1
|
Picazo RA, Rojo C, Rodriguez-Quiros J, González-Gil A. Current Advances in Mesenchymal Stem Cell Therapies Applied to Wounds and Skin, Eye, and Neuromuscular Diseases in Companion Animals. Animals (Basel) 2024; 14:1363. [PMID: 38731367 PMCID: PMC11083242 DOI: 10.3390/ani14091363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are considered a very promising alternative tool in cell therapies and regenerative medicine due to their ease of obtaining from various tissues and their ability to differentiate into different cell types. This manuscript provides a review of current knowledge on the use of MSC-based therapies as an alternative for certain common pathologies in dogs and cats where conventional treatments are ineffective. The aim of this review is to assist clinical veterinarians in making decisions about the suitability of each protocol from a clinical perspective, rather than focusing solely on research. MSC-based therapies have shown promising results in certain pathologies, such as spinal cord injuries, wounds, and skin and eye diseases. However, the effectiveness of these cell therapies can be influenced by a wide array of factors, leading to varying outcomes. Future research will focus on designing protocols and methodologies that allow more precise and effective MSC treatments for each case.
Collapse
Affiliation(s)
- Rosa Ana Picazo
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Concepción Rojo
- Department of Anatomy and Embryology, School of Veterinary Medicine, University Complutense of Madrid, 28040 Madrid, Spain;
| | - Jesus Rodriguez-Quiros
- Department of Animal Medicine and Surgery, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Alfredo González-Gil
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
2
|
Jalli R, Mehrabani D, Zare S, Saeedi Moghadam M, Jamhiri I, Manafi N, Mehrabani G, Ghabanchi J, Razeghian Jahromi I, Rasouli-Nia A, Karimi-Busheri F. Cell Proliferation, Viability, Differentiation, and Apoptosis of Iron Oxide Labeled Stem Cells Transfected with Lipofectamine Assessed by MRI. J Clin Med 2023; 12:jcm12062395. [PMID: 36983399 PMCID: PMC10054380 DOI: 10.3390/jcm12062395] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
To assess in vitro and in vivo tracking of iron oxide labeled stem cells transfected by lipofectamine using magnetic resonance imaging (MRI), rat dental pulp stem cells (DPSCs) were characterized, labeled with iron oxide nanoparticles, and then transfected with lipofectamine to facilitate the internalization of these nanoparticles. Cell proliferation, viability, differentiation, and apoptosis were investigated. Prussian blue staining and MRI were used to trace transfected labeled cells. DPSCs were a morphologically spindle shape, adherent to culture plates, and positive for adipogenic and osteogenic inductions. They expressed CD73 and CD90 markers and lacked CD34 and CD45. Iron oxide labeling and transfection with lipofectamine in DPSCs had no toxic impact on viability, proliferation, and differentiation, and did not induce any apoptosis. In vitro and in vivo internalization of iron oxide nanoparticles within DPSCs were confirmed by Prussian blue staining and MRI tracking. Prussian blue staining and MRI tracking in the absence of any toxic effects on cell viability, proliferation, differentiation, and apoptosis were safe and accurate to track DPSCs labeled with iron oxide and transfected with lipofectamine. MRI can be a useful imaging modality when treatment outcome is targeted.
