalent addition of a d-amino acid and a fatty acid to bactenecin is the most effective approach for enhancing its antibacterial activity.
Collapse
Affiliation(s)
- Ji-Yeong Sim
- School of Life Sciences, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju, 61005, Republic of Korea
| | - Shanghyeon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jaeho Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju, 61005, Republic of Korea
| | - Hyunjung Lim
- School of Life Sciences, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju, 61005, Republic of Korea
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06944, South Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jae Il Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
5
|
Taute H, Bester MJ, Gaspar ARM. The dual functionality of antimicrobial peptides Os and Os-C in human leukocytes. J Pept Sci 2019; 25:e3156. [PMID: 30740816 DOI: 10.1002/psc.3156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022]
Abstract
Antimicrobial peptides (AMPs), Os and Os-C, have been identified as multifunctional peptides with antibacterial, antiendotoxin, and anti-inflammatory properties. For further development of Os and Os-C as therapeutic peptides, it is essential to evaluate these effects in human mononuclear (MN) and polymorphonuclear (PMN) leukocytes. The cytotoxicity and the effects of both peptides on MN and PMN morphology were determined with the Alamar-Blue assay and scanning electron microscopy, respectively. The ability of Os and Os-C to induce reactive oxygen species (ROS) and to protect against 2,2'-azobis(2-amidinopropane) dihydrochloride-induced oxidative damage in both cell populations was evaluated using 2',7'-dichlorofluorescin diacetate (DCFH-DA). Using fluorescently labeled peptides, the ability of the peptides to cross the cell membranes of MN and PMN was also evaluated. At the minimum bactericidal concentrations of Os and Os-C, neither peptide was cytotoxic. Os caused morphological features of toxicity at 100 μM, entered MN cells, and also protected these cells against oxidative damage. Os-C caused MN and PMN leukocyte activation associated with ROS formation and was unable to penetrate cell membranes, indicating extracellular membrane interactions. This study confirms that both Os and Os-C at less than 100 μM are not cytotoxic. The MN-specific uptake of Os identifies it as a cell-specific cargo-carrier peptide, with additional anti-inflammatory properties. In contrast, the ability of Os-C to activate MN and PMN cells implies that this peptide should be further evaluated as an AMP, which, in addition to its ability to eradicate infection, can further enhance host immunity. These novel characteristics of Os and Os-C indicate that these AMPs as peptides can be further developed for specific applications.
Collapse
Affiliation(s)
- Helena Taute
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Megan J Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Anabella R M Gaspar
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural Sciences, University of Pretoria, South Africa
| |
Collapse
|
6
|
Chongsiriwatana NP, Lin JS, Kapoor R, Wetzler M, Rea JAC, Didwania MK, Contag CH, Barron AE. Intracellular biomass flocculation as a key mechanism of rapid bacterial killing by cationic, amphipathic antimicrobial peptides and peptoids. Sci Rep 2017; 7:16718. [PMID: 29196622 PMCID: PMC5711933 DOI: 10.1038/s41598-017-16180-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
Many organisms rely on antimicrobial peptides (AMPs) as a first line of defense against pathogens. In general, most AMPs are thought to kill bacteria by binding to and disrupting cell membranes. However, certain AMPs instead appear to inhibit biomacromolecule synthesis, while causing less membrane damage. Despite an unclear understanding of mechanism(s), there is considerable interest in mimicking AMPs with stable, synthetic molecules. Antimicrobial N-substituted glycine (peptoid) oligomers ("ampetoids") are structural, functional and mechanistic analogs of helical, cationic AMPs, which offer broad-spectrum antibacterial activity and better therapeutic potential than peptides. Here, we show through quantitative studies of membrane permeabilization, electron microscopy, and soft X-ray tomography that both AMPs and ampetoids trigger extensive and rapid non-specific aggregation of intracellular biomacromolecules that correlates with microbial death. We present data demonstrating that ampetoids are "fast killers", which rapidly aggregate bacterial ribosomes in vitro and in vivo. We suggest intracellular biomass flocculation is a key mechanism of killing for cationic, amphipathic AMPs, which may explain why most AMPs require micromolar concentrations for activity, show significant selectivity for killing bacteria over mammalian cells, and finally, why development of resistance to AMPs is less prevalent than developed resistance to conventional antibiotics.
