1
|
Bhardwaj JK, Siwach A, Sachdeva SN. Metabolomics and cellular altered pathways in cancer biology: A review. J Biochem Mol Toxicol 2024; 38:e23807. [PMID: 39148273 DOI: 10.1002/jbt.23807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Cancer is a deadly disease that affects a cell's metabolism and surrounding tissues. Understanding the fundamental mechanisms of metabolic alterations in cancer cells would assist in developing cancer treatment targets and approaches. From this perspective, metabolomics is a great analytical tool to clarify the mechanisms of cancer therapy as well as a useful tool to investigate cancer from a distinct viewpoint. It is a powerful emerging technology that detects up to thousands of molecules in tissues and biofluids. Like other "-omics" technologies, metabolomics involves the comprehensive investigation of micromolecule metabolites and can reveal important details about the cancer state that is otherwise not apparent. Recent developments in metabolomics technologies have made it possible to investigate cancer metabolism in greater depth and comprehend how cancer cells utilize metabolic pathways to make the amino acids, nucleotides, and lipids required for tumorigenesis. These new technologies have made it possible to learn more about cancer metabolism. Here, we review the cellular and systemic effects of cancer and cancer treatments on metabolism. The current study provides an overview of metabolomics, emphasizing the current technologies and their use in clinical and translational research settings.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Anshu Siwach
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Som Nath Sachdeva
- Department of Civil Engineering, National Institute of Technology, Kurukshetra and Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
2
|
Zou B, Xia S, Du X, Xu Y, Ning N, Li S, Teng D, Li H, Hu Z, Hu S, Wang Y. Treatment Effect of Tuftsin and Antigen Peptide Combined with Immune Cells on Colorectal Cancer. Med Sci Monit 2019; 25:5465-5472. [PMID: 31333222 PMCID: PMC6668490 DOI: 10.12659/msm.915037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The aim of this study was to investigate the effect of antigenic peptides on dendritic cell maturation and activation as well as the role of dendritic cell induced cell function. The tumor-specific cytotoxic T lymphocytes induced by activation of the dendritic cells were also evaluated. Material/Methods SW-480 cell lysate and peptide antigens were selected as adjuvants in dendritic cell sensitization, and tuftsin was used to induce the phagocytosis of dendritic cells. Immature dendritic cells were stimulated with the antigen and adjuvant as follows: group A was negative control; group B was SW-480 (20 μg/mL); group C was SW-480 (20 μg/mL)+tumor necrosis factor (TNF)-α (10 μg/mL); group D was SW-480 (20 μg/mL)+tuftsin (20 μg/mL); group E was antigen peptide (2 μg/mL); group F was antigen peptide (2 μg/mL)+TNF-α (10 μg/mL); group G was antigen peptide (2 μg/mL)+tuftsin (20 μg/mL). Cytotoxic T lymphocytes activation and in vitro anti-tumor effects were examined by detecting the maturation marks of dendritic cells as well as interleukin (IL)-10 and IL-12 levels secreted by dendritic cells. Cells with the strongest immunizing effects were injected into nude mice and tumor suppression status was evaluated. Results Group D (SW-480+tuftsin), group E (antigen peptides), group F (antigen peptide+TNF-α), and group G (antigen peptides+tuftsin) displayed significant differences compared to the control group (P<0.05). Group G (antigen peptides+tuftsin) could also promote the secretion of cytokines IL-12, as well as inhibit cytokine IL-10 secretion, compared to the other experimental groups (P<0.05). In the in vivo experiments of tumor inhibitions, antigenic polypeptide+tuftsin was the most effective (P<0.05). Conclusions Combination of cytotoxic T lymphocytes and T peptide therapy in treating human colorectal cancer might be used as a new treatment strategy based on adoptive cellular immunotherapy.
