1
|
SONI PANKAJ, PRADHAN PRAVATAK, SOOD NEERAJ. Development, characterization and in vitro applications of a thymus cell line from Pangasianodon hypophthalmus (Sauvage 1878). THE INDIAN JOURNAL OF ANIMAL SCIENCES 2023. [DOI: 10.56093/ijans.v93i2.128796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Pangasianodon hypophthalmus is an economically important catfish species cultured in India. In the present study, a continuous cell line from the thymus of P. hypophthalmus (PHT) was established using the explant method and subcultured 52 times since development. PHT cells showed optimal growth in L-15 medium containing 20% fetal bovine serum at 28°C. The species of the cell line from striped catfish was confirmed through PCR amplification and sequencing of 16S, and COI genes. The cell line was found to be Mycoplasma free. The modal chromosome number of PHT cells was 60 (2n). Immunophenotyping using different antibodies showed the epithelial nature of the cells. Cytotoxicity of arsenic and mercury was assessed using Neutral red and MTT assay, which revealed reduced cell survival with an increase in toxicant concentration. Cells transfected successfully with the GFP reporter gene using lipofectamine reagent indicated the suitability of the cell line for expression studies. The cell line has been submitted to NRFC, Lucknow with accession no. NRFC-078 at ICAR-NBFGR, Lucknow. The developed cell line will have applications in suspected viral disease investigation, transgenic, and immunological studies.
Collapse
|
2
|
Zhang XY, Zhuo X, Cheng J, Wang X, Liang K, Chen X. PU.1 Regulates Cathepsin S Expression in Large Yellow Croaker ( Larimichthys crocea) Macrophages. Front Immunol 2022; 12:819029. [PMID: 35069603 PMCID: PMC8766968 DOI: 10.3389/fimmu.2021.819029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Different morphologies have been detected in teleost macrophages. In this study, two macrophage cell lines were sub-cloned from a large yellow croaker head kidney cell line, LYCK. One type of sub-cloned cells was fusiform but the other was round, named LYC-FM and LYC-RM cells respectively, based on their morphologies. Both types showed the characteristics of macrophages, including expression of macrophage-specific marker genes, possession of phagocytic and bactericidal activities, and production of reactive oxygen species (ROS) and nitric oxide (NO). The transcription factor PU.1, crucial for the development of macrophages in mammals, was found to exist in two transcripts, PU.1a and PU.1b, in large yellow croaker, and constitutively expressed in LYC-FM and LYC-RM cells. The expression levels of PU.1a and PU.1b could be upregulated by recombinant large yellow croaker IFN-γ protein (rLcIFN-γ). Further studies showed that both PU.1a and PU.1b increased the expression of cathepsin S (CTSS) by binding to different E26−transformation−specific (Ets) motifs of the CTSS promoter. Additionally, we demonstrated that all three domains of PU.1a and PU.1b were essential for initiating CTSS expression by truncated mutation experiments. Our results therefore provide the first evidence that teleost PU.1 has a role in regulating the expression of CTSS.
Collapse
Affiliation(s)
- Xiang-Yang Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyue Zhuo
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Cheng
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaohong Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kexin Liang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
3
|
Cui K, Li Q, Xu D, Zhang J, Gao S, Xu W, Mai K, Ai Q. Establishment and characterization of two head kidney macrophage cell lines from large yellow croaker (Larimichthys crocea). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103477. [PMID: 31470020 DOI: 10.1016/j.dci.2019.103477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Two continuous macrophage cell lines (LCM07 and LCM10) were established for the first time from the head kidney of the marine fish large yellow croaker (Larimichthys crocea). To date, both cell lines have been subcultured for more than 100 passages in 12 months. Notably, the LCM07 and LCM10 cells have distinct morphology and immune function. LCM07 cells showed strong contact inhibition in crowded conditions, while this was not observed in the LCM10 cells because they could grow in an overlapping manner. Correspondingly, LCM10 cells were slenderer than LCM07 cells. LCM07 cells had stronger phagocytic ability than LCM10 cells, while LCM10 cells had stronger respiratory burst activity after incubation with lipopolysaccharide (LPS) and phorbol ester (PMA). LCM07 cells had stronger Escherichia coli killing ability than LCM10 cells. The mRNA of macrophage markers, namely that of CD11b, CD114, CD68, CD86, CD209, and CD163, were all expressed in primary macrophages as well as the two cell lines. The mRNA expression levels of selected inflammatory cytokines, namely interleukin (IL)-1β, IL-8, and tumor necrosis factor (TNF)α, were all upregulated after incubation with LPS. LPS also regulated key components of the mitogen-activated protein kinase (MAPK) signaling pathway, i.e., p38, ERK (extracellular signal-regulated kinase), and JNK (Jun N-terminal kinase) and their phosphorylated forms. Arachidonic acid (ARA) downregulated the LPS-induced upregulation of IL-1β, IL-8, and TNFα, revealing that LCM07 and LCM10 cells are useful for studying nutritional immunity. In conclusion, two distinct macrophage cell lines have been established for the first time from the head kidney of marine fish, which could be useful for studying immunity and nutritional immunity.