Collapse
Affiliation(s)
- Nathaniel P Chongsiriwatana
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States
| | - Jennifer S Lin
- Department of Bioengineering, Stanford University, Stanford, California, United States
| | - Rinki Kapoor
- Biophysics Program, Stanford University, Stanford, California, United States
| | - Modi Wetzler
- Department of Bioengineering, Stanford University, Stanford, California, United States
| | - Jennifer A C Rea
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States
| | - Maruti K Didwania
- Department of Bioengineering, Stanford University, Stanford, California, United States
| | - Christopher H Contag
- Departments of Microbiology and Immunology, Pediatrics, and Radiology, Stanford University, Stanford, California, United States
| | - Annelise E Barron
- Department of Bioengineering, Stanford University, Stanford, California, United States.
| |
Collapse
|
7
|
Hur J, Kim K, Lee S, Park H, Park Y. Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques. Sci Rep 2017; 7:9306. [PMID: 28839153 PMCID: PMC5571175 DOI: 10.1038/s41598-017-08675-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/12/2017] [Indexed: 01/05/2023] Open
Abstract
Here, the actions of melittin, the active molecule of apitoxin or bee venom, were investigated on human red blood cells (RBCs) using quantitative phase imaging techniques. High-resolution real-time 3-D refractive index (RI) measurements and dynamic 2-D phase images of individual melittin-bound RBCs enabled in-depth examination of melittin-induced biophysical alterations of the cells. From the measurements, morphological, intracellular, and mechanical alterations of the RBCs were analyzed quantitatively. Furthermore, leakage of haemoglobin (Hb) inside the RBCs at high melittin concentration was also investigated.
Collapse
Affiliation(s)
- Joonseok Hur
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, United States
| | - Kyoohyun Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,KAIST Institute Health Science and Technology, Daejeon, 34141, South Korea
| | - SangYun Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,KAIST Institute Health Science and Technology, Daejeon, 34141, South Korea
| | - HyunJoo Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea. .,KAIST Institute Health Science and Technology, Daejeon, 34141, South Korea. .,Tomocube Inc., Daejeon, 34051, Republic of Korea.
| |
Collapse
|
8
|
Lee C, Bae SJS, Joo H, Bae H. Melittin suppresses tumor progression by regulating tumor-associated macrophages in a Lewis lung carcinoma mouse model. Oncotarget 2017; 8:54951-54965. [PMID: 28903394 PMCID: PMC5589633 DOI: 10.18632/oncotarget.18627] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/29/2017] [Indexed: 11/25/2022] Open
Abstract
Tumor-associated macrophages (TAM) are a major component of tumor stroma. It has been reported that TAMs have M2-like phenotype and facilitate tumor progression by promoting angiogenesis and immunosuppression. Melittin, a major polypeptide of bee venom, has been widely studied as an anti-cancer drug due to its cytotoxicity to malignant cells. However, very little is known regarding the effect of melittin on immune cells in the tumor microenvironment. This study focuses on the effect of melittin on TAMs in a Lewis lung carcinoma mouse model. Melittin inhibited the rapid tumor growth compared to the control in vivo. Melittin increased the M1/M2 ratio of TAMs by selectively reducing the number of CD206+ M2-like TAMs while not altering the population of CD86+ M1-like TAMs. Melittin also preferentially binds to M2 macrophages, and this binding was not associated with phagocytosis. Gene and protein expression of vascular endothelial growth factor (Vegf) and mannose receptor C type 1 (Mrc1/CD206) was reduced in M2-like bone marrow-derived macrophages by melittin treatment, but there was no significant change in the gene level of Vegf and FMS-like tyrosine kinase 1 (Flt1/VEGFR1) in tumor cells in vitro. Additionally, the levels of VEGF and CD31, markers of angiogenesis, were significantly decreased by melittin treatment in tumor tissues. This study revealed a novel role for melittin in tumor treatment and suggested that melittin could be a promising therapeutic agent for targeting M2-like TAMs.
Collapse
Affiliation(s)
- Chanju Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Dongdaemoon-Gu, Seoul 02447, Republic of Korea
| | - Sung-Joo S Bae
- Department of Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Hwansoo Joo
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Dongdaemoon-Gu, Seoul 02447, Republic of Korea
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Dongdaemoon-Gu, Seoul 02447, Republic of Korea
| |
Collapse
|
9
|
Gajski G, Domijan AM, Žegura B, Štern A, Gerić M, Novak Jovanović I, Vrhovac I, Madunić J, Breljak D, Filipič M, Garaj-Vrhovac V. Melittin induced cytogenetic damage, oxidative stress and changes in gene expression in human peripheral blood lymphocytes. Toxicon 2016; 110:56-67. [DOI: 10.1016/j.toxicon.2015.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/07/2015] [Accepted: 12/11/2015] [Indexed: 12/12/2022]
|
10
|
The protective effect of bee venom on fibrosis causing inflammatory diseases. Toxins (Basel) 2015; 7:4758-72. [PMID: 26580653 PMCID: PMC4663532 DOI: 10.3390/toxins7114758] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/24/2015] [Accepted: 11/05/2015] [Indexed: 02/06/2023] Open
Abstract
Bee venom therapy is a treatment modality that may be thousands of years old and involves the application of live bee stings to the patient’s skin or, in more recent years, the injection of bee venom into the skin with a hypodermic needle. Studies have proven the effectiveness of bee venom in treating pathological conditions such as arthritis, pain and cancerous tumors. However, there has not been sufficient review to fully elucidate the cellular mechanisms of the anti-inflammatory effects of bee venom and its components. In this respect, the present study reviews current understanding of the mechanisms of the anti-inflammatory properties of bee venom and its components in the treatment of liver fibrosis, atherosclerosis and skin disease.