Collapse
Affiliation(s)
- Reza Jalli
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical Science, Shiraz 71439-14693, Iran
- Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Shahrokh Zare
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Mahdi Saeedi Moghadam
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Iman Jamhiri
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Navid Manafi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan 71439-14693, Iran
| | - Golshid Mehrabani
- School of Dentistry, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
- Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA 02215, USA
| | - Janan Ghabanchi
- School of Dentistry, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Iman Razeghian Jahromi
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Aghdass Rasouli-Nia
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Feridoun Karimi-Busheri
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
3
|
Hariharan A, Iyer J, Wang A, Tran SD. Tracking of Oral and Craniofacial Stem Cells in Tissue Development, Regeneration, and Diseases. Curr Osteoporos Rep 2021; 19:656-668. [PMID: 34741728 DOI: 10.1007/s11914-021-00705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE OF REVIEW The craniofacial region hosts a variety of stem cells, all isolated from different sources of bone and cartilage. However, despite scientific advancements, their role in tissue development and regeneration is not entirely understood. The goal of this review is to discuss recent advances in stem cell tracking methods and how these can be advantageously used to understand oro-facial tissue development and regeneration. RECENT FINDINGS Stem cell tracking methods have gained importance in recent times, mainly with the introduction of several molecular imaging techniques, like optical imaging, computed tomography, magnetic resonance imaging, and ultrasound. Labelling of stem cells, assisted by these imaging techniques, has proven to be useful in establishing stem cell lineage for regenerative therapy of the oro-facial tissue complex. Novel labelling methods complementing imaging techniques have been pivotal in understanding craniofacial tissue development and regeneration. These stem cell tracking methods have the potential to facilitate the development of innovative cell-based therapies.
Collapse
Affiliation(s)
- Arvind Hariharan
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada
| | - Janaki Iyer
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada
| | - Athena Wang
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
4
|
Utumi PH, Fracaro L, Senegaglia AC, Fragoso FYI, Miyasaki DM, Rebelatto CLK, Brofman PRS, Villanova Junior JA. Canine dental pulp and umbilical cord-derived mesenchymal stem cells as alternative sources for cell therapy in dogs. Res Vet Sci 2021; 140:117-124. [PMID: 34425413 DOI: 10.1016/j.rvsc.2021.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/30/2021] [Accepted: 08/06/2021] [Indexed: 01/09/2023]
Abstract
The use of regenerative medicine for pets has been growing in recent years, and an increasing number of studies have contributed to the widespread use of cell therapies in clinical veterinary medicine. Mesenchymal stem cells (MSCs) can be isolated from different sources such as dental pulp and umbilical cord. Aiming safety and reproducibility of cell therapy in clinical practice by using sources easily obtained that are usually discarded, this study isolated, characterized, and evaluated the proliferation and colony formation potential of canine dental pulp-derived mesenchymal stem cells (cDPSCs) and canine umbilical cord tissue (cUCSCs). Three samples from each source were collected, isolated, and cultured. MSCs were differentiated into three lineages and quantified by spectrophotometry. For immunophenotypic characterization, antibodies were used to analyze the expression of cell surface markers, and 7-AAD and Annexin-V were used to analyze cell viability and apoptosis, respectively. For the clonogenic assay, cells were cultured, the colonies were stained, and counted. For the proliferation assay, the cells were plated in flasks for three days and added EdU nucleoside. cDPSCs and cUCSCs showed plastic adherence and fibroblastic morphology after cultivation. Both sources showed differentiation potential and showed CD29 and CD44 positivity and CD14, CD45, CD34 and HLA-DR negativity, and low mortality and apoptosis rates. There was no difference in proliferation rates between sources. Overall, although cUCSCs had a higher number of colony-forming units than cDPSCs, both sources presented MSCs characteristics and can be used safely as alternative sources in cell therapy.
Collapse
Affiliation(s)
- Paulo Henrique Utumi
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição, 1155, 80215-901, Curitiba, Paraná, Brazil
| | - Letícia Fracaro
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição, 1155, 80215-901, Curitiba, Paraná, Brazil
| | - Alexandra Cristina Senegaglia
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição, 1155, 80215-901, Curitiba, Paraná, Brazil.