Collapse
Affiliation(s)
- Boyuan Zou
- Department of Retroperitoneal Tumor Surgery, Peking University International Hospital, Beijing, China (mainland).,Department of General Surgery, The General Hospital of People's Liberation Army, Beijing, China (mainland)
| | - Shaoyou Xia
- Department of General Surgery, The General Hospital of People's Liberation Army, Beijing, China (mainland)
| | - Xiaohui Du
- Department of General Surgery, The General Hospital of People's Liberation Army, Beijing, China (mainland)
| | - Yingxin Xu
- Department of General Surgery, The General Hospital of People's Liberation Army, Beijing, China (mainland)
| | - Ning Ning
- Department of General Surgery, The General Hospital of People's Liberation Army, Beijing, China (mainland).,Department of Gastrointestinal Surgery, Peking University International Hospital, Beijing, China (mainland)
| | - Songyan Li
- Department of General Surgery, The General Hospital of People's Liberation Army, Beijing, China (mainland)
| | - Da Teng
- Department of General Surgery, The General Hospital of People's Liberation Army, Beijing, China (mainland)
| | - Hao Li
- Department of General Surgery, The General Hospital of People's Liberation Army, Beijing, China (mainland)
| | - Zilong Hu
- Department of General Surgery, The General Hospital of People's Liberation Army, Beijing, China (mainland)
| | - Shidong Hu
- Department of General Surgery, The General Hospital of People's Liberation Army, Beijing, China (mainland)
| | - Yufeng Wang
- Department of General Surgery, The General Hospital of People's Liberation Army, Beijing, China (mainland)
| |
Collapse
|
3
|
Zhang M, Cao TT, Wei ZG, Zhang YQ. Silk Sericin Hydrolysate is a Potential Candidate as a Serum-Substitute in the Culture of Chinese Hamster Ovary and Henrietta Lacks Cells. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5300249. [PMID: 30690536 PMCID: PMC6346402 DOI: 10.1093/jisesa/iey137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Indexed: 05/05/2023]
Abstract
The silk sericin hydrolysate (SSH) from the waste of silk processing as a substitute of fetal bovine serum (FBS) was used for the culture of Chinese hamster ovary (CHO) cells and Henrietta Lacks (Hela) strain of human cervical cancer cells. The survival ratio of these cells cultured in SSH media were similar to or higher than those in FBS media. Especially after the serum was replaced by low concentration of SSH at 15.0 μg/ml for 5 d, the proliferation of both cells was also similar to or higher than that of FBS group; the percentages of CHO and Hela cells in S-phase were 28.9 and 28.0%, respectively. The former is nearly two times that of FBS group, the latter is also higher than the control group. Reverse transcription-polymerase chain reaction (RT-PCR) revealed that among the differentially expressed genes, the relative expression of CXCL12 gene of CHO cells in SSH group increased, was three times that of serum group, and the relative expression of LCN2 gene of Hela cells increased 2.8 times, indicating that these related genes were activated to promote cell growth and proliferation. These results fully illustrated the hydrolysated sericin has a potential use as serum substitutes in cell culture.
Collapse
Affiliation(s)
- Meng Zhang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| | - Ting-Ting Cao
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| | - Zheng-Guo Wei
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| | - Yu-Qing Zhang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
- Corresponding author, e-mail: (Y.-Q. Zhang)
| |
Collapse
|
4
|
Goryński K, Goryńska P, Górska A, Harężlak T, Jaroch A, Jaroch K, Lendor S, Skobowiat C, Bojko B. SPME as a promising tool in translational medicine and drug discovery: From bench to bedside. J Pharm Biomed Anal 2016; 130:55-67. [DOI: 10.1016/j.jpba.2016.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 01/11/2023]
|
5
|
Liu L, Wang J, Duan S, Chen L, Xiang H, Dong Y, Wang W. Systematic evaluation of sericin protein as a substitute for fetal bovine serum in cell culture. Sci Rep 2016; 6:31516. [PMID: 27531556 PMCID: PMC4987615 DOI: 10.1038/srep31516] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/21/2016] [Indexed: 12/22/2022] Open
Abstract
Fetal bovine serum (FBS) shows obvious deficiencies in cell culture, such as low batch to batch consistency, adventitious biological contaminant risk, and high cost, which severely limit the development of the cell culture industry. Sericin protein derived from the silkworm cocoon has become increasingly popular due to its diverse and beneficial cell culture characteristics. However, systematic evaluation of sericin as a substitute for FBS in cell culture medium remains limited. In this study, we conducted cellular morphological, physiological, and transcriptomic evaluation on three widely used mammalian cells. Compared with cells cultured in the control, those cultured in sericin-substitute medium showed similar cellular morphology, similar or higher cellular overall survival, lower population doubling time (PDT), and a higher percentage of S-phase with similar G2/G1 ratio, indicating comparable or better cell growth and proliferation. At the transcriptomic level, differentially expressed genes between cells in the two media were mainly enriched in function and biological processes related to cell growth and proliferation, reflecting that genes were activated to facilitate cell growth and proliferation. The results of this study suggest that cells cultured in sericin-substituted medium perform as well as, or even better than, those cultured in FBS-containing medium.