Collapse
|
11
|
A novel antimicrobial peptide, scolopendin, from Scolopendra subspinipes mutilans and its microbicidal mechanism. Biochimie 2015; 118:176-84. [DOI: 10.1016/j.biochi.2015.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/31/2015] [Indexed: 12/11/2022]
|
12
|
Hou KK, Pan H, Schlesinger PH, Wickline SA. A role for peptides in overcoming endosomal entrapment in siRNA delivery - A focus on melittin. Biotechnol Adv 2015; 33:931-40. [PMID: 26025036 PMCID: PMC4540690 DOI: 10.1016/j.biotechadv.2015.05.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/20/2015] [Accepted: 05/23/2015] [Indexed: 12/21/2022]
Abstract
siRNA has the possibility to revolutionize medicine by enabling highly specific and efficient silencing of proteins involved in disease pathogenesis. Despite nearly 20 years of research dedicated to translating siRNA from a research tool into a clinically relevant therapeutic, minimal success has been had to date. Access to RNA interference machinery located in the cytoplasm is often overlooked, but must be considered when designing the next generation of siRNA delivery strategies. Peptide transduction domains (PTDs) have demonstrated moderate siRNA transfection, which is primarily limited by endosomal entrapment. Strategies aimed at overcoming endosomal entrapment associated with peptide vectors are reviewed here, including osmotic methods, lipid conjugation, and fusogenic peptides. As an alternative to traditional PTD, the hemolytic peptide melittin exhibits the native capacity for endosomal disruption but causes cytotoxicity. However, appropriate packaging and protection of melittin with activation and release in the endosomal compartment has allowed melittin-based strategies to demonstrate both in vitro and in vivo safety and efficacy. These data suggest that melittin's membrane disruptive properties can enable safe and effective endosomolysis, building a case for melittin as a key component in a new generation of siRNA therapeutics.
Collapse
Affiliation(s)
- Kirk K Hou
- Computational and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Hua Pan
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Paul H Schlesinger
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Samuel A Wickline
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63108, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63108, USA.
| |
Collapse
|
13
|
Effects of Melittin Treatment in Cholangitis and Biliary Fibrosis in a Model of Xenobiotic-Induced Cholestasis in Mice. Toxins (Basel) 2015; 7:3372-87. [PMID: 26308055 PMCID: PMC4591642 DOI: 10.3390/toxins7093372] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/13/2015] [Accepted: 08/20/2015] [Indexed: 01/14/2023] Open
Abstract
Cholangiopathy is a chronic immune-mediated disease of the liver, which is characterized by cholangitis, ductular reaction and biliary-type hepatic fibrosis. There is no proven medical therapy that changes the course of the disease. In previous studies, melittin was known for attenuation of hepatic injury, inflammation and hepatic fibrosis. This study investigated whether melittin provides inhibition on cholangitis and biliary fibrosis in vivo. Feeding 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) to mice is a well-established animal model to study cholangitis and biliary fibrosis. To investigate the effects of melittin on cholangiopathy, mice were fed with a 0.1% DDC-containing diet with or without melittin treatment for four weeks. Liver morphology, serum markers of liver injury, cholestasis markers for inflammation of liver, the degree of ductular reaction and the degree of liver fibrosis were compared between with or without melittin treatment DDC-fed mice. DDC feeding led to increased serum markers of hepatic injury, ductular reaction, induction of pro-inflammatory cytokines and biliary fibrosis. Interestingly, melittin treatment attenuated hepatic function markers, ductular reaction, the reactive phenotype of cholangiocytes and cholangitis and biliary fibrosis. Our data suggest that melittin treatment can be protective against chronic cholestatic disease in DDC-fed mice. Further studies on the anti-inflammatory capacity of melittin are warranted for targeted therapy in cholangiopathy.
