1
|
Segunda MN, Cortez J, Díaz C, Arancibia R, Torres CG, Parraguez VH, De Los Reyes M, Peralta OA. Potential of mesenchymal stromal/stem cells and spermatogonial stem cells for survival and colonization in bull recipient testes after allogenic transplantation. Theriogenology 2024; 230:192-202. [PMID: 39332379 DOI: 10.1016/j.theriogenology.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Stem cell transplantation into seminiferous tubules of recipient testis could become a tool for fertility restoration, genetic improvement, or conservation of endangered species. Spermatogonial stem cells (SSCs) are primary candidates for transplantation; however, limited abundance, complexity for isolation and culture, and lack of specific markers have limited their use. Mesenchymal stromal/stem cells (MSCs) are multipotent progenitors that are simple to isolate and culture and possess specific markers for identification, and immune evasive and migratory capacities. The objective of the present study was to evaluate the potential for survival and colonization in seminiferous tubules of two different concentrations of bovine fetal adipose tissue-derived MSCs (AT-MSCs), native of pre-induced, and to compare the fate of bovine adult peripheral blood-derived MSCs (PB-MSCs) and SSCs after allogenic transplantation in testis of recipient bulls. In experiment 1, AT-MSCs at two concentrations (1x107 and 2x107; n = 3) or pre-exposed to 2 μM testosterone and 1 μM retinoic acid (RA) for 14 days (n = 5) were evaluated. In experiment 2, adult PB-MSCs and SSCs (4x107 cells each) pre-exposed to Sertoli cell conditioned media (SCs/CM; n = 4) for 14 days were compared. Each cell type was separately labelled with PKH26 and then transplanted into testes of 8-month-old recipient bulls. Four weeks (Exp. 1) and two weeks (Exp. 2) after transplantation, testicular tissue was processed for confocal microscopy detection of PKH26-positive cells. Mean number of PKH26-positive cells were higher (P < 0.05) in testis transplanted with 2x107 AT-MSCs in the proximal (6.7 ± 3.7) and medial (6.6 ± 3.2) sections compared to testis transplanted with 1x107 AT-MSCs (proximal: 1.9 ± 1; medial: 1.9 ± 1) sections or pre-induced AT-MSCs (proximal: 4.7 ± 5.6; medial: 3.8 ± 4.1). In Exp. 2, mean number of PKH26-positive SSCs in medial testicular section (22.5 ± 1.3) were higher (P < 0.05) compared to respective section in PB-MSCs group (17 ± 4.2). Thus, in vivo data indicates that a higher number of transplanted AT-MSCs resulted in more cells surviving and colonizing seminiferous tubules; however, pre-induction with testosterone and RA did not improve these capacities. SSCs displayed a greater capacity for survival and colonization in recipient seminiferous tubules; however, PB-MSCs were observed in all sections of testis after two weeks of transplantation.
Collapse
Affiliation(s)
- Moisés N Segunda
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, 8820808, Santiago, Chile; Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Santa Rosa 11315, 8820808, Santiago, Chile; Faculdade de Medicina Veterinária, Universidade José Eduardo Dos Santos, Bairro Santo António-Avenida Nuno Alvarez, 555, Huambo, Angola
| | - Jahaira Cortez
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, 8820808, Santiago, Chile; Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Santa Rosa 11315, 8820808, Santiago, Chile
| | - Carlos Díaz
- Doctorate Program in Sciences, UNED, Bravo Murillo 38, 28015, Madrid, Spain
| | - Richard Arancibia
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, 8820808, Santiago, Chile
| | - Cristian G Torres
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, 8820808, Santiago, Chile
| | - Víctor H Parraguez
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, 8820808, Santiago, Chile
| | - Mónica De Los Reyes
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, 8820808, Santiago, Chile
| | - Oscar A Peralta
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, 8820808, Santiago, Chile; Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| |
Collapse
|
2
|
Khanmohammadi N, Malek F, Takzaree N, Malekzadeh M, Khanehzad M, Akanji OD, Rastegar T. Sertoli Cell-Conditioned Medium Induces Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells to Male Germ-Like Cells in Busulfan-Induced Azoospermic Mouse Model. Reprod Sci 2024; 31:375-392. [PMID: 37737972 DOI: 10.1007/s43032-023-01332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
Non-obstructive azoospermia is a severe form of male infertility, with limited effective treatments. Bone marrow mesenchymal stem cells (BMSCs) can differentiate to different cell lines; therefore, transplantation of these cells is used for treatment of several diseases. Since these cells require induction factors to differentiate into germ cells, we co-transplanted bone marrow stem cells (BMSCs) with Sertoli cell-conditioned medium (SCCM) into the testis of azoospermic mice. This study was carried out in two sections, in vitro and in vivo. For in vitro study, differentiating factors (c-kit and ID4) were examined after 15 days of co-culture of bone marrow cells with Sertoli cell-conditioned medium, while for in vivo study, the azoospermia model was first created by intraperitoneal administration of a single-dose busulfan (40 mg/kg) followed by single-dose CdCl2 (2 mg/kg) after 4 weeks. Mice were divided into 4 groups including control (azoospermia), BMSC, SCCM, and BMSC + SCCM. Eight weeks after transplantation, samples were assessed for proliferation and differentiation via the expression level of MVH, ID4, SCP3, Tp1, Tp2, and Prm1 differentiation markers. The results showed that BMSC co-cultured with SCCM in vitro differentiated BMSC to germ-like cells. Similarly, in vivo studies revealed a higher level of BMSC differentiation into germ-like cells with significant higher expression of differentiation markers in transplanted groups compared to the control. This study confirmed the role of SCCM as an inductive factor for BMSC differentiation to germ cells both in vivo and in vitro conditions.
Collapse
Affiliation(s)
- Nasrin Khanmohammadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Malek
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Takzaree
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnoush Malekzadeh
- Department of Anatomy, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Khanehzad
- Department of Anatomy, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Margiana R. Enhancing Spermatogenesis in Non-obstructive Azoospermia Through Mesenchymal Stem Cell Therapy22. Curr Stem Cell Res Ther 2024; 19:1429-1441. [PMID: 38243988 DOI: 10.2174/011574888x283311231226081845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 01/22/2024]
Abstract
Stem cells hold great promise as novel and encouraging therapeutic tools in the treatment of degenerative disorders due to their differentiation potential while maintaining the capability to self-renewal and their unlimited ability to divide and regenerate tissue. A variety of different types of stem cells can be used in cell therapy. Among these, mesenchymal stem cell (MSC) therapy has gradually established itself as a novel method for treating damaged tissues that need restoration and renewal. Male infertility is an important health challenge affecting approximately 8-12% of people around the world. This abnormality can be caused by primary, congenital, acquired, or idiopathic reasons. Men with no sperm in their semen have a condition called azoospermia, caused by non-obstructive (NOA) causes and post-testicular obstructive causes. Accumulating evidence has shown that various types of MSCs can differentiate into germ cells and improve spermatogenesis in the seminiferous tubules of animal models. In addition, recent studies in animal models have exhibited that extracellular vesicles derived from MSCs can stimulate the progression of spermatogenesis and germ cell regeneration in the recipient testes. In spite of the fact that various improvements have been made in the treatment of azoospermia disorder in animal models by MSC or their extracellular vesicles, no clinical trials have been carried out to test their therapeutic effect on the NOA. In this review, we summarize the potential of MSC transplantation for treating infertility caused by NOA.