| | - Felipe Yukio Ishikawa Fragoso
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição, 1155, 80215-901, Curitiba, Paraná, Brazil
| | - Dayane Mayumi Miyasaki
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição, 1155, 80215-901, Curitiba, Paraná, Brazil
| | - Carmen Lucia Kuniyoshi Rebelatto
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição, 1155, 80215-901, Curitiba, Paraná, Brazil
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição, 1155, 80215-901, Curitiba, Paraná, Brazil
| | - José Ademar Villanova Junior
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição, 1155, 80215-901, Curitiba, Paraná, Brazil
| |
Collapse
|
5
|
Systems biology analysis of osteogenic differentiation behavior by canine mesenchymal stem cells derived from bone marrow and dental pulp. Sci Rep 2020; 10:20703. [PMID: 33244029 PMCID: PMC7692528 DOI: 10.1038/s41598-020-77656-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Utilization of canine mesenchymal stem cells (cMSCs) for regenerating incorrigible bone diseases has been introduced. However, cMSCs harvested from different sources showed distinct osteogenicity. To clarify this, comparative proteomics-based systems biology analysis was used to analyze osteogenic differentiation behavior by cMSCs harvested from bone marrow and dental pulp. The results illustrated that canine dental pulp stem cells (cDPSCs) contained superior osteogenicity comparing with canine bone marrow-derived MSCs (cBM-MSCs) regarding alkaline phosphatase activity, matrix mineralization, and osteogenic marker expression. Global analyses by proteomics platform showed distinct protein clustering and expression pattern upon an in vitro osteogenic induction between them. Database annotation using Reactome and DAVID revealed contrast and unique expression profile of osteogenesis-related proteins, particularly on signaling pathways, cellular components and processes, and cellular metabolisms. Functional assay and hierarchical clustering for tracking protein dynamic change confirmed that cBM-MSCs required the presences of Wnt, transforming growth factor (TGF)-beta, and bone-morphogenetic protein (BMP) signaling, while cDPSCs mainly relied on BMP signaling presentation during osteogenic differentiation in vitro. Therefore, these findings illustrated the comprehensive data regarding an in vitro osteogenic differentiation behavior by cBM-MSCs and cDPSCs which is crucial for further mechanism study and the establishment of cMSC-based bone tissue engineering (BTE) for veterinary practice.
Collapse
|
6
|
Guo X, Mu H, Yan S, Wei J. Exploring the molecular disorder and dysfunction mechanism of human dental pulp cells under hypoxia by comprehensive multivariate analysis. Gene 2020; 735:144332. [PMID: 31972310 DOI: 10.1016/j.gene.2020.144332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
Dental pulp cells (DPCs) are multipotent cells, which can differentiate into various tissues and have the potential to treat many diseases. However, little is known about the molecular disorder mechanism. To explore the mechanism of molecular disorders and dysfunction of DPCs under hypoxia, we investigated the molecular effects of two hypoxic time lengths on DPCs. Differential analysis, protein interaction network (PPI), enrichment analysis and coupling analysis were further synthesized to identify human dental pulp cell dysfunction modules under hypoxic conditions. Based on the module aggregation of 579 genes, 13 dental pulp cell dysfunction modules were obtained. Importantly, we found that up to 12 modules were significantly involved in positive regulation of neurogenesis, positive regulation of nervous system development. Based on the predictive analysis of regulators, we identified a series of ncRNAs (including CRNDE, MALAT1, microRNA-140-5p, microRNA-300 and microRNA-30a-5p) and transcription factors (including E2F1). Based on the comprehensive functional module analysis, we identified the dysfunction module of human dental pulp cells (HDPCs) under hypoxia. The results suggest that nerve regulation plays an important role in regulating the dysfunction module of DPCs. These prominent pivotal regulators in the module were used as an important part of the molecular disorders of DPCs, may be an important part of the subnetwork of the manipulation module and affect the molecular dysregulation mechanism of DPCs. This study provides new directions and potential targets for further research.
Collapse
Affiliation(s)
- Xiangjun Guo
- Stomatology Clinic of Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Hong Mu
- Stomatology Clinic of Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Shixia Yan
- Stomatology Clinic of Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Jianming Wei
- Stomatology Clinic of Cangzhou Central Hospital, Cangzhou, Hebei Province, China.