Collapse
|
14
|
Rayahin JE, Buhrman JS, Gemeinhart RA. Melittin-glutathione S-transferase fusion protein exhibits anti-inflammatory properties and minimal toxicity. Eur J Pharm Sci 2014; 65:112-21. [PMID: 25240321 DOI: 10.1016/j.ejps.2014.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 12/11/2022]
Abstract
Although potent, proteins often require chemical modification for therapeutic use. Immunogenicity, difficult synthesis, and scale-up of these modifications are all engineering obstacles that stand in the way of expanding the use of these therapeutics. Melittin, a peptide derived from bee venom, has been shown to modulate inflammation. Although potentially therapeutic, the native peptide causes cell lysis and toxicity significantly hindering therapeutic application. Based upon the knowledge of the pore formation mechanism, we examined the toxicity and therapeutic effect of a melittin fusion protein with glutathione-S-transferase. The fusion of melittin and glutathione S-transferase results in diminished toxicity of the peptide and retained anti-inflammatory properties at doses that exceed toxic concentration of native melittin. Our results suggest that fusion proteins, particularly those of glutathione-S-transferase, may be facile modifications to control protein activity.
Collapse
Affiliation(s)
- Jamie E Rayahin
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, IL 60612-7231, USA
| | - Jason S Buhrman
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, IL 60612-7231, USA
| | - Richard A Gemeinhart
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, IL 60612-7231, USA; Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA; Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612-4319, USA.
| |
Collapse
|
15
|
Han SM, Kim JM, Park KK, Chang YC, Pak SC. Neuroprotective effects of melittin on hydrogen peroxide-induced apoptotic cell death in neuroblastoma SH-SY5Y cells. Altern Ther Health Med 2014; 14:286. [PMID: 25091565 PMCID: PMC4246557 DOI: 10.1186/1472-6882-14-286] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/22/2014] [Indexed: 12/02/2022]
Abstract
Background Free radicals are involved in neuronal cell death in human neurodegenerative diseases. Since ancient times, honeybee venom has been used in a complementary medicine to treat various diseases and neurologic disorders. Melittin, the main component of honeybee venom, has various biologic effects, including anti-bacterial, anti-viral, and anti-inflammatory activities. Methods We investigated the neuroprotective effects of melittin against H2O2-induced apoptosis in the human neuroblastoma cell line SH-SY5Y. The neuroprotective effects of melittin on H2O2-induced apoptosis were investigated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylterazolium bromide assay, caspase 3 activity, 4,6-diamidino-2-phenylindole staining, a lactate dehydrogenase release assay, Western blots, and reverse transcription-polymerase chain reaction. Results The H2O2-treated cells had decreased cell viability with apoptotic features and increased production of caspase-3. On the other hand, melittin treatment increased cell viability and decreased apoptotic DNA fragmentation. Melittin attenuated the H2O2-induced decrease in mRNA and protein production of the anti-apoptotic factor Bcl-2. In addition, melittin inhibited both the H2O2-induced mRNA and protein expression of Bax-associated pro-apoptotic factor and caspase-3. Conclusions These findings suggest that melittin has potential therapeutic effects as an agent for the prevention of neurodegenerative diseases.
Collapse
|
16
|
Černe K, Erman A, Veranič P. Analysis of cytotoxicity of melittin on adherent culture of human endothelial cells reveals advantage of fluorescence microscopy over flow cytometry and haemocytometer assay. PROTOPLASMA 2013; 250:1131-1137. [PMID: 23456458 DOI: 10.1007/s00709-013-0489-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/12/2013] [Indexed: 06/01/2023]
Abstract
Melittin, from the honeybee venom, is a membrane active protein, whose cytotoxicity to human endothelial cells has not been described yet. In this work, we studied its time-dependent cytotoxicity on human umbilical vein endothelial cells (HUVECs). Since HUVECs grow in culture as adherent cells, suspension of cells is required before measuring cytotoxicity with a haemocytometer or flow cytometry. Therefore, we also tried to discover whether the result of cytotoxicity tests of melittin is influenced by the preparation of the cell suspension. For this purpose, we compared the results of haemocytometer-based trypan blue assay and flow cytometry using 7-aminoactinomycin D (7-AAD) with results of fluorescence microscopy using 7-AAD and 4', 6-diamidino-2-phenylindole (DAPI). Melittin over 60 min exposure evoked a rapid decline in the survival of HUVEC. After 60 min exposure to melittin, the phase contrast microscopy demonstrated massive necrosis in the remaining attached cells. Fluorescence microscopy detected both viable and non-viable cells in adequate proportions at all exposure times, whereas haemocytometer-based assay and flow cytometry highly underestimated the percentage of non-viable cells or even failed to detect any dead cells. Our data clearly indicate that the induction of large-scale damage to adherent endothelial cells by melittin results in a loss of the majority of necrotic cells during sample preparation for flow cytometry or a haemocytometer-based assay. In the case of adherent cell culture, therefore, fluorescence microscopy was shown to be a more appropriate method for quantitative analysis of cell death caused by a fast-acting cytolytic toxin such as melittin.