Collapse
Affiliation(s)
- Ria Margiana
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Indonesia General Academic Hospital, Depok, Indonesia
- Ciptomangunkusumo General Academic Hospital, Jakarta, Indonesia
| |
Collapse
|
4
|
Ibrahim D, Abozied N, Abdel Maboud S, Alzamami A, Alturki NA, Jaremko M, Alanazi MK, Alhuthali HM, Seddek A. Therapeutic potential of bone marrow mesenchymal stem cells in cyclophosphamide-induced infertility. Front Pharmacol 2023; 14:1122175. [PMID: 37033609 PMCID: PMC10073512 DOI: 10.3389/fphar.2023.1122175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/26/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer is a deadly disease characterized by abnormal cell proliferation. Chemotherapy is one technique of cancer treatment. Cyclophosphamide (CYP) is the most powerful chemotherapy medication, yet it has serious adverse effects. It is an antimitotic medicine that regulates cell proliferation and primarily targets quickly dividing cells, and it has been related to varying levels of infertility in humans. In the current study, we assessed the biochemical, histological, and microscopic evaluations of testicular damage following cyclophosphamide administration. Further, we have explored the potential protective impact of mesenchymal stem cell (MSCs) transplantation. The biochemical results revealed that administration of cyclophosphamide increased serum concentrations of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), while it decreased serum concentrations of free testosterone hormone (TH), testicular follicle-stimulating hormone, luteinizing hormone, and free testosterone hormone concentrations, testicular total antioxidant capacity (TAC), and testicular activity of superoxide dismutase (SOD) enzyme. The histology and sperm examinations revealed that cyclophosphamide induced destruction to the architectures of several tissues in the testes, which drastically reduced the Johnsen score as well as the spermatogenesis process. Surprisingly, transplantation of mesenchymal stem cell after cyclophosphamide administration altered the deterioration effect of cyclophosphamide injury on the testicular tissues, as demonstrated by biochemical and histological analysis. Our results indicated alleviation of serum and testicular sex hormones, as well as testicular oxidative stress markers (total antioxidant capacity and superoxide dismutase activity), and nearly restored the normal appearance of the testicular tissues, Johnsen score, and spermatogenesis process. In conclusion, our work emphasizes the protective pharmacological use of mesenchymal stem cell to mitigate the effects of cyclophosphamide on testicular tissues that impair the spermatogenesis process following chemotherapy. These findings indicate that transferring mesenchymal stem cell to chemotherapy patients could significantly improve spermatogenesis.
Collapse
Affiliation(s)
- Dalia Ibrahim
- The Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- *Correspondence: Dalia Ibrahim,
| | - Nadia Abozied
- The Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Samar Abdel Maboud
- The Department of Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah, Saudi Arabia
| | - Norah A. Alturki
- Clinical Laboratory Science Department, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maram Khalil Alanazi
- Pharm.D, Scientific Office and Regulatory Affair Department, Dallah Pharma Company, Riyadh, Saudi Arabia
| | - Hayaa M. Alhuthali
- Department of Clinical laboratory sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Asmaa Seddek
- The Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
5
|
Tahmasbpour Marzouni E, Stern C, Henrik Sinclair A, Tucker EJ. Stem Cells and Organs-on-chips: New Promising Technologies for Human Infertility Treatment. Endocr Rev 2022; 43:878-906. [PMID: 34967858 DOI: 10.1210/endrev/bnab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 11/19/2022]
Abstract
Having biological children remains an unattainable dream for most couples with reproductive failure or gonadal dysgenesis. The combination of stem cells with gene editing technology and organ-on-a-chip models provides a unique opportunity for infertile patients with impaired gametogenesis caused by congenital disorders in sex development or cancer survivors. But how will these technologies overcome human infertility? This review discusses the regenerative mechanisms, applications, and advantages of different types of stem cells for restoring gametogenesis in infertile patients, as well as major challenges that must be overcome before clinical application. The importance and limitations of in vitro generation of gametes from patient-specific human-induced pluripotent stem cells (hiPSCs) will be discussed in the context of human reproduction. The potential role of organ-on-a-chip models that can direct differentiation of hiPSC-derived primordial germ cell-like cells to gametes and other reproductive organoids is also explored. These rapidly evolving technologies provide prospects for improving fertility to individuals and couples who experience reproductive failure.
Collapse
Affiliation(s)
- Eisa Tahmasbpour Marzouni
- Laboratory of Regenerative Medicine & Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Catharyn Stern
- Royal Women's Hospital, Parkville and Melbourne IVF, Melbourne, Australia
| | - Andrew Henrik Sinclair
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Elena Jane Tucker
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
6
|
Qamar AY, Hussain T, Rafique MK, Bang S, Tanga BM, Seong G, Fang X, Saadeldin IM, Cho J. The Role of Stem Cells and Their Derived Extracellular Vesicles in Restoring Female and Male Fertility. Cells 2021; 10:2460. [PMID: 34572109 PMCID: PMC8468931 DOI: 10.3390/cells10092460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Infertility is a globally recognized issue caused by different reproductive disorders. To date, various therapeutic approaches to restore fertility have been attempted including etiology-specific medication, hormonal therapies, surgical excisions, and assisted reproductive technologies. Although these approaches produce results, however, fertility restoration is not achieved in all cases. Advances in using stem cell (SC) therapy hold a great promise for treating infertile patients due to their abilities to self-renew, differentiate, and produce different paracrine factors to regenerate the damaged or injured cells and replenish the affected germ cells. Furthermore, SCs secrete extracellular vesicles (EVs) containing biologically active molecules including nucleic acids, lipids, and proteins. EVs are involved in various physiological and pathological processes and show promising non-cellular therapeutic uses to combat infertility. Several studies have indicated that SCs and/or their derived EVs transplantation plays a crucial role in the regeneration of different segments of the reproductive system, oocyte production, and initiation of sperm production. However, available evidence triggers the need to testify the efficacy of SC transplantation or EVs injection in resolving the infertility issues of the human population. In this review, we highlight the recent literature covering the issues of infertility in females and males, with a special focus on the possible treatments by stem cells or their derived EVs.