Collapse
Affiliation(s)
- Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong, 266237, PR China
| | - Qingfei Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong, 266237, PR China
| | - Dan Xu
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong, 266237, PR China
| | - Junzhi Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong, 266237, PR China
| | - Shengnan Gao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong, 266237, PR China
| | - Wei Xu
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong, 266237, PR China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong, 266237, PR China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong, 266237, PR China.
| |
Collapse
|
4
|
Lulijwa R, Alfaro AC, Merien F, Meyer J, Young T. Advances in salmonid fish immunology: A review of methods and techniques for lymphoid tissue and peripheral blood leucocyte isolation and application. FISH & SHELLFISH IMMUNOLOGY 2019; 95:44-80. [PMID: 31604150 DOI: 10.1016/j.fsi.2019.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Evaluating studies over the past almost 40 years, this review outlines the current knowledge and research gaps in the use of isolated leucocytes in salmonid immunology understanding. This contribution focuses on the techniques used to isolate salmonid immune cells and popular immunological assays. The paper also analyses the use of leucocytes to demonstrate immunomodulation following dietary manipulation, exposure to physical and chemical stressors, effects of pathogens and parasites, vaccine design and application strategies assessment. We also present findings on development of fish immune cell lines and their potential uses in aquaculture immunology. The review recovered 114 studies, where discontinuous density gradient centrifugation (DDGC) with Percoll density gradient was the most popular leucocyte isolation method. Fish head kidney (HK) and peripheral blood (PB) were the main sources of leucocytes, from rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Phagocytosis and respiratory burst were the most popular immunological assays. Studies used isolated leucocytes to demonstrate that dietary manipulations enhance fish immunity, while chemical and physical stressors suppress immunity. In addition, parasites, and microbial pathogens depress fish innate immunity and induce pro-inflammatory cytokine gene transcripts production, while vaccines enhance immunity. This review found 10 developed salmonid cell lines, mainly from S. salar and O. mykiss HK tissue, which require fish euthanisation to isolate. In the face of high costs involved with density gradient reagents, the application of hypotonic lysis in conjunction with mico-volume blood methods can potentially reduce research costs, time, and using nonlethal and ethically flexible approaches. Since the targeted literature review for this study retrieved no metabolomics study of leucocytes, indicates that this approach, together with traditional technics and novel flow cytometry could help open new opportunities for in vitro studies in aquaculture immunology and vaccinology.