Collapse
Affiliation(s)
- Katarina Černe
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia,
| | | | | |
Collapse
|
17
|
Gajski G, Garaj-Vrhovac V. Melittin: a lytic peptide with anticancer properties. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:697-705. [PMID: 23892471 DOI: 10.1016/j.etap.2013.06.009] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/12/2013] [Accepted: 06/20/2013] [Indexed: 05/28/2023]
Abstract
Melittin (MEL) is a major peptide constituent of bee venom that has been proposed as one of the upcoming possibilities for anticancer therapy. Recent reports point to several mechanisms of MEL cytotoxicity in different types of cancer cells such as cell cycle alterations, effect on proliferation and/or growth inhibition, and induction of apoptotic and necrotic cell death trough several cancer cell death mechanisms, including the activation of caspases and matrix metalloproteinases. Although cytotoxic to a broad spectrum of tumour cells, the peptide is also toxic to normal cells. Therefore its therapeutic potential cannot be achieved without a proper delivery vehicle which could be overcome by MEL nanoparticles that possess the ability to safely deliver significant amount of MEL intravenously, and to target and kill tumours. This review paper summarizes the current knowledge and brings latest research findings on the anticancer potential of this lytic peptide with diverse functions.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb, Croatia.
| | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb, Croatia
| |
Collapse
|
18
|
Erazo-Oliveras A, Muthukrishnan N, Baker R, Wang TY, Pellois JP. Improving the endosomal escape of cell-penetrating peptides and their cargos: strategies and challenges. Pharmaceuticals (Basel) 2012; 5:1177-1209. [PMID: 24223492 PMCID: PMC3816665 DOI: 10.3390/ph5111177] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 12/13/2022] Open
Abstract
Cell penetrating peptides (CPPs) can deliver cell-impermeable therapeutic cargos into cells. In particular, CPP-cargo conjugates tend to accumulate inside cells by endocytosis. However, they often remain trapped inside endocytic organelles and fail to reach the cytosolic space of cells efficiently. In this review, the evidence for CPP-mediated endosomal escape is discussed. In addition, several strategies that have been utilized to enhance the endosomal escape of CPP-cargos are described. The recent development of branched systems that display multiple copies of a CPP is presented. The use of viral or synthetic peptides that can disrupt the endosomal membrane upon activation by the low pH of endosomes is also discussed. Finally, we survey how CPPs labeled with chromophores can be used in combination with light to stimulate endosomal lysis. The mechanisms and challenges associated with these intracellular delivery methodologies are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Jean-Philippe Pellois
- Author to whom correspondence should be addressed; ; Tel.: +1-979-845-0101; Fax: +1-979-862-4718
| |
Collapse
|
19
|
Gründemann C, Koehbach J, Huber R, Gruber CW. Do plant cyclotides have potential as immunosuppressant peptides? JOURNAL OF NATURAL PRODUCTS 2012; 75:167-74. [PMID: 22272797 PMCID: PMC3399773 DOI: 10.1021/np200722w] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cyclotides are an abundant and diverse group of ribosomally synthesized plant peptides containing a cyclic cystine-knotted structure that confers them with remarkable stability. They are explored for their distribution in plants, although little is known about the individual peptide content of a single species. Therefore, we chemically analyzed the crude extract of the coffee-family plant Oldenlandia affinis using a rapid peptidomics workflow utilizing nano-LC-MS, peptide reconstruct with database identification, and MS/MS automated sequence analysis to determine its cyclotide content. Biologically, cyclotides are mainly explored for applications in agriculture and drug design; here we report their growth-inhibiting effects on primary cells of the human immune system using biological and immunological end points in cell-based test systems. LC-MS quantification of the active O. affinis plant extract triggered the characterization of the antiproliferative activity of kalata B1, one of the most abundant cyclotides in this extract, on primary activated human lymphocytes. The effect has a defined concentration range and was not due to cytotoxicity, thus opening a new avenue to utilize native and synthetically optimized plant cyclotides for applications in immune-related disorders and as immunosuppressant peptides.