Collapse
Affiliation(s)
- Ahmad Yar Qamar
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tariq Hussain
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Kamran Rafique
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Bereket Molla Tanga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Faculty of Veterinary Medicine, Hawassa University, Hawassa 05, Ethiopia
| | - Gyeonghwan Seong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Xun Fang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Islam M Saadeldin
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
7
|
Zhankina R, Baghban N, Askarov M, Saipiyeva D, Ibragimov A, Kadirova B, Khoradmehr A, Nabipour I, Shirazi R, Zhanbyrbekuly U, Tamadon A. Mesenchymal stromal/stem cells and their exosomes for restoration of spermatogenesis in non-obstructive azoospermia: a systemic review. Stem Cell Res Ther 2021; 12:229. [PMID: 33823925 PMCID: PMC8025392 DOI: 10.1186/s13287-021-02295-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Stem cells have been introduced as new promising therapeutic agents in treatment of degenerative diseases because of having high differentiation potential while maintaining the ability to self-replicate and retaining features of their source cells. Among different type of cell therapies, mesenchymal stromal/stem cell (MSC) therapy is being increasingly developed as a new way to treat structural defects that need to be repaired and regenerated. Non-obstructive azoospermia (NOA) is a reproductive disease in men that causes infertility in 10% of infertile men. Based on in vitro studies, MSCs from different tissue sources have been differentiated into germ cells or gamete progenitor cells by simple methods in both male and female. On the other hand, the therapeutic effects of MSCs have been evaluated for the treatment of NOA animal models created by chemical or surgical compounds. The results of these studies confirmed successful allotransplantation or xenotransplantation of MSCs in the seminiferous tubules. As well, it has been reported that exosomes secreted by MSCs are able to induce the process of spermatogenesis in the testes of infertile animal models. Despite numerous advances in the treatment of reproductive diseases in men and women with the help of MSCs or their exosomes, no clinical trial has been terminated on the treatment of NOA. This systematic review attempts to investigate the possibility of MSC therapy for NOA in men.
Collapse
Affiliation(s)
- Rano Zhankina
- Department of Urology and Andrology, Astana Medical University, Nur-Sultan, Kazakhstan 010000
| | - Neda Baghban
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7514633196 Iran
| | - Manarbek Askarov
- Department of Urology and Andrology, Astana Medical University, Nur-Sultan, Kazakhstan 010000
| | - Dana Saipiyeva
- Department of Urology and Andrology, Astana Medical University, Nur-Sultan, Kazakhstan 010000
| | - Almaz Ibragimov
- Department of Urology and Andrology, Astana Medical University, Nur-Sultan, Kazakhstan 010000
| | - Bakhyt Kadirova
- Department of Urology and Andrology, Astana Medical University, Nur-Sultan, Kazakhstan 010000
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7514633196 Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7514633196 Iran
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Medicine, UNSW Sydney, PO Box 2052, Sydney, Australia
| | - Ulanbek Zhanbyrbekuly
- Department of Urology and Andrology, Astana Medical University, Nur-Sultan, Kazakhstan 010000
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7514633196 Iran
| |
Collapse
|
8
|
The Therapeutic Potential of Amniotic Fluid-Derived Stem Cells on Busulfan-Induced Azoospermia in Adult Rats. Tissue Eng Regen Med 2021; 18:279-295. [PMID: 33713308 DOI: 10.1007/s13770-020-00309-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/20/2020] [Accepted: 10/13/2020] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Busulfan is an alkylating chemotherapeutic agent that is routinely prescribed for leukemic patients to induce myelo-ablation. However, it also results in azoospermia and infertility in cancer survivors. This research was constructed to explore the possible therapeutic role of amniotic fluid-derived stem cells (AFSCs) in improving busulfan-induced azoospermia in adult rats. METHODS Forty two adult male albino rats were randomized into: (1) control group, (2) azoospermia group, (3) spontaneous recovery group, and (4) AFSCs-treated group, in which AFSCs were transplanted through their injection into the testicular efferent ducts. The assessment included a histo-pathological examination of the seminiferous tubules by the light and transmission electron microscopes. Additionally, the confocal laser scanning microscope was used for confirmation of homing of the implanted cells. Moreover, we conducted an immuno-fluorescence study for detection of the proliferating cell nuclear antigen (PCNA) in the spermatogenic cells, epididymal sperm count, and a histo-morphometric study. RESULTS AFSCs successfully homed over the basement membrane of the injured seminiferous tubules. They greatly attenuated busulfan-induced degenerative and oxidative changes. They also caused a re-expression of PCNA in the germ cells, leading to resumption of spermatogenesis and re-appearance of spermatozoa. CONCLUSION AFSCs could be a promising treatment modality for male infertility induced by chemotherapy, as they possess prominent regenerative, anti-apoptotic, and anti-inflammatory potentials.
Collapse
|
9
|
Wang Z, Yang T, Liu S, Chen Y. Effects of bone marrow mesenchymal stem cells on ovarian and testicular function in aging Sprague-Dawley rats induced by D-galactose. Cell Cycle 2020; 19:2340-2350. [PMID: 32816601 DOI: 10.1080/15384101.2020.1806434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To investigate the effect of bone marrow mesenchymal stem cells (MSCs) on ovarian and testicular function of aging Sprague-Dawley (SD) rats induced by D-galactose (D-gal) and try to clarify the underlying functional mechanism. Adherent culture was used to isolate and purify rat MSCs. The status, proliferation and differentiation of MSCs were detected by hematoxylin-eosin staining, MTT, colony formation, flow cytometry and directional differentiation. The aging rat model was established by subcutaneous injection of D-gal, and the homing of MSCs was detected by fluorescence microscope after infusion of GFP-labeled MSCs through caudal vein. ELISA was used to detect the content of sex hormone in serum, and HE staining was used to observe the structure and morphology of testis and ovary. The isolated and purified MSCs were in good condition, and most of the cells were in G1 phase, which had strong abilities of cell proliferation, colony formation and differentiation. After GFP-labeled MSCs were infused, MSCs could be homed into the testis and ovary of rats. MSCs infusion could significantly improve the morphology of testis and ovary, increase the contents of P and E2 while decrease the contents of LH and FSH in female rats, and increase the content of testosterone in male rats (P < 0.01). It also increased the activity of superoxide dismutase (SOD) in serum of ovary and testis and significantly decreased the content of malondialdehyde (MDA). MSCs affected the content of MDA and the activity of SOD by reducing the expression of cyclin-dependent kinase inhibitor 2A (p16) and increasing proliferating cell nuclear antigen (PCNA), consequently improving the aging and injury of reproductive organs.