| |
Collapse
|
7
|
Ariji Y, Ariji E, Nakashima M, Iohara K. Magnetic resonance imaging in endodontics: a literature review. Oral Radiol 2018; 34:10-16. [PMID: 30484095 DOI: 10.1007/s11282-017-0301-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/20/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Magnetic resonance imaging (MRI) has recently been used for the evaluation of dental pulp anatomy, vitality, and regeneration. This study reviewed the recent use of MRI in the endodontic field. METHODS Literature published from January 2000 to March 2017 was searched in PubMed using the following Medical Subject Heading (MeSH) terms: (1) MRI and (dental pulp anatomy or endodontic pulp); (2) MRI and dental pulp regeneration. Studies were narrowed down based on specific inclusion criteria and categorized as in vitro, in vivo, or dental pulp regeneration studies. The MRI sequences and imaging findings were summarized. RESULTS In the in vitro studies on dental pulp anatomy, T1-weighted imaging with high resolution was frequently used to evaluate dental pulp morphology, demineralization depth, and tooth abnormalities. Other sequences such as apparent diffusion coefficient mapping and sweep imaging with Fourier transformation were used to evaluate pulpal fluid and decayed teeth, and short-T2 tissues (dentin and enamel), respectively. In the in vivo studies, pulp vitality and reperfusion were visible with fat-saturated T2-weighted imaging or contrast-enhanced T1-weighted imaging. In both the in vitro and in vivo studies, MRI could reveal pulp regeneration after stem cell therapy. Stem cells labeled with superparamagnetic iron oxide particles were also visible on MRI. Angiogenesis induced by stem cells could be confirmed on enhanced T1-weighted imaging. CONCLUSION MRI can be successfully used to visualize pulp morphology as well as pulp vitality and regeneration. The use of MRI in the endodontic field is likely to increase in the future.
Collapse
Affiliation(s)
- Yoshiko Ariji
- Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya, 464-8651, Japan.
| | - Eiichiro Ariji
- Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya, 464-8651, Japan
| | - Misako Nakashima
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, 7-430 Morioka-cho, Obu, 474-8511, Japan
| | - Koichiro Iohara
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, 7-430 Morioka-cho, Obu, 474-8511, Japan
| |
Collapse
|
8
|
Huang D, Lin C, Wen X, Gu S, Zhao P. A Potential Nanofiber Membrane Device for Filling Surgical Residual Cavity to Prevent Glioma Recurrence and Improve Local Neural Tissue Reconstruction. PLoS One 2016; 11:e0161435. [PMID: 27548322 PMCID: PMC4993477 DOI: 10.1371/journal.pone.0161435] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 08/05/2016] [Indexed: 12/20/2022] Open
Abstract
This study aims to develop a novel device with nanofiber membrane capable of sustained release of temozolomide (TMZ) and neuron growth factor (NGF). An improved bio-availability of TMZ and NGF in surroundings proximal to the device was expected to be attained for a prolonged period of time. The device was developed by integrating TMZ-doped polycaprolactone (PCL) nanofiber (TP) membrane and NGF-coated PCL (NGFP) membrane using sodium alginate hydrogel. TP was prepared by direct electrospinning of TMZ/PCL. NGFP membrane was developed by layer-by-layer assembling technology. The incorporation of TMZ-doped nanofiber and NGFP nanofiber in the device was confirmed by scanning electron microscopy. The number of NGF layer in NGF-coated PCL membrane could be readily measured with energy spectrum analysis. The in vitro release study showed that TP-NGFP-TP membrane could efficiently liberate TMZ to inhibit the growth of C6 glioma cells, and sufficient NGF to induce the differentiation of PC12 neuron cells over four weeks. Such TP-NGFP-TP membrane device can be employed as a tampon to fill up surgical residual cavity and afford residual glioma removal, structural support, hemostasis, and local neural tissue reconstruction in the surgical treatment of glioma. The study opens a horizon to develop multifunctional biomaterial device for maximized glioma treatment efficacy.
Collapse
Affiliation(s)
- Daoxiang Huang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute of Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai, People's Republic of China
- Institute of Nano and Bio-Polymeric Materials, School of Material Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Chao Lin
- The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute of Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xuejun Wen
- The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute of Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Shuying Gu
- Key Laboratory of Advanced Civil Engineering Materials Ministry of Education, School of Material Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Institute of Nano and Bio-Polymeric Materials, School of Material Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Peng Zhao
- The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute of Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|