Collapse
Affiliation(s)
- Carsten Gründemann
- Center for Complementary Medicine, Department of Environmental Health Sciences, University Medical Center Freiburg, Breisacher Straße 115B, D-79111 Freiburg, Germany
| | - Johannes Koehbach
- Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, A-1090 Vienna, Austria
| | - Roman Huber
- Center for Complementary Medicine, Department of Environmental Health Sciences, University Medical Center Freiburg, Breisacher Straße 115B, D-79111 Freiburg, Germany
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, A-1090 Vienna, Austria
- Corresponding Author: Tel: +43-(0)1-4277-62511. Fax: +43-(0)1-4277-9623.
| |
Collapse
|
20
|
Park JH, Kum YS, Lee TI, Kim SJ, Lee WR, Kim BI, Kim HS, Kim KH, Park KK. Melittin attenuates liver injury in thioacetamide-treated mice through modulating inflammation and fibrogenesis. Exp Biol Med (Maywood) 2011; 236:1306-1313. [PMID: 21969711 DOI: 10.1258/ebm.2011.011127] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Liver fibrosis represents a process of healing and scarring in response to chronic liver injury. Following injury, an acute inflammation response takes place resulting in moderate cell necrosis and extracellular matrix damage. Melittin, the major bioactive component in the venom of honey bee Apis mellifera, is a 26-residue amphipathic peptide with well-known cytolytic, antimicrobial and proinflammatory properties. However, the molecular mechanisms responsible for the anti-inflammatory activity of melittin have not been elucidated in liver fibrosis. We investigated whether melittin ameliorates liver inflammation and fibrosis in thioacetamide (TAA)-induced liver fibrosis. Two groups of mice were treated with TAA (200 mg/L, in drinking water), one of the groups of mice was co-treated with melittin (0.1 mg/kg) for 12 weeks while the other was not. Hepatic stellate cells (HSCs) were cultured with tumor necrosis factor α in the absence or presence of melittin. Melittin suppresses the expression of proinflammatory cytokines through the nuclear factor (NF)- κB signaling pathway. Moreover, melittin reduces the activity of HSCs in vitro, and decreases the expression of fibrotic gene responses in TAA-induced liver fibrosis. Taken together, melittin prevents TAA-induced liver fibrosis by inhibiting liver inflammation and fibrosis, the mechanism of which is the interruption of the NF- κB signaling pathway. These results suggest that melittin could be an effective agent for preventing liver fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Bong-Il Kim
- Department of Anesthesiology, Catholic University of Daegu, College of Medicine, 3056–6 Daemyung 4-Dong, Nam-Gu, Daegu 705–718
| | - Hyun-Soo Kim
- Department of Microbiology, Keimyung University, College of Natural Science, 1000 Shindang-dong, Dalseo-Gu, Daegu 704–701, Republic of Korea
| | | | | |
Collapse
|
21
|
Lee WR, Park JH, Kim KH, Park YY, Han SM, Park KK. Protective effects of melittin on transforming growth factor-β1 injury to hepatocytes via anti-apoptotic mechanism. Toxicol Appl Pharmacol 2011; 256:209-15. [PMID: 21871910 DOI: 10.1016/j.taap.2011.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/10/2011] [Accepted: 08/10/2011] [Indexed: 01/06/2023]
Abstract
Melittin is a cationic, hemolytic peptide that is the main toxic component in the venom of the honey bee (Apis mellifera). Melittin has multiple effects, including anti-bacterial, anti-viral and anti-inflammatory, in various cell types. However, the anti-apoptotic mechanisms of melittin have not been fully elucidated in hepatocytes. Apoptosis contributes to liver inflammation and fibrosis. Knowledge of the apoptotic mechanisms is important to develop new and effective therapies for treatment of cirrhosis, portal hypertension, liver cancer, and other liver diseases. In the present study, we investigated the anti-apoptotic effect of melittin on transforming growth factor (TGF)-β1-induced apoptosis in hepatocytes. TGF-β1-treated hepatocytes were exposed to low doses (0.5 and 1 μg/mL) and high dose (2 μg/mL) of melittin. The low doses significantly protected these cells from DNA damage in TGF-β1-induced apoptosis compared to the high dose. Also, melittin suppressed TGF-β1-induced apoptotic activation of the Bcl-2 family and caspase family of proteins, which resulted in the inhibition of poly-ADP-ribose polymerase (PARP) cleavage. These results demonstrate that TGF-β1 induces hepatocyte apoptosis and that an optimal dose of melittin exerts anti-apoptotic effects against TGF-β1-induced injury to hepatocytes via the mitochondrial pathway. These results suggest that an optimal dose of melittin can serve to protect cells against TGF-β1-mediated injury.