Collapse
Affiliation(s)
- Zhihong Wang
- Shengli Clinical Medical College of Fujian Medical University; Department of Hematology, Fujian Provincial Hospital , Fuzhou, China
| | - Tong Yang
- Shengli Clinical Medical College of Fujian Medical University; Department of Hematology, Fujian Provincial Hospital , Fuzhou, China
| | - Shan Liu
- Shengli Clinical Medical College of Fujian Medical University; Department of Hematology, Fujian Provincial Hospital , Fuzhou, China
| | - Yanping Chen
- Shengli Clinical Medical College of Fujian Medical University; Department of Gynecology, Fujian Provincial Hospital , Fuzhou, China
| |
Collapse
|
10
|
Bishop TF, Van Eenennaam AL. Genome editing approaches to augment livestock breeding programs. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb207159. [PMID: 32034040 DOI: 10.1242/jeb.207159] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The prospect of genome editing offers a number of promising opportunities for livestock breeders. Firstly, these tools can be used in functional genomics to elucidate gene function, and identify causal variants underlying monogenic traits. Secondly, they can be used to precisely introduce useful genetic variation into structured livestock breeding programs. Such variation may include repair of genetic defects, the inactivation of undesired genes, and the moving of useful alleles and haplotypes between breeds in the absence of linkage drag. Editing could also be used to accelerate the rate of genetic progress by enabling the replacement of the germ cell lineage of commercial breeding animals with cells derived from genetically elite lines. In the future, editing may also provide a useful complement to evolving approaches to decrease the length of the generation interval through in vitro generation of gametes. For editing to be adopted, it will need to seamlessly integrate with livestock breeding schemes. This will likely involve introducing edits into multiple elite animals to avoid genetic bottlenecks. It will also require editing of different breeds and lines to maintain genetic diversity, and enable structured cross-breeding. This requirement is at odds with the process-based trigger and event-based regulatory approach that has been proposed for the products of genome editing by several countries. In the absence of regulatory harmony, researchers in some countries will have the ability to use genome editing in food animals, while others will not, resulting in disparate access to these tools, and ultimately the potential for global trade disruptions.
Collapse
|
11
|
Eliyasi Dashtaki M, Hemadi M, Saki G, Mohammadiasl J, Khodadadi A. Spermatogenesis Recovery Potentials after Transplantation of Adipose Tissue-Derived Mesenchymal Stem Cells Cultured with Growth Factors in Experimental Azoospermic Mouse Models. CELL JOURNAL 2019; 21:401-409. [PMID: 31376321 PMCID: PMC6722443 DOI: 10.22074/cellj.2020.6055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/17/2018] [Indexed: 12/26/2022]
Abstract
Objective Approximately 1% of the male population suffers from obstructive or non-obstructive azoospermia. Previous
in vitro studies have successfully differentiated mesenchymal stem cells (MSCs) into germ cells. Because of immune-
modulating features, safety, and simple isolation, adipose tissue-derived MSCs (AT-MSCs) are good candidates for
such studies. However, low availability is the main limitation in using these cells. Different growth factors have been
investigated to overcome this issue. In the present study, we aimed to comparatively assess the performance of
AT-MSCs cultured under the presence or absence of three different growth factors, epidermal growth factor (EGF),
leukemia inhibitory factor (LIF) and glial cell line-derived neurotrophic factor (GDNF), following transplantation in
testicular torsion-detorsion mice
Materials and Methods This was an experimental study in which AT-MSCs were first isolated from male Naval
Medical Research Institute (NMRI) mice. Then, the mice underwent testicular torsion-detorsion surgery and received
bromodeoxyuridine (BrdU)-labeled AT-MSCs into the lumen of seminiferous tubules. The transplanted cells had been
cultured in different conditioned media, containing the three growth factors and without them. The expression of germ
cell-specific markers was evaluated with real-time polymerase chain reaction (PCR) and western-blot. Moreover,
immunohistochemical staining was used to trace the labeled cells.
Results The number of transplanted AT-MSCs resided in the basement membrane of seminiferous tubules significantly
increased after 8 weeks. The expression levels of Gcnf and Mvh genes in the transplanted testicles by AT-MSCs
cultured in the growth factors-supplemented medium was greater than those in the control group (P<0.001 and P<0.05,
respectively). The expression levels of the c-Kit and Scp3 genes did not significantly differ from the control group.
Conclusion Our findings showed that the use of EGF, LIF and GDNF to culture AT-MSCs can be very helpful in terms of
MSC survival and localization.
Collapse
Affiliation(s)
- Masoumeh Eliyasi Dashtaki
- Cellular and Molecular Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Hemadi
- Cellular and Molecular Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghasem Saki
- Physiology Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Electronic Address:
| | - Javad Mohammadiasl
- Department of Medical Genetics, School of Medicine, Ahvaz University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Cancer, Environmental and Petroleum Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
12
|
Behzadi Fard S, Mazaheri Z, Ghorbanmehr N, Movahedin M, Behzadi Fard M, Gholampour MA. Analysis of MiRNA-17 and MiRNA-146 Expression During Differentiation of Spermatogonial Stem Like Cells Derived from Mouse Bone Marrow Mesenchymal Stem Cells. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:14-23. [PMID: 32195202 PMCID: PMC7073265 DOI: 10.22088/ijmcm.bums.8.1.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/13/2019] [Indexed: 12/22/2022]
Abstract
In vitro derivation of germ cells from different stem cell sources has been challenging in the treatment of male infertility. MicroRNAs (miRNAs) have an essential role in gene expression at post-transcriptional level. The aim of this research was to find more about miRNA-17 and miRNA-146 expression during differentiation of spermatogonial stem cell like cells (SSC like cells) from mouse bone marrow mesenchymal stem cells (BMSCs) through bone morphogenic protein 4 (BMP4) and retinoic acid (RA) induction. BMSCs were treated with BMP4 to produce primordial germ cell like cells (PGC like cells). The cells were differentiated into SSC like cells by an inducer cocktail including RA, leukemia inhibitory factor (LIF) and basic fibroblast growth factor (bFGF). The PGC like cells and SSC like cells were evaluated for pluripotency (Nanog, Oct-4) and germ cell specific gene (Piwil2, Plzf, Dazl, and Stra8) expression, protein expression (Plzf, Stra8), and miRNA-17 and miRNA-146 mRNA expression. Our results showed that BMP4 leads to Dazl upregulation and Nanog downregulation expression in PGC like cells. RA upregulated Stra8 and Piwil2, and downregulated Nanog and Oct-4. MiRNA-17 and miRNA-146 expression decreased significantly in SSC like cells after RA treatment. This research indicated the aberrant miRNA-17 and miRNA-146 expression in SSC like cells in comparison with SSCs. Downregulation of the two miRNAs using RA in the stimulated undifferentiated state could probably be one of the key factors of SSC like cell arrest.