Collapse
Affiliation(s)
- Liyuan Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Jinhuan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Shengchang Duan
- Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming 650500, China
| | - Lei Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Hui Xiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- South China Normal University, Guangzhou, 510631, China
| | - Yang Dong
- Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming 650500, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming 650500, China
| |
Collapse
|
6
|
Jukić S, Bubenik D, Pavlović N, Tušek AJ, Srček VG. Adaptation of CHO cells in serum-free conditions for erythropoietin production: Application of EVOP technique for process optimization. Biotechnol Appl Biochem 2016; 63:633-641. [DOI: 10.1002/bab.1468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/07/2015] [Indexed: 01/17/2023]
Affiliation(s)
| | | | | | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology; University of Zagreb; Zagreb Croatia
| | - Višnja Gaurina Srček
- Faculty of Food Technology and Biotechnology; University of Zagreb; Zagreb Croatia
| |
Collapse
|
7
|
Madji Hounoum B, Blasco H, Emond P, Mavel S. Liquid chromatography–high-resolution mass spectrometry-based cell metabolomics: Experimental design, recommendations, and applications. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.08.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Chen GY, Liao HW, Tsai IL, Tseng YJ, Kuo CH. Using the Matrix-Induced Ion Suppression Method for Concentration Normalization in Cellular Metabolomics Studies. Anal Chem 2015; 87:9731-9. [DOI: 10.1021/acs.analchem.5b01869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Guan-Yuan Chen
- School
of Pharmacy, College of Medicine, National Taiwan University, No. 33, Linsen S. Rd., Chongcheng Dist., Taipei, 10051 Taiwan
- The
Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, No.2, Xuzhou Rd., Zhongzheng Dist., Taipei 10055, Taiwan
| | - Hsiao-Wei Liao
- School
of Pharmacy, College of Medicine, National Taiwan University, No. 33, Linsen S. Rd., Chongcheng Dist., Taipei, 10051 Taiwan
- The
Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, No.2, Xuzhou Rd., Zhongzheng Dist., Taipei 10055, Taiwan
| | - I-Lin Tsai
- School
of Pharmacy, College of Medicine, National Taiwan University, No. 33, Linsen S. Rd., Chongcheng Dist., Taipei, 10051 Taiwan
- The
Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, No.2, Xuzhou Rd., Zhongzheng Dist., Taipei 10055, Taiwan
| | - Yufeng Jane Tseng
- School
of Pharmacy, College of Medicine, National Taiwan University, No. 33, Linsen S. Rd., Chongcheng Dist., Taipei, 10051 Taiwan
- The
Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, No.2, Xuzhou Rd., Zhongzheng Dist., Taipei 10055, Taiwan
- Graduate
Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Zhongzheng
Dist., Taipei 10090, Taiwan
- Department
of Computer Science and Information Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Zhongzheng Dist., Taipei 10090, Taiwan
| | - Ching-Hua Kuo
- School
of Pharmacy, College of Medicine, National Taiwan University, No. 33, Linsen S. Rd., Chongcheng Dist., Taipei, 10051 Taiwan
- The
Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, No.2, Xuzhou Rd., Zhongzheng Dist., Taipei 10055, Taiwan
- Department
of Pharmacy, National Taiwan University Hospital, No.7, Zhongshan
S. Rd., Zhongzheng Dist., Taipei 10002, Taiwan
| |
Collapse
|
9
|
Current Challenges in Volatile Organic Compounds Analysis as Potential Biomarkers of Cancer. J Biomark 2015; 2015:981458. [PMID: 26317039 PMCID: PMC4437398 DOI: 10.1155/2015/981458] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/10/2015] [Indexed: 12/11/2022] Open
Abstract
An early diagnosis and appropriate treatment are crucial in reducing mortality among people suffering from cancer. There is a lack of characteristic early clinical symptoms in most forms of cancer, which highlights the importance of investigating new methods for its early detection. One of the most promising methods is the analysis of volatile organic compounds (VOCs). VOCs are a diverse group of carbon-based chemicals that are present in exhaled breath and biofluids and may be collected from the headspace of these matrices. Different patterns of VOCs have been correlated with various diseases, cancer among them. Studies have also shown that cancer cells in vitro produce or consume specific VOCs that can serve as potential biomarkers that differentiate them from noncancerous cells. This review identifies the current challenges in the investigation of VOCs as potential cancer biomarkers, by the critical evaluation of available matrices for the in vivo and in vitro approaches in this field and by comparison of the main extraction and detection techniques that have been applied to date in this area of study. It also summarises complementary in vivo, ex vivo, and in vitro studies conducted to date in order to try to identify volatile biomarkers of cancer.