Collapse
Affiliation(s)
- Woo-Ram Lee
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu, South Korea
| | | | | | | | | | | |
Collapse
|
22
|
Black SM, Schott ME, Batdorf BH, Benson BA, Rutherford MS, Levay-Young BK, Dalmasso AP. IL-4 induces protection of vascular endothelial cells against killing by complement and melittin through lipid biosynthesis. Eur J Immunol 2010; 40:803-12. [PMID: 20017192 DOI: 10.1002/eji.200939488] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have shown previously that cytokines IL-4 and IL-13 induce protection in porcine vascular endothelial cells (EC) against killing by the membrane attack complex (MAC) of human complement. This protection is intrinsic, not due to changes in complement regulatory proteins, and requires activation of Akt and sterol receptor element binding protein-1 (SREBP-1), which regulates fatty acid and phospholipid synthesis. Here we report that, compared to EC incubated in medium, IL-4-treated EC had a profound reduction in complement-mediated ATP loss and in killing assessed by vital dye uptake, but only a slight reduction in permeability disruption measured by calcein release. While controls exposed to complement lost mitochondrial membrane potential and subsequently died, protected EC maintained mitochondrial morphology and membrane potential, and remained alive. SREBP-1 and fatty acid synthase activation were required for protection and fatty acid and phospholipid synthesis, including cardiolipin, were increased after IL-4 stimulation, without increase in cholesterol content or cell proliferation. IL-4 also induced protection of EC from killing by the channel forming protein melittin, similar to protection observed for the MAC. We conclude that IL-4 induced activation of Akt/SREBP-1/lipid biosynthesis in EC, resulting in protection against MAC and melittin, in association with mitochondrial protection.
Collapse
Affiliation(s)
- Sylvester M Black
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Impact of amino acid replacements on in vitro permeation enhancement and cytotoxicity of the intestinal absorption promoter, melittin. Int J Pharm 2010; 387:154-60. [DOI: 10.1016/j.ijpharm.2009.12.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 12/08/2009] [Accepted: 12/09/2009] [Indexed: 10/20/2022]
|
24
|
Crombez L, Aldrian-Herrada G, Konate K, Nguyen QN, McMaster GK, Brasseur R, Heitz F, Divita G. A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol Ther 2008; 17:95-103. [PMID: 18957965 DOI: 10.1038/mt.2008.215] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RNA interference constitutes a powerful tool for biological studies, but has also become one of the most challenging therapeutic strategies. However, small interfering RNA (siRNA)-based strategies suffer from their poor delivery and biodistribution. Cell-penetrating peptides (CPPs) have been shown to improve the intracellular delivery of various biologically active molecules into living cells and have more recently been applied to siRNA delivery. To improve cellular uptake of siRNA into challenging cell lines, we have designed a secondary amphipathic peptide (CADY) of 20 residues combining aromatic tryptophan and cationic arginine residues. CADY adopts a helical conformation within cell membranes, thereby exposing charged residues on one side, and Trp groups that favor cellular uptake on the other. We show that CADY forms stable complexes with siRNA, thereby increasing their stability and improving their delivery into a wide variety of cell lines, including suspension and primary cell lines. CADY-mediated delivery of subnanomolar concentrations of siRNA leads to significant knockdown of the target gene at both the mRNA and protein levels. Moreover, we demonstrate that CADY is not toxic and enters cells through a mechanism which is independent of the major endosomal pathway. Given its biological properties, we propose that CADY-based technology will have a significant effect on the development of fundamental and therapeutic siRNA-based applications.
Collapse
Affiliation(s)
- Laurence Crombez
- Centre de Recherches de Biochimie Macromoléculaire, Department of Molecular Biophysics and Therapeutics, Centre Nationale de la Recherche Scientifique, UMR-5237, University of Montpellier I & II, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Liu SI, Cheng HH, Huang CJ, Chang HC, Chen WC, Chen IS, Hsu SS, Chang HT, Huang JK, Chen JS, Lu YC, Jan CR. Melittin-induced [Ca2+]i increases and subsequent death in canine renal tubular cells. Hum Exp Toxicol 2008; 27:417-24. [DOI: 10.1177/0960327108094606] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of melittin on cytosolic free Ca2+ concentration ([Ca2+]i) and viability is largely unknown. This study examined whether melittin alters Ca2+ levels and causes Ca2+-dependent cell death in Madin-Darby canine kidney (MDCK) cells. [Ca2+]i and cell death were measured using the fluorescent dyes fura-2 and WST-1 respectively. Melittin at concentrations above 0.5 μM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced by 75% by removing extracellular Ca2+. The melittin-induced Ca2+ influx was also implicated by melittin-caused Mn2+ influx. After pretreatment with 1 μM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), melittin-induced Ca2+ release was inhibited; and conversely, melittin pretreatment abolished thapsigargin-induced Ca2+ release. At concentrations of 0.5–20 μM, melittin killed cells in a concentration-dependent manner. The cytotoxic effect of 0.5 μM melittin was nearly completely reversed by prechelating cytosolic Ca2+ with BAPTA. Melittin at 0.5–2 μM caused apoptosis as assessed by flow cytometry of propidium iodide staining. Collectively, in MDCK cells, melittin induced a [Ca2+]i rise by causing Ca2+ release from endoplasmic reticulum and Ca2+ influx from extracellular space. Furthermore, melittin can cause Ca2+-dependent cytotoxicity in a concentration-dependent manner.