Collapse
Affiliation(s)
- Saba Behzadi Fard
- Department of Anatomical Sciences, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Mazaheri
- Department of Anatomical Sciences, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Nasim Ghorbanmehr
- Biotechnology Department, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | | | | |
Collapse
|
13
|
Luo Y, Xie L, Mohsin A, Ahmed W, Xu C, Peng Y, Hang H, Zhuang Y, Chu J, Guo M. Efficient generation of male germ-like cells derived during co-culturing of adipose-derived mesenchymal stem cells with Sertoli cells under retinoic acid and testosterone induction. Stem Cell Res Ther 2019; 10:91. [PMID: 30867048 PMCID: PMC6415496 DOI: 10.1186/s13287-019-1181-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Adipose-derived mesenchymal stem cells (ADMSCs) are considered an efficient and important candidate for male infertility treatment because they contain pluripotent stem cells, which can differentiate into all cells from three germ layers. However, the efficient generation of male germ-like cell (MGLCs) is one of the key issues, and little is known about the mechanisms underlying generation of MGLCs. Herein, we attempt to improve the efficient generation of MGLCs derived during co-culturing of rat ADMSCs with SCs under retinoic acid (RA) and testosterone (T) treatment. METHODS ADMSCs isolated from male SD rat were induced into generation of MGLCs by using respective methods in vitro. Transwell insert system was used for co-culturing. Busulfan-induced non-obstructive azoospermia rat mode was used to evaluate spermatogenic recovery ability of treated ADMSCs. Besides, the relative gene expression level was detected by reverse transcription PCR, quantitative RT-PCR. The relative protein expression level was detected by western blot (WB) and immunostaining analysis. RESULTS The results showed that ADMSCs co-cultured with TM4 cells under RA and T induction enhanced the formation of bigger and tightly packed MGLCs feature colonies in vitro. Moreover, the expression of male germ cell-related markers (Oct4, Stella, Ddx4, Dazl, PGP9.5, Stra8, and ITGα6) is significantly upregulated in TM4 cell-co-cultured ADMSCs in vitro and in busulfan-treated rat testis after injecting TM4 cell-treated ADMSCs for 2 months. Comparatively, the ADMSCs treated by TM4 cell with RA and T exhibited the highest expression of male germ cell-related markers. RA- and T-treated TM4 cell showed fewer dead cells and higher cytokine secretion than untreated groups. The protein expression level of TGFβ-SMAD2/3, JAK2-STAT3, and AKT pathways in ADMSCs co-cultured with TM4 cells under RA and T was higher than others. Whereas, downregulation of male germ cell-related marker expression subsequently inhibited the phosphorylation of SMAD2/3, JAK2, STAT3, and AKT. CONCLUSION These results suggested that TM4 cells could efficiently stimulate in vitro generation of MGLCs during co-culturing of ADMSCs under RA and T treatment. Conclusively, the ADMSCs co-cultured with TM4 cell under RA and T induction stimulate the efficient generation of MGLCs in vitro through activating TGFβ-SMAD2/3, JAK2-STAT3, and AKT pathways. Among them, JAK2-STAT3 and AKT pathways are being first reported to show involvement of in vitro generation of MGLCs during ADMSC co-culturing with SCs.
Collapse
Affiliation(s)
- Yanxia Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Lili Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Waqas Ahmed
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Chenze Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Yan Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Haifeng Hang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China.
| |
Collapse
|
14
|
Segunda MN, Bahamonde J, Muñoz I, Sepulveda S, Cortez J, De Los Reyes M, Palomino J, Torres CG, Peralta OA. Sertoli cell-mediated differentiation of bovine fetal mesenchymal stem cells into germ cell lineage using an in vitro co-culture system. Theriogenology 2019; 130:8-18. [PMID: 30852370 DOI: 10.1016/j.theriogenology.2019.02.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/16/2019] [Accepted: 02/24/2019] [Indexed: 02/05/2023]
Abstract
In vitro gamete derivation based on differentiation of germ cells (GC) from stem cells has emerged as a potential new strategy for the treatment of male infertility. This technology also has potential applications in animal reproduction as an alternative method for dissemination of elite animal genetics, production of transgenic animals, and conservation of endangered species. Mesenchymal stem cells (MSC) are multipotent progenitor cells defined by their ability to differentiate into mesodermal lineages. Under the effect of selected bioactive factors, MSC upregulate expression of pluripotent and GC specific-markers revealing their potential for GC differentiation. In addition to the effect of trophic factors, cell-to-cell interaction with Sertoli cells (SC) may be required to guide the sequential differentiation of MSC into GC. Thus, the aim of the present study was to investigate the effect of coculture with SC on the potential for in vitro GC differentiation of bovine fetal MSC (bfMSC) derived from bone marrow (BM-MSC) and adipose tissue (AT-MSC). bfMSC were isolated from male bovine fetuses and SC were collected from adult bull testes. The effect of SC interaction with BM-MSC or AT-MSC was analyzed on the expression of pluripotent factors OCT4 and NANOG, GC genes FRAGILLIS, STELLA and VASA and male GC markers DAZL, PIWIL2, STRA8 and SCP3 at Day 14 of coculture. Flow cytometry analyses detected that the majority (95,5% ± 2.5; P < 0.05) of the isolated population of SC cultures were positive for SC-specific marker WT1. Levels of mRNA of WT1 in BM-MSC and AT-MSC were lower (P < 0.05) compared to SC; whereas, WT1 expression was not detected in bovine fetal fibroblasts (FB). Cocultures of BM-MSC and AT-MSC with SC had higher (P < 0.05) OCT4 mRNA levels compared to monocultures of BM-MSC, AT-MSC and SC. Moreover, cocultures of BM-MSC with SC had higher (P < 0.05) proportion of cells positive for Oct4 and Nanog compared to monocultures of BM-MSC and SC. Levels of mRNA of DAZL, PIWIL2 and SCP3 were upregulated in cocultures of AT-MSC with SC compared to monocultures of AT-MSC and SC. Accordingly, the proportion of cells positive for Dazl were higher (P < 0.05) in cocultures of AT-MSC with SC compared to monocultures of AT-MSC and SC. Changes in gene expression profiles during coculture of SC with AT-MSC suggest that cell-to-cell interaction or bioactive factors provided by SC may induce progression of AT-MSC into early stages of GC differentiation.
Collapse
Affiliation(s)
- M N Segunda
- Department of Animal Production Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa, 11735, Santiago, Chile
| | - J Bahamonde
- Department of Animal Production Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa, 11735, Santiago, Chile; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, 205 Duck Pond Drive, Blacksburg, VA, USA
| | - I Muñoz
- Department of Animal Production Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa, 11735, Santiago, Chile
| | - S Sepulveda
- Department of Animal Production Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa, 11735, Santiago, Chile
| | - J Cortez
- Department of Animal Production Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa, 11735, Santiago, Chile
| | - M De Los Reyes
- Department of Animal Production Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa, 11735, Santiago, Chile
| | - J Palomino
- Department of Animal Production Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa, 11735, Santiago, Chile
| | - C G Torres
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa, 11735, Santiago, Chile
| | - O A Peralta
- Department of Animal Production Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa, 11735, Santiago, Chile; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, 205 Duck Pond Drive, Blacksburg, VA, USA.
| |
Collapse
|
15
|
Zhang YL, Li PZ, Pang J, Wan YJ, Zhang GM, Fan YX, Wang ZY, Tao NH, Wang F. Induction of goat bone marrow mesenchymal stem cells into putative male germ cells using mRNA for STRA8, BOULE and DAZL. Cytotechnology 2019; 71:563-572. [PMID: 30767091 DOI: 10.1007/s10616-019-00304-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/06/2019] [Indexed: 12/24/2022] Open
Abstract
Bone mesenchymal stem cells (BMSCs) have the capacity to differentiate into germ cells (GCs). This study was conducted to develop a non-integrated method of using RNA transfection to derive putative male GCs from goat BMSCs (gBMSCs) in vitro by overexpressing STRA8, BOULE and DAZL. The gBMSCs were induced by co-transfection these three mRNAs together (mi-SBD group) or sequential transfection according to their expression time order in vivo (mi-S + BD group). After transfection, a small population of gBMSCs transdifferentiated into early germ cell-like cells and had the potential to enter meiosis. These cells expressed primordial germ cell specific genes STELLA, C-KIT and MVH, as well as premeiotic genes DAZL, BOULE, STRA8, PIWIL2 and RNF17. Importantly, the expression level of meiotic marker synaptonemal complex protein 3 significantly increased in these transfected two groups compared with control cells by qRT-PCR, immunofluorescence and western blot analysis (P < 0.05). Moreover, the protein expression of MVH was significantly higher in mi-S + BD group than that in mi-SBD group (P < 0.05). In addition, compared with control group, the methylation rate of imprinted gene H19 decreased in these two transfected group (P < 0.05), and the rate was significantly lower in mi-S + BD group compared with mi-SBD group (P < 0.05). This study helps to understand the mechanisms of action of key genes in GCs differentiation and also provides a novel system for in vitro induction of male GCs from stem cells.