Collapse
|
10
|
Abstract
Breath volatile organic compound analysis may open a non-invasive window onto (patho)physiological and metabolic processes in the body. Breath tests require controlled sampling with respect to different breath phases and on-site and point-of-care applicability. Microextraction techniques such as solid phase microextraction (SPME) or needle-trap microextraction (NTME) meet these requirements. Small sample volumes and fast and controlled sample preparation combine on-site sampling and pre-concentration in one step. Detection limits in the low ppbV range and fast and simple processing facilitate the application of distribution-based SPME for screening and targeted analysis. Exhaustive NTME has shown further advantages such as fast and automated sampling, improved stability and reproducibility with improved detection limits. Combinations of different sorbents and thermal expansion desorption have shown most promising properties when applied to water saturated breath samples. This article addresses major challenges and advantages of microextraction techniques in breath analysis. Important progress, current applications and future trends are discussed.
Collapse
|
11
|
|
12
|
Vincent Z, Urakami K, Maruyama K, Yamaguchi K, Kusuhara M. CD133-positive cancer stem cells from Colo205 human colon adenocarcinoma cell line show resistance to chemotherapy and display a specific metabolomic profile. Genes Cancer 2014; 5:250-60. [PMID: 25221643 PMCID: PMC4162140 DOI: 10.18632/genesandcancer.23] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/25/2014] [Indexed: 01/11/2023] Open
Abstract
During the past decade, cancer stem-like cells (CSCs) have drawn substantial interest in cancer research since they have been described as major targets to improve treatment of tumors and to prevent recurrence and metastasis. In this paper, we report on the search for CSCs within the Colo205 human adenocarcinoma cell line. We describe that CD133 (prominin) was the only reliable marker for the isolation and characterization of CSCs within a Colo205 cell population. CD133-positive cells displayed many CSC characteristics, such as tumorsphere formation ability, expression of early-stage development markers, high invasiveness, raised tumor initiation potential and resistance to cisplatin chemotherapy treatment. In vitro analyses also highlighted a specific metabolomic profile of CD133-positive cells and we concluded that the chemotherapy resistance of CSCs could be related to the quiescence of such cells associated with their reduced metabolism. Furthermore, in vivo metabolome analyses suggested that a high level of circulating glutathione molecules could also promote treatment resistance. From the perspective of metabolomics, we also discuss the controversial use of serum-free in vitro cultures for CSC enrichment prior to further phenotype characterization.