Collapse
Affiliation(s)
- SI Liu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - HH Cheng
- Section of Allergy, Immunology and Rheumatology, Chi-Mei Medical Center, Tainan, Taiwan
| | - CJ Huang
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Psychiatry, Tian-Sheng Memorial Hospital, Ping-Tong, Taiwan
| | - HC Chang
- Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - WC Chen
- Department of Surgery, Ping Tung Christian Hospital, Ping Tung, Taiwan
| | - IS Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - SS Hsu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - HT Chang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - JK Huang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - JS Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - YC Lu
- Department of Orthopaedic Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - CR Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
26
|
Maher S, McClean S. Melittin exhibits necrotic cytotoxicity in gastrointestinal cells which is attenuated by cholesterol. Biochem Pharmacol 2007; 75:1104-14. [PMID: 18068148 DOI: 10.1016/j.bcp.2007.10.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/18/2007] [Accepted: 10/18/2007] [Indexed: 10/22/2022]
Abstract
Melittin, a cationic antimicrobial peptide isolated from the venom of Apis mellifera, has shown potential as a permeability enhancer, transiently increasing intestinal permeability and enhancing the absorption of paracellular markers. Although it is cytotoxic to eukaryotic cells, its cytotoxicity is significantly lower in polarised epithelia compared to non-polarised cells. The aim of this study was to explore the mechanism of melittin cytotoxicity in gastrointestinal cells and to determine whether cytotoxicity was mediated by a necrotic or an apoptotic pathway. The role of cholesterol in melittin cytotoxicity was also examined. Using four distinct assays for apoptosis, phosphatidylserine translocation, caspase activation, DNA ladder formation and cell cycle analysis, no evidence of apoptotic pathway for cell death was observed with any of these approaches. It can therefore be concluded that cytotoxicity was likely to be mediated by necrosis in gastrointestinal epithelial cells. However, at low concentrations of melittin (<1 microM), BRDU uptake was enhanced, demonstrating proliferative effects of melittin at sub-lethal concentrations. Furthermore, melittin cytotoxicity was further enhanced by depletion of cholesterol, using methyl-beta-cyclodextrin, indicating that cholesterol depleting agents could be contradictory to its potential as an enhancer. Overall, although melittin appears to stimulate necrosis, with careful dosage selection the peptide could be considered for the oral delivery of poorly bioavailable drugs.
Collapse
Affiliation(s)
- Sam Maher
- Institute of Technology Tallaght Dublin and National Institute of Cellular Biotechnology, Old Blessington Road, Tallaght, Dublin 24, Ireland
| | | |
Collapse
|
27
|
Stuhlmeier KM. Apis mellifera venom and melittin block neither NF-kappa B-p50-DNA interactions nor the activation of NF-kappa B, instead they activate the transcription of proinflammatory genes and the release of reactive oxygen intermediates. THE JOURNAL OF IMMUNOLOGY 2007; 179:655-64. [PMID: 17579088 DOI: 10.4049/jimmunol.179.1.655] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many alternative treatment approaches, originating from Asia, are becoming increasingly popular in the Western hemisphere. Recently, an article published in a renowned journal reported that venom of apis mellifera (bee venom (BV)) and melittin mediate immune-modulating effects by blocking the activation of the transcription factor NF-kappaB. Such a modus operandi would corroborate the many claims of beneficial effects of BV treatment and give immediate credit to this form of therapy. Fibroblast-like synoviocytes from rheumatoid arthritis patients and dermal fibroblast cells and white blood cells from healthy volunteers were used to study the effects of BV and melittin on the activation of NF-kappaB and a series of genes that are markers of inflammation. EMSAs demonstrate that neither BV nor melittin blocked IL-1beta-induced NF-kappaB activation; neither did they affect phosphorylation or degradation of IkappaB. Contrary to published data, even high concentrations of BV and melittin were without any effect on NF-kappaB-p50-DNA interactions. More importantly, in fibroblast-like synoviocytes, but also in dermal fibroblasts as well as in mononuclear cells exposed to BV or melittin, mRNA levels of several proinflammatory genes are significantly increased, and Western blot data show elevated cyclooxygenase-2 protein levels. Furthermore, exposure to BV higher than 10 mug/ml resulted in disintegration of all cell types tested. In addition, large quantities of oxygen radicals are produced in a dose-dependent manner in leukocytes exposed to BV. Taken together, data presented in this work do not corroborate an earlier report regarding the effectiveness of BV as an inhibitor of the transcription factor NF-kappaB.
Collapse
Affiliation(s)
- Karl M Stuhlmeier
- Ludwig Boltzmann Institute for Rheumatology and Balneology, Vienna, Austria.
| |
Collapse
|