Collapse
Affiliation(s)
- Yan-Li Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No. 1 Weigang, Nanjing, China
| | - Pei-Zhen Li
- Jiangsu Provincial Station of Animal Husbandry, Nanjing, China
| | - Jing Pang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No. 1 Weigang, Nanjing, China
| | - Yong-Jie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No. 1 Weigang, Nanjing, China
| | - Guo-Min Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No. 1 Weigang, Nanjing, China
| | - Yi-Xuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No. 1 Weigang, Nanjing, China
| | - Zi-Yu Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No. 1 Weigang, Nanjing, China
| | - Nie-Hai Tao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No. 1 Weigang, Nanjing, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No. 1 Weigang, Nanjing, China.
| |
Collapse
|
16
|
Salem M, Mirzapour T, Bayrami A, Sagha M. Germ cell differentiation of bone marrow mesenchymal stem cells. Andrologia 2019; 51:e13229. [DOI: 10.1111/and.13229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/31/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Maryam Salem
- Department of Biology, Faculty of Science University of Mohaghegh Ardabili Ardabil Iran
| | - Tooba Mirzapour
- Department of Biology, Faculty of Science University of Guilan Rasht Iran
| | - Abolfazl Bayrami
- Department of Biology, Faculty of Science University of Mohaghegh Ardabili Ardabil Iran
| | - Mohsen Sagha
- Research Laboratory for Embryology and Stem cells, Faculty of Medicine Ardabil University of Medical Science Ardabil Iran
| |
Collapse
|
17
|
Gugjoo MB, Amarpal, Fazili MR, Shah RA, Sharma GT. Mesenchymal stem cell: Basic research and potential applications in cattle and buffalo. J Cell Physiol 2018; 234:8618-8635. [PMID: 30515790 DOI: 10.1002/jcp.27846] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
Characteristic features like self-renewal, multilineage differentiation potential, and immune-modulatory/anti-inflammatory properties, besides the ability to mobilize and home distant tissues make stem cells (SCs) a lifeline for an individual. Stem cells (SCs) if could be harvested and expanded without any abnormal change may be utilized as an all-in-one solution to numerous clinical ailments. However, slender understanding of their basic physiological properties, including expression potential, behavioral alternations during culture, and the effect of niche/microenvironment has currently restricted the clinical application of SCs. Among various types of SCs, mesenchymal stem cells (MSCs) are extensively studied due to their easy availability, straightforward harvesting, and culturing procedures, besides, their less likelihood to produce teratogens. Large ruminant MSCs have been harvested from various adult tissues and fetal membranes and are well characterized under in vitro conditions but unlike human or other domestic animals in vivo studies on cattle/buffalo MSCs have mostly been aimed at improving the animals' production potential. In this document, we focused on the status and potential application of MSCs in cattle and buffalo.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India.,Division of Surgery, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Amarpal
- Division of Surgery, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Mujeeb R Fazili
- Division of Veterinary Clinical Complex, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India
| | - Riaz A Shah
- Division of Animal Biotechnology, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India
| | - Gutulla Taru Sharma
- Division of Physiology & Climatology, Indian Veterinary Research Institute, Bareilly, UP, India
| |
Collapse
|
18
|
Gugjoo MB, Amarpal. Mesenchymal stem cell research in sheep: Current status and future prospects. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Co-transplantation of mesenchymal stem cells improves spermatogonial stem cell transplantation efficiency in mice. Stem Cell Res Ther 2018; 9:317. [PMID: 30463610 PMCID: PMC6249754 DOI: 10.1186/s13287-018-1065-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/19/2018] [Accepted: 10/31/2018] [Indexed: 12/27/2022] Open
Abstract
Background Spermatogonial stem cell transplantation (SSCT) could become a fertility restoration tool for childhood cancer survivors. However, since in mice, the colonization efficiency of transplanted spermatogonial stem cells (SSCs) is only 12%, the efficiency of the procedure needs to be improved before clinical implementation is possible. Co-transplantation of mesenchymal stem cells (MSCs) might increase colonization efficiency of SSCs by restoring the SSC niche after gonadotoxic treatment. Methods A mouse model for long-term infertility was developed and used to transplant SSCs (SSCT, n = 10), MSCs (MSCT, n = 10), a combination of SSCs and MSCs (MS-SSCT, n = 10), or a combination of SSCs and TGFß1-treated MSCs (MSi-SSCT, n = 10). Results The best model for transplantation was obtained after intraperitoneal injection of busulfan (40 mg/kg body weight) at 4 weeks followed by CdCl2 (2 mg/kg body weight) at 8 weeks of age and transplantation at 11 weeks of age. Three months after transplantation, spermatogenesis resumed with a significantly better tubular fertility index (TFI) in all transplanted groups compared to non-transplanted controls (P < 0.001). TFI after MSi-SSCT (83.3 ± 19.5%) was significantly higher compared to MS-SSCT (71.5 ± 21.7%, P = 0.036) but did not differ statistically compared to SSCT (78.2 ± 12.5%). In contrast, TFI after MSCT (50.2 ± 22.5%) was significantly lower compared to SSCT (P < 0.001). Interestingly, donor-derived TFI was found to be significantly improved after MSi-SSCT (18.8 ± 8.0%) compared to SSCT (1.9 ± 1.1%; P < 0.001), MSCT (0.0 ± 0.0%; P < 0.001), and MS-SSCT (3.4 ± 1.9%; P < 0.001). While analyses showed that both native and TGFß1-treated MSCs maintained characteristics of MSCs, the latter showed less migratory characteristics and was not detected in other organs. Conclusion Co-transplanting SSCs and TGFß1-treated MSCs significantly improves the recovery of endogenous SSCs and increases the homing efficiency of transplanted SSCs. This procedure could become an efficient method to treat infertility in a clinical setup, once the safety of the technique has been proven. Electronic supplementary material The online version of this article (10.1186/s13287-018-1065-0) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Zhao XX, An XL, Zhu XC, Jiang Y, Zhai YH, Zhang S, Cai NN, Tang B, Li ZY, Zhang XM. Inhibiting transforming growth factor-β signaling regulates in vitro maintenance and differentiation of bovine bone marrow mesenchymal stem cells. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:406-416. [PMID: 30460778 DOI: 10.1002/jez.b.22836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022]
Abstract
Bovine bone marrow mesenchymal stem cells (bBMSC) are potential stem cell source which can be used for multipurpose. However, their application is limited because the in vitro maintenance of these cells is usually accompanied by aging and multipotency losing. Considering transforming growth factor-β (TGF-β) pathway inhibitor Repsox is beneficial for cell reprogramming, here we investigated its impacts on the maintenance and differentiation of bBMSC. The bBMSC were enriched and characterized by morphology, immunofluorescent staining, flow cytometry, and multilineage differentiation. The impacts of Repsox on their proliferation, apoptosis, cell cycle, multipotency, and differentiation were examined by Cell Counting Kit-8 (CCK-8), real-time polymerase chain reaction, induced differentiation and specific staining. The results showed that highly purified cluster of diffrentiation 73+ (CD73 + )/CD90 + /CD105 + /CD34 - /CD45 - bBMSC with adipogenic, osteogenic, and chondrogenic differentiation capacities were enriched. Repsox treatments (5 μM, 48 hr) enhanced the messenger RNA mRNA levels of the proliferation gene (telomerase reverse transcriptase [ TERT]; basic fibroblast growth factor [ bFGF]), apoptosis-related gene ( bax and Bcl2), antiapoptosis ratio ( Bcl2/bax), and pluripotency marker gene ( Oct4, Sox2, and Nanog), instead of changing the cell cycle, in bBMSC. Repsox treatments also enhanced the osteogenic differentiation but attenuated the chondrogenic differentiation of bBMSC, concomitant with decreased Smad2 and increased Smad3/4 expressions in TGF-β pathway. Collectively, inhibiting TGF-β/Smad signaling by Repsox regulates the in vitro maintenance and differentiation of bBMSC.