Collapse
Affiliation(s)
- Ronald Lulijwa
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; National Agricultural Research Organisation (NARO), Rwebitaba Zonal Agricultural Research and Development Institute (Rwebitaba-ZARDI), P. O. Box 96, Fort Portal, Uganda
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | - Fabrice Merien
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Jill Meyer
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Tim Young
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; The Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, New Zealand
| |
Collapse
|
5
|
Sha Z, Wang L, Sun L, Chen Y, Zheng Y, Xin M, Li C, Chen S. Isolation and characterization of monocyte/macrophage from peripheral blood of half smooth tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2017; 65:256-266. [PMID: 28433719 DOI: 10.1016/j.fsi.2017.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
In the present study, the peripheral blood cells of half smooth tongue sole (Cynoglossus semilaevis) were examined by blood smear under the light microscopy. The proportion of main types of blood cells are as following: erythrocyte occupied the majority (92.3%), followed by thrombocyte (4.15%), granulocyte (1.7%), lymphocyte (1.5%) and monocyte (0.3%), respectively. Meanwhile, the isolation method of monocytes was established, by density gradient centrifugation to isolate mononuclear leukocytes of peripheral blood. In primary culture, the monocytes were adhered to the bottom of the flask without feeder cells and separated easily with suspended leukocytes in the medium in 3 h. After suspended leukocytes were removed, the monocytes multiplied rapidly with the two doubly during the 24 h, then the cells proliferated and kept stable until 48 h. When co-cultured with suspended leukocytes after three days, the monocytes could derive to typical macrophages, of which the size enlarged significantly and showed various forms such as like fried eggs, and giant irregular shape with pseudopod because cells fusion or deformation occurred until macrophages died in about two weeks. Monocytes showed strong respiratory burst activity after treated with Phorbol ester PMA and challenged by bacteria respectively. In addition, macrophage of half smooth tongue sole had typical macrophage features such as phagocytic capability, positive esterase activity, and the considerable expression of M-CSFR, MHC-II, IL-6, IL-10, TNF and arginase genes. That arginase expression in macrophages (3d and 5d after differentiation) was upregulated fluctuant suggest that the cultivation was mixture of alternatively activated type macrophage (M2) in the majority while the classically activated type (M1) win the minority. Furthermore, MHC-Ⅱ, M-CSFR and IL-6 were significantly induced following LPS challenge. Collectively, the present study will be useful for the study on half smooth tongue sole immune systems and immune function.
Collapse
Affiliation(s)
- Zhenxia Sha
- College of Life Sciences, Qingdao University, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| | - Linqing Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Luming Sun
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Yadong Chen
- College of Life Sciences, Qingdao University, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Yuan Zheng
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Mei Xin
- Qingdao Fisheries Technology Extension Station, Qingdao 266071, China
| | - Chen Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Songlin Chen
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
6
|
Sood N, Chaudhary DK, Pradhan PK, Verma DK, Raja Swaminathan T, Kushwaha B, Punia P, Jena JK. Establishment and characterization of a continuous cell line from thymus of striped snakehead, Channa striatus (Bloch 1793). In Vitro Cell Dev Biol Anim 2015; 51:787-96. [DOI: 10.1007/s11626-015-9891-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 03/09/2015] [Indexed: 12/31/2022]
|
7
|
Rebello SC, Rathore G, Punia P, Sood N. Development and characterization of a monoclonal antibody against the putative T cells of Labeo rohita. Cytotechnology 2015; 68:469-80. [PMID: 25749913 DOI: 10.1007/s10616-014-9800-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/20/2014] [Indexed: 11/25/2022] Open
Abstract
In this study, we have described the development and characterization of monoclonal antibodies (MAbs) directed against thymocytes of rohu, Labeo rohita. MAbs were obtained by immunizing BALB/c mice with freshly isolated and nylon wool column enriched mononuclear cells of thymus. Positive clones against thymocytes were screened by cellular ELISA. The hybridoma showing strong reactivity with nylon wool enriched mononuclear cells, and non-reactivity with a rohu thymus macrophage cell line and rohu serum was selected and subjected to single cell cloning by limiting dilution. The MAbs secreted by a positive clone were designated as E6 MAb. Western blotting of reduced protein from enriched thymocytes showed that E6 reacted with a 166.2 kDa polypeptide and belongs to the IgG1 subclass. Flow cytometric analysis of gated lymphocytes, revealed that the percentage of E6 positive (E6+) cells in thymus (n = 5, 720.4 ± 79.70 g) was 89.7 %. Similarly, the percentage of E6+ cells in kidney, spleen and blood (n = 5) was 6.71, 1.71 and 1.88 %, respectively. In indirect immunoperoxidase test, E6+ cells appeared to be lymphoid cells with a high nucleus to cytoplasmic ratio and were densely packed in the central region of thymus whereas, a few cells were found to be positive in kidney and spleen sections. E6 MAb also reacted with a small population of lymphocytes in blood smear. This MAb appears to be a suitable marker for T lymphocytes and can be a valuable tool in studying immune response and ontogeny of L. rohita immune system.
Collapse
Affiliation(s)
- Sanjay C Rebello
- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - Gaurav Rathore
- Central Institute of Fisheries Education, Versova, Andheri (W), Mumbai, 400061, Maharashtra, India
| | - Peyush Punia
- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India.
| | - Neeraj Sood
- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| |
Collapse
|