Collapse
Affiliation(s)
- Zangiacomi Vincent
- Regional Resources Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Koji Maruyama
- Experimental Animal Facility, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Ken Yamaguchi
- Regional Resources Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Masatoshi Kusuhara
- Regional Resources Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| |
Collapse
|
13
|
Neuhaus S, Seifert L, Vautz W, Nolte J, Bufe A, Peters M. Comparison of metabolites in exhaled breath and bronchoalveolar lavage fluid samples in a mouse model of asthma. J Appl Physiol (1985) 2011; 111:1088-95. [PMID: 21778419 DOI: 10.1152/japplphysiol.00476.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND A multi-capillary column ion mobility spectrometer (MCC/IMS) was developed to provide a method for the noninvasive diagnosis of lung diseases. The possibility of measuring the exhaled breath of mice was evaluated previously. The aim of the present study was to reveal whether mice affected by airway inflammation can be identified via MCC/IMS. METHODS Ten mice were sensitized and challenged with ovalbumin to induce allergic airway inflammation. The breath and volatile compounds of bronchoalveolar lavage fluid (BALF) were measured by MCC/IMS. Furthermore, histamine, nitric oxide, and arachidonic acid were determined as inflammatory markers in vitro. RESULTS Six volatile molecules were found in the BALF headspace at a significantly higher concentration in mice with airway inflammation compared with healthy animals. The concentration of substances correlated with the numbers of infiltrating eosinophilic granulocytes. However, substances showing a significantly different concentration in the BALF headspace were not found to be different in exhaled breath. Histamine and nitric oxide were identified by MCC/IMS in vitro but not in the BALF headspace or exhaled breath. CONCLUSION Airway inflammation in mice is detectable by the analysis of the BALF headspace via MCC/IMS. Molecules detected in the BALF headspace of asthmatic mice at a higher concentration than in healthy animals may originate from oxidative stress induced by airway inflammation. As already described for humans, we found no correlation between the biomarker concentration in the BALF and the breath of mice. We suggest using the model described here to gain deeper insights into this discrepancy.
Collapse
Affiliation(s)
- Stephanie Neuhaus
- Department of Experimental Pneumology, Ruhr-University Bochum, Bochum, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Nagrath D, Caneba C, Karedath T, Bellance N. Metabolomics for mitochondrial and cancer studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:650-63. [DOI: 10.1016/j.bbabio.2011.03.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 02/18/2011] [Accepted: 03/14/2011] [Indexed: 01/29/2023]
|
15
|
An ultrasonication-assisted extraction and derivatization protocol for GC/TOFMS-based metabolite profiling. Anal Bioanal Chem 2011; 400:1405-17. [PMID: 21448603 DOI: 10.1007/s00216-011-4880-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 02/02/2011] [Accepted: 03/07/2011] [Indexed: 10/18/2022]
Abstract
Conventional chemical derivatization of metabolites in biological specimens is time-consuming, which limits the throughput and efficiency of metabolite profiling using a gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) platform. We report an ultrasonication-assisted protocol which reduces the derivatization time from hours to about 30 min and significantly enhances the derivatization efficiency prior to a GC/TOFMS analysis. The protocol was evaluated using 40 compounds representing different classes of human metabolites, and demonstrated good analytical precision and accuracy. In comparison with the conventional method, the new protocol was able to increase the intensity of most of the identified peaks (71.0%) in the GC/TOFMS chromatograms of human serum samples. The detected compounds with increased intensity include most amino acids, keto-containing organic acids, carbonyl-containing carbohydrates, and unsaturated fatty acids. We applied this protocol in a metabolomic study of human serum samples obtained from 34 patients diagnosed with hypertension and 29 age- and gender-matched healthy subjects. Metabolite markers associated with hypertension, including glucosamine, D-sorbitol, 1-stearoylglycerol, and homocysteine, were identified and validated by statistical methods and use of reference standards. Our work highlights the potential of this novel approach for the large-scale metabolite profiling of samples generated from plant, animal, and clinical and epidemiological studies.
Collapse
|
16
|
Čuperlović-Culf M, Barnett DA, Culf AS, Chute I. Cell culture metabolomics: applications and future directions. Drug Discov Today 2010; 15:610-21. [DOI: 10.1016/j.drudis.2010.06.012] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 05/18/2010] [Accepted: 06/23/2010] [Indexed: 01/20/2023]
|
17
|
Jünger M, Bödeker B, Baumbach JI. Peak assignment in multi-capillary column–ion mobility spectrometry using comparative studies with gas chromatography–mass spectrometry for VOC analysis. Anal Bioanal Chem 2009; 396:471-82. [DOI: 10.1007/s00216-009-3168-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 08/28/2009] [Accepted: 09/17/2009] [Indexed: 10/20/2022]
|