Collapse
Affiliation(s)
- Xin-Xin Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xing-Lan An
- State & Local Joint Engineering Laboratory for Animal Models of Human Diseases, The First Hospital, Jilin University, Changchun, China
| | - Xian-Chun Zhu
- Department of Orthodontics, Stomatological Hospital, Jilin University, Changchun, China
| | - Yu Jiang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yan-Hui Zhai
- State & Local Joint Engineering Laboratory for Animal Models of Human Diseases, The First Hospital, Jilin University, Changchun, China
| | - Sheng Zhang
- State & Local Joint Engineering Laboratory for Animal Models of Human Diseases, The First Hospital, Jilin University, Changchun, China
| | - Ning-Ning Cai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bo Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zi-Yi Li
- State & Local Joint Engineering Laboratory for Animal Models of Human Diseases, The First Hospital, Jilin University, Changchun, China
| | - Xue-Ming Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
21
|
Fazeli Z, Abedindo A, Omrani MD, Ghaderian SMH. Mesenchymal Stem Cells (MSCs) Therapy for Recovery of Fertility: a Systematic Review. Stem Cell Rev Rep 2018; 14:1-12. [PMID: 28884412 DOI: 10.1007/s12015-017-9765-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In recent years, the mesenchymal stem cells (MSCs) have provided the new opportunities to treat different disorders including infertility. Different studies have suggested that the MSCs have ability to differentiate into germ-like cells under specific induction conditions as well as transplantation to gonadal tissues. The aim of this systematic review was to evaluate the results obtained from different studies on MSCs therapy for promoting fertility. This search was done in PubMed and Science Direct databases using key words MSCs, infertility, therapy, germ cell, azoospermia, ovarian failure and mesenchymal stem cell. Among the more than 11,400 papers, 53 studies were considered eligible for more evaluations. The obtained results indicated that the most studies were performed on MSCs derived from bone marrow and umbilical cord as compared with the other types of MSCs. Different evaluations on animal models as well as in vitro studies supported from their role in the recovery of spermatogenesis and folliculogenesis. Although the data obtained from this systematic review are promising, but the further studies need to assess the efficiency and safety of transplantation of these cells in fertility recovery.
Collapse
Affiliation(s)
- Zahra Fazeli
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Atieh Abedindo
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, No 23, Shahid Labbafi Nejad Educational Hospital, Amir Ebrahimi St, Pasdaran Ave, Tehran, Iran
| | - Sayyed Mohammad Hossein Ghaderian
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, No 23, Shahid Labbafi Nejad Educational Hospital, Amir Ebrahimi St, Pasdaran Ave, Tehran, Iran
| |
Collapse
|
22
|
Kadam P, Van Saen D, Goossens E. Can mesenchymal stem cells improve spermatogonial stem cell transplantation efficiency? Andrology 2017; 5:2-9. [PMID: 27989021 DOI: 10.1111/andr.12304] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/04/2016] [Accepted: 10/20/2016] [Indexed: 12/11/2022]
Abstract
Improved treatments have led to an increased survival rate in cancer patients. However, in pre-pubertal boys, these gonadotoxic treatments can result in the depletion of the spermatogonial stem cell (SSC) pool causing lifelong infertility. SSC transplantation has been proposed as a promising technique to preserve the fertility of these patients. In mice, this technique has resulted in live-born offspring, but the efficiency of colonization remained low. This could be because of a deficient microenvironment, leading to apoptosis of the transplanted SSCs. Interestingly, mesenchymal stem cells (MSCs), being multipotent and easy to isolate and multiply in vitro, are nowadays successfully and widely used in regenerative medicine. Here, we shortly review the current understanding of MSC and SSC biology, and we hypothesize that a combined MSC-SSC transplantation might improve the efficiency of SSC colonization and differentiation as paracrine factors from MSCs may contribute to the SSC niche.
Collapse
Affiliation(s)
- P Kadam
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - D Van Saen
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - E Goossens
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
23
|
Shirzeyli MH, Khanlarkhani N, Amidi F, Shirzeyli FH, Aval FS, Sobhani A. Bones Morphogenic Protein-4 and retinoic acid combined treatment comparative analysis for in vitro differentiation potential of murine mesenchymal stem cells derived from bone marrow and adipose tissue into germ cells. Microsc Res Tech 2017; 80:1151-1160. [PMID: 28921810 DOI: 10.1002/jemt.22880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/16/2017] [Accepted: 03/29/2017] [Indexed: 01/08/2023]
Abstract
Nowadays, infertility is no longer considered as an unsolvable disorder due to progresses in germ cells derived from stem lineage with diverse origins. Technical and ethical challenges push researchers to investigate various tissue sources to approach more efficient gametes. The purpose of the current study is to investigate the efficacy of a combined medium, retinoic acid (RA) together with Bone Morphogenic Protein-4 (BMP4), on differentiation of Bone Marrow Mesenchymal Stem Cells (BMMSCs) and adipose-derived mesenchymal stem cells (ADMSCs) into germ cells. Murine MSCs were obtained from both Bone Marrow (BM) and Adipose Tissue (AT) samples and were analyzed for surface markers to get further verification of their nature. BMMSCs and ADMSCs were induced into osteogenic and adipogenic lineage cells respectively, to examine their multipotency. They were finally differentiated into germ cells using media enriched with BMP4 for 4 days followed by addition of RA for 7 days (11 days in total). Analyzing of differentiation potential of BMMSCs- and ADMSCs were performed via Immunofluorescence, Flowcytometry and Real time-PCR techniques for germ cell-specific markers (Mvh, Dazl, Stra8 and Scp3). Mesenchymal surface markers (CD90 and CD44) were expressed on both BMMSCs and ADMSCs, while endothelial and hematopoietic cell markers (CD31 and CD45) had no expression. Finally, all germ-specific markers were expressed in both BM and AT. Although germ cells differentiated from ADMSCs showed faster growth and proliferation as well as easy collection, they significantly expressed germ-specific markers lower than BMMSCs. This suggests stronger differentiation potential of murine BMMSCs than ADMSCs.
Collapse
Affiliation(s)
- Maryam H Shirzeyli
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Khanlarkhani
- Department of Anatomical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad H Shirzeyli
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fereydoon S Aval
- Department of Anatomical Sciences, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Aligholi Sobhani
- Department of Anatomical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Fang J, Wei Y, Lv C, Peng S, Zhao S, Hua J. CD61 promotes the differentiation of canine ADMSCs into PGC-like cells through modulation of TGF-β signaling. Sci Rep 2017; 7:43851. [PMID: 28256590 PMCID: PMC5335555 DOI: 10.1038/srep43851] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/30/2017] [Indexed: 12/18/2022] Open
Abstract
Previous studies have shown that CD61 (integrin-β3) promotes the differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) into germ-like cells. However, the mechanism remains unclear. In this study, we showed that overexpression of CD61 in canine adipose-derived mesenchymal stem cells (cADMSCs) promotes their differentiation into primordial germ cell (PGC)-like cells. Quantitative real-time PCR, immunocytochemistry and western blot detected higher levels of PGC-specific markers in CD61-overexpressed cADMSCs compared with those in control cells. Moreover, phosphorylation of Smad2, a downstream mediator of transforming growth factor beta (TGF-β), was increased in CD61-overexpressed cADMSCs than that in control cells. However, the expression of PGC-specific markers was downregulated in cADMSCs treated with a TGF-β inhibitor. These results suggested that CD61 could induce cADMSCs to differentiate into PGC-like cells by relying on the activation of TGF-β pathway. ADMSCs possess a considerable potential in treating the infertility of rare animal species.
Collapse
Affiliation(s)
- Jia Fang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yudong Wei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Changrong Lv
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shanting Zhao
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
25
|
Ghasemzadeh-Hasankolaei M, Batavani R, Eslaminejad MB, Sayahpour F. Transplantation of Autologous Bone Marrow Mesenchymal Stem Cells into the Testes of Infertile Male Rats and New Germ Cell Formation. Int J Stem Cells 2016; 9:250-263. [PMID: 27430978 PMCID: PMC5155721 DOI: 10.15283/ijsc16010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2016] [Indexed: 01/07/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs), have been suggested as a potential choice for treatment of male infertility. Yet, the effects of MSCs on regeneration of germinal epithelium of seminiferous tubules and recovery of spermatogenesis have remained controversial. In this research, we have evaluated and compared the fate of autologous bone marrow (BM)-MSCs during three different periods of time- 4, 6 and 8 weeks after transplantation into the testes of busulfan-induced infertile male rats. Methods Rats BM samples were collected from tibia bone under anesthesia. The samples were directly cultured in culture medium. Isolated, characterized and purified BM-MSCs were labeled with PKH26, and transplanted into the testes of infertile rats. After 4, 6 and 8 weeks, the testes were removed and underwent histological evaluations. Results Immunohistochemical analysis showed that transplanted BM-MSCs survived in all three groups. Some of the cells homed at the germinal epithelium and expressed spermatogonia markers (Dazl and Stella). The number of homed spermatogonia-like cells in 4-week testes, was more than the 6-week testes. The 8-week testes had the least numbers of homed cells (p<0.05). Immunostaining for vimentin showed that BM-MSCs did not differentiate into the sertoli cells in the testes. Conclusions From our results, it could be concluded that, autologous BM-MSCs could survive in the testis, migrate onto the seminiferous tubules basement membrane and differentiate into spermatogonia. Although, no more differentiation was observed in the produced spermatogonia, generation of such endogenous GCs would be a really promising achievement for treatment of male infertility using autologous stem cells.
Collapse
Affiliation(s)
- Mohammad Ghasemzadeh-Hasankolaei
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Roozali Batavani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Foroughazam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
26
|
Afsartala Z, Rezvanfar MA, Hodjat M, Tanha S, Assadollahi V, Bijangi K, Abdollahi M, Ghasemzadeh-Hasankolaei M. Amniotic membrane mesenchymal stem cells can differentiate into germ cells in vitro. In Vitro Cell Dev Biol Anim 2016; 52:1060-1071. [PMID: 27503516 DOI: 10.1007/s11626-016-0073-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/14/2016] [Indexed: 11/28/2022]
Abstract
This is the first report on differentiation of mouse amniotic membrane mesenchymal stem cells (AM-MSCs) into male germ cells (GCs). AM-MSCs have the multipotent differentiation capacity and can be differentiated into various cell types. In the present study, AM-MSCs were induced for differentiation into GCs. AM-MSCs were isolated from mouse embryonic membrane by enzymatic digestion. AM-MSCs were characterized with osteogenic and adipogenic differentiation test and flow cytometric analysis of some CD-markers. AM-MSCs were induced to differentiate into GCs using a creative two-step method. Passage-3 AM-MSCs were firstly treated with 25 ng/ml bone morphogenetic protein 4 (BMP4) for 5 d and in continuing with 1 μM retinoic acid (RA) for 12 d (total treatment time was 17 d). At the end of the treatment period, real-time reverse transcription (RT)-PCR was performed to evaluate the expression of GC-specific markers-Itgb1, Dazl, Stra8, Piwil2, Mvh, Oct4, and c-Kit- in the cells. Moreover, flow cytometry and immunofluorescence staining were performed to evaluate the expression of Mvh and Dazl at protein level. Real-time RT-PCR showed that most of the tested markers were upregulated in the treated AM-MSCs. Furthermore, flow cytometric and immunofluorescence analyses both revealed that a considerable part of the treated cells expressed GC-specific markers. The percentage of positive cells for Mvh and Dazl was about 23 and 46%, respectively. Our results indicated that a number of AM-MSCs successfully differentiated into the GCs. Finally, it seems that AM-MSCs would be a potential source of adult pluripotent stem cells for in vitro generation of GCs and cell-based therapies for treatment of infertility.
Collapse
Affiliation(s)
- Zohreh Afsartala
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Amin Rezvanfar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahshid Hodjat
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Tanha
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahideh Assadollahi
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Mohammad Abdollahi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Ghasemzadeh-Hasankolaei
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, P.O. Box: 47318-38711, Amirkola, Babol, Iran.
| |
Collapse
|